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Abstract. The subject of this work is the study of LS -perfect graphs
defined as those graphs G for which the stable set polytope STAB(G) is
achieved in one iteration of Lovész-Schrijver PSD-operator LS4, applied
to its edge relaxation ESTAB(G). In particular, we look for a polyhe-
dral relaxation of STAB(G) that coincides with LS (ESTAB(G)) and
STAB(G) if and only if G is LS, -perfect. An according conjecture has
been recently formulated (LS4 -Perfect Graph Conjecture); here we verify
it for the well-studied class of claw-free graphs.
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1 Introduction

The context of this work is the study of the stable set polytope, some of its linear
and semi-definite relaxations, and graph classes for which certain relaxations are
tight. Our focus lies on those graphs where a single application of the Lovasz-
Schrijver positive semi-definite operator introduced in [24] to the edge relaxation
yields the stable set polytope.

The stable set polytope STAB(G) of a graph G = (V, E) is defined as the
convex hull of the incidence vectors of all stable sets of G (in a stable set all
nodes are mutually nonadjacent). Two canonical relaxations of STAB(G) are
the edge constraint stable set polytope

ESTAB(G) = {x € [0,1]Y : 2; +x; < 1,ij € E},
and the clique constraint stable set polytope

QSTAB(G) = {x € [0,1]" : Z z; < 1, @ CV maximal clique of G}
i€Q

(in a clique all nodes are mutually adjacent, hence a clique and a stable set share
at most one node). We have STAB(G) C QSTAB(G) C ESTAB(G) for any
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graph, where STAB(G) equals ESTAB(G) for bipartite graphs, and QSTAB(G)
for perfect graphs only [5].

According to a famous characterization achieved by Chudnovsky et al. [3],
perfect graphs are precisely the graphs without chordless cycles Coy1 with k >
2, termed odd holes, or their complements, the odd antiholes Capy1 as node
induced subgraphs (where the complement G has the same nodes as G, but two
nodes are adjacent in G if and only if they are non-adjacent in G). Then, odd
holes and odd antiholes are the only minimally imperfect graphs.

Perfect graphs turned out to be an interesting and important class with a
rich structure and a nice algorithmic behavior [19]. However, solving the stable
set problem for a perfect graph G by maximizing a linear objective function
over QSTAB(G) does not work directly [I§], but only via a detour involving a
geometric representation of graphs [23] and the resulting semi-definite relaxation
TH(G) introduced in [19].

For some N € Z,, an orthonormal representation of a graph G = (V, E)
is a sequence (w; : i € V) of |V| unit-length vectors u; € RY, such that
w;Tu; = 0 for all ij ¢ E. For any orthonormal representation of G and any ad-
ditional unit-length vector ¢ € RY, the orthonormal representation constraint
is > ey (€Tuy)?z; < 1. TH(G) denotes the convex set of all vectors x € RLY‘
satisfying all orthonormal representation constraints for G. For any graph G,

STAB(G) C TH(G) C QSTAB(G)

holds and approximating a linear objective function over TH(G) can be done
with arbitrary precision in polynomial time [19]. Moreover, if TH(G) is a rational
polytope, an optimal solution can be obtained in polynomial time. This fact gives
a great relevance to the beautiful characterization of perfect graphs obtained by
the same authors:

G is perfect & TH(G) = STAB(G) < TH(G) = QSTAB(G). (1)

For all imperfect graphs, STAB(G) does not coincide with any of the above re-
laxations. It is, thus, natural to study further relaxations and to combinatorially
characterize those graphs where STAB(G) equals one of them.

Linear relaxzations and related graphs. A mnatural generalization of the clique
constraints are rank constraints associated with arbitrary induced subgraphs
G’ C G. By the choice of the right hand side a(G”), denoting the size of a largest
stable set in G’, rank constraints

x(G") = Z x; < a(G")
€G!

are valid for STAB(G).
A graph G is called rank-perfect by [34] if and only if STAB(G) is described
by rank constraints only.



By definition, rank-perfect graphs include all perfect graphs. By restricting
the facet set to rank constraints associated with certain subgraphs, several well-
known graph classes are defined, e.g., near-perfect graphs [31] where only rank
constraints associated with cliques and the whole graph are allowed, or t-perfect
[B] and h-perfect graphs [19] where rank constraints associated with edges, tri-
angles and odd holes resp. cliques of arbitrary size and odd holes suffice.

As common generalization of perfect, t-perfect, and h-perfect graphs, the
class of a-perfect graphs was introduced in [35] as graphs G where STAB(G) is
given by rank constraints associated with antiwebs. An antiweb AF is a graph
with n nodes 0,...,n — 1 and edges ij if and only if k¥ < |i — j| < n —k and
i # j. Antiwebs include all complete graphs K,, = Al odd holes Cox1 = A5, i1
and their complements Caj41 = A%, 41+ Antiwebs are a-perfect by [35], further
examples of a-perfect graphs were found in [30].

A more general type of inequalities is obtained from complete joins of anti-
webs, called joined antiweb constraints

> A +e(Q) < 1

i<k

associated with the join of some antiwebs Aj,..., Ay and a clique @ (note that
the inequality is scaled to have right hand side 1). This includes, e.g., all odd
(anti)wheels (the join of a single node with an odd (anti)hole). We denote the
linear relaxation of STAB(G) obtained by all joined antiweb constraints by
ASTAB*(G). By construction, we see that

STAB(G) C ASTAB*(G) C QSTAB(G) C ESTAB(G).

In [6], a graph G is called joined a-perfect if and only if STAB(G) coincides with
ASTAB*(G). Besides all a-perfect graphs, further examples of joined a-perfect
graphs are near-bipartite graphs (where the non-neighbors of every node induce
a bipartite graph) due to [32].

A semi-definite relazation and LS. -perfect graphs. In the early nineties, Lovasz
and Schrijver introduced the PSD-operator LSy (called Ny in [24]) which, ap-
plied to ESTAB(G), generates a positive semi-definite relaxation of STAB(G)
stronger than TH(G) (see Section [ for details). In order to simplify the notation
we write LS, (G) = LS (ESTAB(G)).

As in the case of perfect graphs, the stable set problem can be solved in
polynomial time for the class of graphs for which LSy (G) = STAB(G) by [24].
These graphs are called LS -perfect, and all other graphs LS, -imperfect (note
that they are also called N,-(im)perfect, see e.g. [1]).

In addition, every subgraph of an LS -perfect graph is also LS -perfect. This
motivates the definition of minimally LS -imperfect graphs as the LS -imperfect
graphs whose proper induced subgraphs are all LS -perfect. The two smallest
of such graphs (regarding its number of nodes) were found by [10] and [22] and
are depicted in Figure [l



Fig. 1. The graphs Grr (on the left) and Gegamn (on the right).

In [T, the authors look for a characterization of LS -perfect graphs similar
to the characterization ([I) for perfect graphs: they intend to find an appropriate
polyhedral relaxation P(G) of STAB(G) such that G is LS -perfect if and only
if STAB(G) = P(G). A conjecture has been recently proposed in [2], which can
be equivalently reformulated as follows [12]:

Congecture 1 (LS. -Perfect Graph Conjecture). A graph G is LS -perfect if and
only if STAB(G) = ASTAB*(G).

In [24] it is shown that, for every graph G
LS, (G) C ASTAB*(G). (2)

Thus, the conjecture states that LS -perfect graphs coincide with joined a-
perfect graphs and ASTAB*(G) is the polyhedral relaxation of STAB(G) playing
the role of P(G) in ().

Conjecture [[l has been already verified for near-perfect graphs by [1], for fs-
perfect graphs (where the only facet-defining subgraphs are cliques and the graph

itself) by [2], for webs (the complements W}F = Zﬁ of antiwebs) by [11] and for
line graphs (obtained by turning adjacent edges of a root graph into adjacent
nodes of the line graph) by [12], see Section 2] for details.

The LS, -Perfect Graph Conjecture for Claw-free graphs. The aim of this con-
tribution is to verify Conjecture [I for a well-studied graph class containing all
webs, all line graphs and the complements of near-bipartite graphs: the class of
claw-free graphs (i.e., the graphs not containing as node induced subgraph the
complete join of a single node and a stable set of size three).

Claw-free graphs attracted much attention due to their seemingly asymmetric
behavior w.r.t. the stable set problem. On the one hand, the first combinatorial
algorithms to solve the problem in polynomial time for claw-free graphs [25/30]
date back to 1980. Therefore, the polynomial equivalence of optimization and
separation due to [I9] implies that it is possible to optimize over the stable
set polytope of a claw-free graph in polynomial time. On the other hand, the
problem of characterizing the stable set polytope of claw-free graphs in terms
of an explicit description by means of a facet-defining system, originally posed
in [19], was open for several decades. This motivated the study of claw-free graphs
and its different subclasses, that finally answered this long-standing problem only
recently (see Section 22 for details).

The paper is organized as follows: In Section 2, we present the State-of-the-
Art on LS, -perfect graphs (including families of LS -imperfect graphs needed



for the subsequent proofs) and on claw-free graphs, their relevant subclasses and
the results concerning the facet-description of their stable set polytopes from the
literature. In Section 3, we verify, relying on the previously presented results,
Conjecture [I for the studied subclasses of claw-free graphs. As a conclusion, we
obtain as our main result:

Theorem 1. The LS, -Perfect Graph Conjecture is true for all claw-free graphs.

We close with some further remarks and an outlook to future lines of research.

2 State-of-the-Art

2.1 About LS -perfect graphs

In order to introduce the LS -operator we denote by eg,eq,...,e, the vectors
of the canonical basis of R"*! (where the first coordinate is indexed zero), 1
the vector with all components equal to 1 and S the convex cone of symmetric
and positive semi-definite (n x n)-matrices with real entries. Let K C [0,1]™ be
a convex set and

cone(K) = {(f?) e R x = 20y; yEK}.

Then, the convex set M (K) is defined as:

My(K)={Y € ST : Ye, = diag(Y),
Ye; € cone(K),
Y(eo—e;) €cone(K), i=1,...,n},

where diag(Y") denotes the vector whose i-th entry is Y;;, for every i = 0,...,n.
Projecting this lifting back to the space R™ results in

LS, (K) = {x € 0,1]" : <i> — Yey, for some Y ¢ M+(K)} .

In [24], Lovdsz and Schrijver proved that LS, (K) is a relaxation of the convex
hull of integer solutions in K and that

LS% (K) = conv(K N{0,1}"),

where LSY (K) = K and LSk (K) = LS, (LS¥ ! (K)) for every k > 1.
In this work we focus on the behavior of a single application of the LS, -
operator to the edge relaxation ESTAB(G) of the stable set polytope of a graph.
Recall that we write LS4 (G) = LS4 (ESTAB(G)) to simplify the notation
and that graphs for which LS (G) = STAB(G) holds are LS, -perfect.
Exhibiting one LS. -imperfect subgraph G’ in a graph G certifies the LS -
imperfection of G. Hereby, characterizing LS -imperfect graphs within a certain
graph class turns out to be a way to attack the conjecture for this class.



Recall that Grr and Ggyn are the smallest LS -imperfect graphs. In [I]
the authors showed that they are the two smallest members of an infinite family
of LS -imperfect graphs having stability number two that will play a central
role in some subsequent proofs:

Theorem 2 ([1). Let G be a graph with a(G) = 2 such that G — v is an odd
antihole for some node v. G is LS -perfect if and only if v is completely joined
to G —w.

Further LS, -imperfect graphs can be obtained by applying operations pre-
serving LS -imperfection.

In [22], the stretching of a node v is introduced as follows: Partition its
neighborhood N (v) into two nonempty, disjoint sets A; and As (so A1 U Ay =
N(v), and Ay N Ay = ). A stretching of v is obtained by replacing v by two
adjacent nodes v1 and vy, joining v; with every node in A; for i € {1,2}, and
subdividing the edge v1vs by one node w. In [22] it is shown:

Theorem 3 ([22]). The stretching of a node preserves LS. -imperfection.

Hence, all stretchings of G and Ggyn are LS -imperfect, see Figure 2] for
some examples.

SR RRS,

Fig. 2. Some node stretchings (vi,w, vz in black) of Grr and Gemn.

Using stretchings of Grr and Ggyn and exhibiting one more minimally
LS. -imperfect graph, namely the web W3, LS -perfect webs are characterized
in [I1] as follows:

Theorem 4 ([11]). A web is LSy -perfect if and only if it is perfect or minimally
imperfect.

The proof shows that all imperfect not minimally imperfect webs with sta-
bility number 2 contain Ggy/y and all webs W,% different from W72, W120, some
stretching of G7. Furthermore, all other webs contain some LS -imperfect W32,
and are, thus, also LS -imperfect.

Another way to attack the conjecture is from the polyhedral point of view.

A graph G is said to be facet-defining if STAB(G) has a full-support facet.
Observe that verifying Conjecture [Il is equivalent to prove that the only facet
defining LS -perfect graphs are the complete joins of antiwebs. That is why we



need to rely on structural results and complete facet-descriptions of stable set
polytope of the graphs.

Using this approach, in [12], the authors characterized LS -perfect line graphs
by showing:

Theorem 5 ([12]). A facet-defining line graph G is LSy -perfect if and only if

G is a clique or an odd hole.

The proof relies on a result due to Edmonds & Pulleyblank [8] who showed
that a line graph L(H) is facet-defining if and only if H is a 2-connected hypo-
matchable graph (that is, for all nodes v of H, H — v admits a perfect matching).
Such graphs H have an ear decomposition Hy, H1,..., Hy = H where Hj is an
odd hole and H; is obtained from H; i by adding an odd path (ear) between
distinct nodes of H; 1. In [12], it is shown that the line graph L(H;) is a node
stretching of G or Ggyy and, thus, LS -imperfect by [22].

Moreover, it is proved that the only minimally LS -imperfect line graphs are
stretchings of Gpr and Gy

2.2 About claw-free graphs

In several respects, claw-free graphs are generalizations of line graphs. An inter-
mediate class between line graphs and claw-free graphs form quasi-line graphs,
where the neighborhood of any node can be partitioned into two cliques (i.e.,
quasi-line graphs are the complements of near-bipartite graphs).

Quasi-line graphs can be divided into two subclasses: fuzzy circular interval
graphs and semi-line graphs.

Let C be a circle, Z a collection of intervals in C without proper containments
and common endpoints, and V' a multiset of points in C. A fuzzy circular interval
graph G(V,T) has node set V' and two nodes are adjacent if both belong to one
interval I € Z, where edges between different endpoints of the same interval may
be omitted.

Semi-line graphs are either line graphs or quasi-line graphs without a repre-
sentation as a fuzzy circular interval graph.

It turned out that so-called clique family inequalities suffice to describe the
stable set polytope of quasi-line graphs. Given a graph G, a family F of cliques
and an integer p < n = |F|, the clique family inequality (F, p) is the following
valid inequality for STAB(G)

G-nNEatb-r-) T n<e-n|] )

ieW €W, p
where = nmodp and W (resp. W,,) is the set of nodes contained in at least p
(resp. exactly p — 1) cliques of F.
This generalizes the results of Edmods [7] and Edmonds & Pulleyblank [S]
that STAB(L(H)) is described by clique constraints and rank constraints

2(L(H")) < S(IV(H')| = 1) (4)

N | =



associated with the line graphs of 2-connected hypomatchable induced subgraphs
H' C H. Note that the rank constraints of type () are special clique family
inequalities.

Chudnovsky and Seymour [] extended this result to semi-line graphs, for
which STAB(G) is given by clique constraints and rank constraints of type ().
Then, semi-line graphs are rank-perfect with line graphs as only facet-defining
subgraphs.

Moreover, in [I6] Galluccio and Sassano prove that if a rank constraint is
facet-defining for a claw-free graph G then, either, G is a clique or G contains
the line graph of a minimal 2-connected hypomatchable graph H or G contains
Wolfkjl with k > 3 and o = a(G).

Eisenbrand et al. [9] proved that clique family inequalities suffice to describe
the stable set polytope of fuzzy circular interval graphs. Stauffer [33] verified a
conjecture of [27] that every facet-defining clique family inequality of a fuzzy

circular interval graph G is associated with a web in G.
All these results together complete the picture for quasi-line graphs.

However, there are claw-free graphs which are not quasi-line. In particular,
every graph with stability number 2 is claw-free and the 5-wheel is the smallest
claw-free not quasi-line graph.

Due to Cook (see [32]), all facets for graphs G with «(G) = 2 are 1,2-
valued clique-neighborhood constraints. This is not the case for graphs G with
a(G) = 3. In fact, all the known difficult facets of claw-free graphs occur in this
class. Some non-rank facets with up to five different non-zero coefficients are
presented in [I7I21]. All of these facets turned out to be so-called co-spanning
1-forest constraints due to [28], where it is also shown that it is possible to build
a claw-free graph with stability number three inducing a co-spanning 1-forest
facet with b different left hand side coefficients, for every positive integer b.

The problem of characterizing STAB(G) when G is a connected claw-free
but not quasi-line graph with «(G) > 4 was studied by Galluccio et al.: In a
series of results [I3IT4I15], it is shown that if such a graph G' does not contain
a clique cutset, then 1,2-valued constraints suffice to describe STAB(G). Here,
besides 5-wheels, different rank and non-rank facet-defining inequalities of the
geared graph G shown in Fig. 3 play a central role.

In addition, graphs of this type can be decomposed into strips. A strip
(G,a,b) is a (not necessarily connected) graph with two designated simplicial
nodes @ and b (a node is simplicial if its neighborhood is a clique). A claw-free
strip containing a 5-wheel as induced subgraph is a 5-wheel strip. Given two
node-disjoint strips (G1,a1,b1) and (Ga,as, ba), their composition is the union
of G1\ {a1,b1} and G2 \ {az,ba} together with all edges between N¢, (a1) and
N¢,(az2), and between N¢, (b1) and Ng,(b2) [M].

As shown in [26], this composition operation can be generalized to more than
two strips: Every claw-free but not quasi-line graph G with «(G) > 4 admits
a decomposition into strips, where at most one strip is quasi-line and all the
remaining ones are 5-wheel strips having stability number at most 3. There are



only three “basic” types of 5-wheel strips (see Fig.[B)) which can be extended by
adding nodes belonging to the neighborhood of the 5-wheels (see [26] for details).
Note that a claw-free but not quasi-line graph G with a(G) > 4 containing
a clique cutset may have a facet-defining subgraph G’ with a(G’) = 3 (inside a
5-wheel strip of type 3), see [29] for examples.
Taking all these results together into account gives the complete list of facets
needed to describe the stable set polytope of claw-free graphs.

typel type 2 (gear) type 3

Fig. 3. The three types of basic 5-wheel strips.

3 LS, -Perfect Graph Conjecture for claw-free graphs

In this section, we verify the LS -Perfect Graph Conjecture for all relevant
subclasses of claw-free graphs.

3.1 Graphs with a(G) =2

The graphs with «(G) = 2 play a crucial role in this context. Relying on the
behavior of the stable set polytope under taking complete joins [5] and the result
on LS -(im)perfect graphs G with a(G) = 2 (Theorem [), we can prove:

Theorem 6. All facet-defining LS, -perfect graphs G with o(G) = 2 are odd
antiholes or complete joins of odd antihole(s) and a (possibly empty) clique.

Proof. Let G be a facet-defining LS -perfect graph with stability number 2. We
first observe that G is imperfect (because it has a full-support facet, but it is
different from a clique). Thus, G' contains an odd antihole C' by [3].

If G = C, we are done. If G # C, every node u outside C is completely joined
to C' due to Theorem ] (otherwise, u and C induce an LS, -imperfect subgraph
of G, a contradiction to G LS -perfect).

Therefore, G is the complete join of C' and G — C. Note that G — C' is again
LS -perfect, facet-defining by Chvétal [5], and a(G — C) < 2. If a(G — C) = 2,
we apply the same argument as for G; if a(G — C) = 1, it is a clique. O]

This shows that all facet-defining LS -perfect graphs G with o(G) = 2 are
joined a-perfect, and we conclude:



Corollary 1. The LS -Perfect Graph Conjecture is true for graphs with stabil-
ity number 2.

3.2 Quasi-line graphs

Recall that quasi-line graphs divide into the two subclasses of semi-line graphs
and fuzzy circular interval graphs.

Chudnovsky and Seymour [4] proved that the stable set polytope of a semi-
line graph is given by rank constraints associated with cliques and the line graphs
of 2-connected hypomatchable graphs. Together with the result from [12] (pre-
sented in Theorem [), we directly conclude that the LS -Perfect Graph Conjec-
ture holds for semi-line graphs.

Based on the results of Eisenbrand et al. [9] and Stauffer [33], combined with
the characterization of LS -imperfect webs from [I1] (Theorem HI), we are able
to show:

Theorem 7. All facet-defining LS -perfect fuzzy circular interval graphs are
cliques, odd holes or odd antiholes.

Proof. Let G be a fuzzy circular interval graph such that it is a facet-defining
LS -perfect graph. If G is a clique, the result is immediate. Otherwise, G is the
support graph of a clique family inequality with parameters (F, p)

G- T ath-r-) Y a<k-n|

ieW €W,

associated with a web WP with V(WP=1) c W ([9I33]).

More precisely, if for any node v € V, Z, = {I € T : v € I}, there ex-
ist I;(v) and I.(v) in Z, such that [;(v) U I,(v) = U;eg, I The clique family
inequality associated with WP~1 is the clique family inequality having param-
eters F = {K([;(v)) : v € V(WP™1)} and p where K(I;(v)) = {u € I;(v) :
u is adjacent to v}.

By Theorem @l WP~ is LS, -perfect if and only if it is an odd hole or an odd
antihole.

That is, since G is LSy-perfect then n =2k +1and p=2orp=%k > 3. In
both cases, r = 1 follows.

Consider first the case in which p = 2. Then the clique family inequality

(F,p) takes the form
iew p
Suppose there exists v € W\ V(W3 ;). Then, v belongs to s > 2 consecutive
cliques in F implying that v is connected to exactly s 4+ 1 consecutive nodes in
W21k+1. Observe that s < 3 since G is a claw-free graph. Then, if s = 2 (resp.

s = 3) G contains an odd subdivision of Gy (resp. Ggpn). Since G is LS. -
perfect then W = V(W ,,) or, equivalently, G = Wy, ;.



Now suppose that p = k > 3. Let us call {1,2,...,2k 4+ 1} the nodes in
V(W3-

Suppose there exists v € (W, UW) \ V(Wfkjrll) Then v belongs to at least
s > k—1 consecutive cliques of the family 7. W.l.o.g we may assume that the k—1
of the s consecutive cliques are the ones that contain the sets of nodes {1, ..., k},
{2,...;k+1}, ... {k—1,...,2k — 2}. Then v is connected to at least 2k — 2

consecutive nodes in WQkkjrll Moreover, since G is quasi-line, v is connected with

at most 2k nodes. It follows that the subgraph of G induced by V(W;,;:l) U{v}
has stability number two, and from Theorem [0 it is LS -imperfect. But from
our assumption that G is LSy-perfect, we conclude W, UW = V(Wfkjrll) or,

equivalently, G = WQkk_Jrl1 O

As a consequence, every LS -perfect fuzzy circular interval graph is a-perfect.
This verifies the LS -Perfect Graph Conjecture for fuzzy circular interval graphs.

Since the class of quasi-line graphs divides into semi-line graphs and fuzzy
circular interval graphs, we obtain as direct consequence:

Corollary 2. The LS, -Perfect Graph Conjecture is true for quasi-line graphs.

3.3 Claw-free graphs that are not quasi-line

It is left to treat the case of claw-free graphs that are not quasi-line. Here, we
distinguish two cases according to their stability number.

To treat the case of claw-free not quasi-line graphs G with a(G) > 4, we
rely on the decomposition of such graphs into strips, where at most one strip
is quasi-line and all the remaining ones are 5-wheel strips [26]. By noting that
5-wheel strips of type 3 contain Gpp and exhibiting LS -imperfect line graphs
in the other two cases, we are able to show:

Theorem 8. Every facet-defining claw-free not quasi-line graph G with a(G) >
4 is LS4 -imperfect.

Proof. Let G be a facet-defining claw-free not quasi-line graph with «(G) > 4.
According to [26], G has a decomposition into strips, where at most one strip is
quasi-line and all the remaining ones have stability number at most 3 and contain
a b-wheel each. Recall that there are only three types of 5-wheel strips, Fig.
shows the “basic” types, which can be extended by adding nodes belonging to
the neighborhood of the 5-wheels [26].

Since G is not quasi-line, it contains at least one 5-wheel strip G'. If G’ is of
type 3, then G’ contains G, induced by the squared nodes indicated in Fig. 3]
and we are done. Hence, let G’ be of type 1 or 2.

Note further that G’ is a proper subgraph of G (by a(G’) < 3 but a(G) > 4)
and connected to G — G’ (since G is facet-defining and, thus, cannot have a
clique cutset by Chvatal [5]).

According to the strip composition, there are nodes in G — G’ playing the
role of the two simplicial nodes of G’ (the two black nodes in Fig. ), and they



are connected by a path P with nodes exclusively in G — G’ (again, since G
cannot contain a clique cutset).

If G’ is of type 1, then G has, as induced subgraph, a node stretching of
Grun (resp. of Gpr) if P is even (resp. odd), see the squared nodes in Fig. [l

P odd

P even
Fig. 4. N -imperfect subgraphs if G’ is of type 1.

If G’ is of type 2, then G has, as induced subgraph, a node stretching of G
(resp. of Gparn) if P is even (resp. odd), see the squared nodes in Fig.

P odd

P even
Fig. 5. LS -imperfect subgraphs if G’ is of type 2.

Hence, in all cases, G contains an LS;-imperfect line graph and is itself
LS -imperfect. O

For graphs having stability number three, there is no decomposition known
yet. Relying only on the behavior of the stable set polytope under clique iden-
tification [5] and the result on LS, -(im)perfect graphs from Theorem 2] we can
prove:

Theorem 9. FEvery facet-defining claw-free not quasi-line graph G with o(G) =
3 s LS4 -imperfect.

Proof. Let G be a facet-defining claw-free graph with a(G) = 3 that is not quasi-
line. Then, there is a node v in G such that G’ = G[N (v)] cannot be partitioned
into 2 cliques. Hence, in the complement G of G, the subgraph G’ cannot be
partitioned into two stable sets. Thus, G is non-bipartite and contains an odd
cycle. Let C be the shortest odd cycle in G'. Then C is not a triangle (otherwise,
C' and v induce a claw in G). Hence, C' is an odd hole (because it is an odd cycle
of length > 5, but has no chords according to its choice).



Therefore, C' is an odd antihole in G; let uy,. .., us,y1 denote it nodes and
u;u; 1 be its non-edges. Furthermore, let G, = G[N (v)U{v}] and W = N (v)—C.
From now on, we will use C' to denote both, the node set and the odd antihole

when it is clear from the context.

Claim 1 G, has stability number 2 and

— either contains an LS -imperfect subgraph
— or is the complete join of v, C and W.

Firstly, note that N(v) does not contain a stable set of size 3 (otherwise, G
clearly contains a claw). Hence, a(G,) = 2 follows. If W = (), we are done. If
there is a node w € W, then for each such node, either w is completely joined
to C or else the subgraph of G induced by w and C is LS -imperfect due to
Theorem 21 ¢

We are done if G, is LS;-imperfect. Hence, assume in the sequel of this
proof that G, is the complete join of v, C' and W. Since a(G) = 3 holds, G, is
a proper subgraph of G. We partition the nodes in G—G,, into 3 different subsets:

— X containing all nodes from G — G, having a neighbor in W,
— Y having all nodes from G — G, having no neighbor in W, but a neighbor

in C,

— Z containing all nodes from G — G, having no neighbor in W U C.

Claim 2 Fvery node x € X

— either induces together wizﬂa an LSy -imperfect subgraph of G,
— or is completely joined to C'.

No node x € X can belong to a stable set S = {x,u;, u;1+5} (otherwise, any
neighbor w € W of z induces together with S a claw in G). Hence, for every
x € X, the subgraph G[C' U {x}] has stability number 2 and is either LS, -
imperfect or an odd antiwheel by Theorem 2 ¢

We are done if some node » € X yields an LS, -imperfect graph G[C'U {z}].
Hence, assume in the sequel of this proof that C' and X are completely joined.

Claim 3 X s a clique.

Otherwise, G contains a claw containing some node u; € C as central node, v
and two non-adjacent nodes x,z’ € X. ¢

Let Gx denote the subgraph of G induced by v, N(v) and X.
Claim 4 We have a(Gx) = 2.

We know already that «(G,) = 2 by Claim 1. If Gx contains a stable set S of
size 3, then € S for some z € X. This implies SNC = ) (recall that we assume
that X and C are completely joined). In addition, v € S (since v is adjacent to
all nodes in W (so we would have SNW = () if v € ), but S cannot contain



2 nodes from X (since X is a clique by Claim 3)). Finally, S cannot contain 2
non-adjacent nodes w,w’ € W (otherwise, any node u; € C induces with S a
claw in G). Hence, there is no such stable set S in Gx. ¢

By a(G) = 3 and a(Gx) = 2, there is a node in Y U Z. We conclude that
Y # 0 (otherwise, X would constitute a clique cutset of G, separating Z from
G’, a contradiction to G facet-defining by Chvétal [5].

Claim 5 W induces a clique.

Otherwise, G contains a claw induced by some node y € Y, a neighbor u; € C
of y, and two non-adjacent nodes w,w’ € W. {

Hence, G is in fact the complete join of a clique @ = {v} UW and C. In
addition, X is a clique and completely joined to C', Y is non-empty, and there
is no edge between @ and Y. We further obtain:

Claim 6 Every node y € Y is completely joined to X.

Otherwise, G contains a claw induced by some node y € Y, a neighbor u; € C
of y, v and a non-neighbor x € X of y. {

Note that, according to Theorem 2 each node y € Y has three possibilities
for its connections to C:

— either y induces together with C an LS, -imperfect subgraph of G,
— or y is completely joined to C,
— or y belongs to a stable set Sy = {y, u;, uiyx}

(recall that, by Theorem Bl whenever {y} UC has stability number 2, it is either
LS, -imperfect or an odd antiwheel). If a node y € Y gives rise to an LS,-
imperfect subgraph of GG, we are done. Hence, assume in the sequel of this proof
that Y is partitioned into two subsets Y, and Yg containing all nodes y that are
completely joined to C resp. belong to a stable set S, = {y, u;, u;+x}. We next
show:

Claim 7 Yg # 0.

Assume to the contrary that we have Y = Y,. Then, Y also induces a clique
(otherwise, there is a claw in G induced by v, some node u; € C and two non-
adjacent nodes y,y’ € Y). This implies that G|G, U X UY] has stability number
2 (by a(Gx) = 2 due to Claim 4, Y completely joined to X due to Claim 6, and
Y =Y, clique). Thus, Z is non-empty (because a(G) = 3). Hence, G contains
a clique cutset X UY, separating Z from G, (recall that every node in Z has
only neighbors in X or Y, but not in G,,), a contradiction to G facet-defining by
Chvétal [5]. Therefore, we conclude that Y = Y, cannot hold. {

Having ensured the existence of a stable set S, = {y, u;, ui+x} in G, we next
observe:



Claim 8 X = 0.

Otherwise, G contains a claw induced by S, and any node z € X (recall: we
assume that X and C' are completely joined (otherwise, G is LS -imperfect by
Claim 2), and have that X and Y are completely joined by Claim 6). ¢

This implies particularly that no node outside G, has a neighbor in W. We

next study the connections between C' and Y in more detail and obtain the
following important fact:

Claim 9 C = Cs and each node y € Ys has exactly two consecutive neighbors
on C.

Consider some node y € Ys and the stable set S, = {y, u;, wi+x }. By construction
of Y, y has a neighbor u; € C. This node u; (and any further neighbor of y in
6) cannot be a common neighbor of u; and ;4 (otherwise, u; induces together
with S, a claw in G). Hence, u; equals either w;—1 (which is not adjacent to
Uitk) or else u;yx+1 (which is not adjacent to u;). W.lo.g., say that y has u;_q
as neighbor in C. Then C = Cj follows because for any k > 3, the graph induced
by y and C contains a claw with center u;_; and the nodes Wit 1, Witkt2,Y (OT
else w41 or Ujtpyo induce with S, a claw if y is adjacent to w11 or wiyp42).

Moreover, we observe that y is also adjacent to w;—o (otherwise, there is a
claw with center u;—1 and the nodes u;, u;—2,y). This shows the assertion that
each node y € Ys has exactly two consecutive neighbors on C' = C5. O

We next observe:
Claim 10 Z induces a clique.

Otherwise, GG contains a stable set of size 4, consisting of two non-adjacent nodes
in C and two non-adjacent nodes in Z (recall: by definition of Z, there is no edge
between C and 7). ¢

Hence, so far we have the following: G, is the complete join of a clique
Q = {v}UW and C' = C5. G— G, is partitioned into two subsets Y and Z where

— Y is non-empty and partitions into two subsets Y, and Ys consisting of all
nodes y that are completely joined to C' = Cj resp. belong to a stable set
Sy = {y, u;, uiyr} and have exactly two consecutive neighbors on the Cs;

— Z induces a clique and no node in Z has a neighbor in G, .

We continue to explore the composition of Y and its connections to C' = Cs:

Claim 11 If two nodes y,y' € Y share a same neighbor u; € C, then y and y'
are adjacent.

Otherwise, G contains a claw with center u; and the nodes v,y,y’. ¢

Claim 12 There are at least two nodes in Yg.



By Claim 7, there is a node y € Ys. Then Y # {y} follows (otherwise, the only
two and consecutive neighbors of y on C' = C5 (by Claim 9) form a clique cutset
in G, separating y from @, a contradiction to G facet-defining by Chvatal [5]).
If all nodes from Y — {y} belong to Yi, then Y induces a clique by Claim 11
(because all share a common neighbor in C), and Y — {y} together with the
two and consecutive neighbors of 3 on C form a clique cutset in G, separating
y from @), again a contradiction to G facet-defining. Hence, Ys contains at least
two nodes. O

Using similar arguments, we next show:
Claim 13 Not all nodes in Ys have the same two consecutive neighbors on C.

Otherwise, G has a clique cutset (consisting of Yi and the two common, con-
secutive neighbors on C' of all nodes in Ys), separating Ys from @, again a
contradiction to G facet-defining. ¢

Claim 14 If all nodes in Ys share a common neighbor u; on C, then G contains
Grumn as induced subgraph.

By assumption, we have only three types of nodes in Y: nodes y with Nz(y) =
{ui—1,u;}, nodes y" with Nx(y') = {us, uit1}, and nodes y, € Y,. Y induces a
clique (by Claim 11) and Z = ) follows (otherwise, Y is a clique cutset sepa-
rating Z from @), again a contradiction to G facet-defining). Claim 12 combined
with Claim 13 shows that there is at least one node y adjacent to u;_1,u; and at
least one node y’ adjacent to u;,u;11. Moreover, there is also at least one node
Y« € Y, (otherwise, G’ equals the gear (induced by v, C, y and 3/, see Figure [])
with possible replications of v, y, y’ and is not facet-defining, a contradiction).
Hence, G contains Ggyn (induced by y. and the nodes v, u; 1, uiy1, y, and 3/,
see Figure[d)). ¢

Fig. 6. Subgraph induced by C and v, y, ¥, ¥« (removing y. yields the gear, the bold
edges indicate the Gepymn).

This shows that G is either LS, -imperfect (and we are done) or Ys has two
nodes with distinct neighbors on C. Let us assume the latter.

Claim 15 If two nodes yy' € Ys with distinct neighbors on C are adjacent, then
G contains Gpr as induced subgraph.



W.Lo.g., let Ng(y) = {u1,u2} and Ng(y') = {us, ua}. If y is adjacent to y’, then
u1, Y, ¥, ug, us induce together with v a Gpr. ¢

Hence, assume that no two nodes in yy’ € Ys with distinct neighbors on C'
are adjacent (otherwise, we are done).

Claim 16 If Z # (), then G contains a node stretching of Ggyn as induced
subgraph.

If there is a node z € Z, then z is adjacent to every node in Yg (otherwise, there
is a node y € Ys such that z together with S, forms a stable set of size 4). Re-
call that we assume that Ys contains two non-adjacent nodes y, 3y’ with distinct
neighbors on C. Then z together with y, 4/ and C induce a node stretching of
Geun. O

Hence, we are done if Z # () (because G contains an LS -imperfect sub-
graph). So let us assume Z = () from now on.

Furthermore, assume w.l.o.g. that y with Nz(y) = {u1,u2} and 3 with
N&(y') = {us, usa} is a pair of nodes in Ys having distinct neighbors on C'. Since
G is facet-defining (and, thus, without clique cutset), there is a path connecting
y and 3/; let P denote the shortest such path.

Note that P has length > 2 (recall: y and y are supposed to be non-adjacent,
otherwise G contains a G by Claim 15).

Claim 17 If P has length 2, then G is LS -imperfect.

So, let P have length 2 and denote by ¢ its only internal node. Then t € Y
follows (by Z = () and because there is no common neighbor of y and 3’ in C).
We conclude that ¢ ¢ Y. holds (otherwise, G has a claw induced by ¢ and S,)
and that ¢ and us are non-adjacent (otherwise, G has a claw induced by ¢ and y,
y', us). In fact, Ng(t) = {u2,us} follows by our assumption that no two nodes
in Ys with distinct neighbors on C are adjacent (otherwise, G contains a G
by Claim 15).

Since the graph induced by G, together with y,t 3/, called a 3-gear (see
Figure [7)), is not facet-defining, there must be another node y” in Y (recall: we
have Z = (}). We are done if there is a node y” € Y, (because G contains a
Geumn induced by g, y, t,us, v and y” in this case). Hence, assume y”’ € Yg.

W.lo.g., let Ng(y”) = {ua,us} (note: the case Ng(y”) = {u1,us} is sym-
metric, and in all other cases, G is still a 3-gear with some replicated nodes,
thus not facet-defining). Then y” and y’ are adjacent by Claim 11. If " is also
adjacent to y or ¢, then we are done since then G contains a G by Claim 15. If
y" is neither adjacent to y nor to ¢, then G contains an LS, -imperfect line graph
induced by u1,y,t,us,v and ¥, y”, us (being a node stretching of Ggarn). Note
that G still contains one of the above LS -imperfect subgraphs if G contains
more nodes than considered so far. ¢



Fig. 7. Subgraph induced by C and v, y, /', t, called a 3-gear.

Thus, we are done if P has length 2. Let us finally assume that P has length >
3 and y and y’ have no common neighbor (recall: P is a shortest path connecting
them).

Then Y, = ) follows (because each node y” € Y, shares a common neighbor
with y and 3 on C and is, thus, adjacent to both y and ¢’ by Claim 11, a
contradiction to the choice of P as shortest path connecting them).

Moreover, there is a neighbor 7 of y in Yg (otherwise, {uy, us} forms a clique
cutset separating y from @, a contradiction to G facet-defining by Chvétal [5]).
In addition, N&(7) is different from {us3,u4} and from {u4, us} (otherwise, y and
y’ would be a pair of nodes with distinct neighbors on C' and connected by a
path of length 2, hence G is LS, -imperfect by Claim 17 and we are done).

We clearly have Nz(y) # {u2,us} (otherwise, ¥ adjacent to y’ follows by
Claim 11 and we have again a pair of nodes with distinct neighbors on C' and
connected by a path of length 2, hence G is LS -imperfect by Claim 17 and we
are done).

If there is no node in Ys having {u,us} as neighbors on C, then {u,us}
forms still a clique cutset separating y from @, again a contradiction. Hence, let
N () = {u1, us}.

Then, there is no node in Yg having {u4,us} as neighbors on C (this node
y” would be adjacent to ¥ by Claim 11, so that 7 would be a common neighbor
of y and y”, leading to an LS -imperfect subgraph of G' by Claim 17 and we are
done). Similarly, there is no node in Ys having {us,u4} as neighbors on C'.

This finally implies that {us,us} is a clique cutset separating y’ from @Q, a
contradiction to G facet-defining by Chvétal [5]). That all further nodes of G are
either replicates of y, ¢’ or ¥ (and {us,us} remains a clique cutset in all cases)
finishes the proof. [

Hence, the only facet-defining subgraphs G’ of LS;-perfect claw-free not
quasi-line graphs G with a(G) = 3 have a(G’) = 2 and are, by Theorem [6]
cliques, odd antiholes or their complete joins. We conclude that LS. -perfect
facet-defining claw-free not quasi-line graphs G with a(G) = 3 are joined a-
perfect and, thus, the LS -Perfect Graph Conjecture is true for this class.

This together with Theorem [ shows that the only facet-defining subgraphs
G’ of LS -perfect claw-free not quasi-line graphs G with a(G) > 4 have o(G’) =
2 and are, by Theorem [G] cliques, odd antiholes or their complete joins. Thus,



every LS,-perfect claw-free not quasi-line graph G with «(G) > 4 is joined

a-perfect and, thus, the LS -Perfect Graph Conjecture holds true for this class.
Combining Corollary [ with the above results shows that all LS -perfect

claw-free but not quasi-line graphs are joined a-perfect and we obtain:

Corollary 3. The LS, -Perfect Graph Conjecture is true for all claw-free graphs
that are not quasi-line.

Finally, we obtain our main result (Theorem [I]) as direct consequence of
Corollary 2] and Corollary Bt The LS, -Perfect Graph Conjecture is true for all
claw-free graphs.

4 Conclusion and future research

The context of this work was the study of LS, -perfect graphs, i.e., graphs where
a single application of the Lovasz-Schrijver PSD-operator LS to the edge re-
laxation yields the stable set polytope. Hereby, we are particularly interested in
finding an appropriate polyhedral relaxation P(G) of STAB(G) that coincides
with LS4 (G) and STAB(G) if and only if G is LS, -perfect. An according con-
jecture has been recently formulated (LS,-Perfect Graph Conjecture); here we
verified it for the well-studied class of claw-free graphs (Theorem [).

For that, it surprisingly turned out that it was not necessary to make use of
the description of STAB(G) for claw-free not quasi-line graphs G

— with a(G) =2 (by Cook, see [31]),
— with a(G) = 3 (by Pécher, Wagler [28]),
— with a(G) >4 (by Galluccio, Gentile, Ventura [I3[T4IT5]).

From the presented results and proofs, we can draw some further conclu-
sions. First of all, we can determine the subclass of joined a-perfect graphs to
which all LS -perfect claw-free graphs belong to. In [20], it is suggested to call a
graph G m-perfect if the only facets of STAB(G) are associated with cliques and
minimally imperfect graphs. According to [6], G is joined m-perfect if STAB(G)
is given only by facets associated with cliques, minimally imperfect graphs and
their complete joins. Theorem Bl together with the results from Section Bl provide
the complete list of all facet-defining LS -perfect claw-free graphs:

— cliques,
— odd holes and odd antiholes,
— complete joins of odd antihole(s) and a (possibly empty) clique.

Hence, we conclude:
Corollary 4. All LS, -perfect claw-free graphs are joined m-perfect.

Among these possible facets, only complete joins of odd antihole(s) and a
non-empty clique are non-rank. This directly implies:



Corollary 5. A rank-perfect LS -perfect claw-free graph has as only facet-defining
subgraphs cliques, odd holes, odd antiholes, or complete joins of the latter.

Note that Galluccio and Sassano provided in [I6] a complete characterization
of the rank facet-defining claw-free graphs: they either belong to one of the
following three families of rank-minimal graphs

— cliques,

— partitionable webs W2 - -&1 (where a and w stand for stability and clique
number, resp.),

— line graphs of minimal 2-connected hypomatchable graphs H (where H — ¢
is not hypomatchable anymore for any edge ¢),

or can be obtained from them by means of two operations, sequential lifting and
complete join. Our results show: an LS -perfect claw-free graph G has, besides
cliques, only odd holes and odd antiholes as rank-minimal subgraphs; cliques
are the only subgraphs in G that can be sequentially lifted to larger rank facet-
defining subgraphs, where complete joins can only be taken of odd antiholes.

Note further that, besides verifying the LS, -Perfect Graph Conjecture for
claw-free graphs, we obtained the complete list of all minimally LS. -imperfect
claw-free graphs. In fact, the results in [IIT12] imply that the following graphs
are minimally LS, -imperfect:

— graphs G with a(G) = 2 such that G — v is an odd antihole for some node
v, not completely joined to G — v,
— the web W,

— LSy -imperfect line graphs (which are all node stretchings of G or Ggan).

Our results from Section 3] on facet-defining LS -perfect claw-free graphs imply
that they are the only minimally LS -imperfect claw-free graphs.

Finally, the subject of the present work has parallels to the well-developed
research area of perfect graph theory also in terms of polynomial time com-
putability. In fact, it has the potential of reaching even stronger results due the
following reasons. Recall that calculating the value

n4 (G) = max 17z, x € LS, (G)

can be obtained with arbitrary precision in polynomial time for every graph G,
even in the weighted case, by [24]. Thus, the stable set problem can be solved in
polynomial time for a strict superset of perfect graphs, the LS, -perfect graphs,
by a(G) = n4(G). Hence, our future lines of research include to find

— new families of graphs where the conjecture holds (e.g., by characterizing
the minimally LS -imperfect graphs within the class),

— new subclasses of LS -perfect or joined a-perfect graphs,

— classes of graphs G where STAB(G) and LS, (G) are “close enough” to have

a(G) = [n4(G)].



In particular, the class of graphs G with a(G) = [14(G)] can be expected to be
large since LS4 (G) is a much stronger relaxation of STAB(G) than TH(G). In
all cases, the stable set problem could be approximated with arbitrary precision
in polynomial time in these graph classes by optimizing over LS, (G). Finally,
note that LS (P(G)) with

STAB(G) C P(G) C ESTAB(G)

clearly gives an even stronger relaxation of STAB(G) than LS, (G). However,
already approximating with arbitrary precision over LS, (QSTAB(G)) cannot
be done in polynomial time anymore for all graphs G by [24]. Hence, LS. -
perfect graphs or their generalizations satisfying a(G) = |n4(G)| are the most
promising cases in this context.
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