Skip to main content

Benders Decomposition for Capacitated Network Design

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9849))

Abstract

Given a capacitated network, we consider the problem of choosing the edges to be activated to ensure the routing of a set of traffic demands. Both splittable and unsplittable flows are investigated. We present polyhedral results and develop a branch-and-cut algorithm based on a Benders decomposition approach to solve the problem.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. GT-ITM: Georgia Tech Internetwork Topology Models. http://www.cc.gatech.edu/fac/Ellen.Zegura/gt-itm/

  2. Addis, B., Carello, G., Mattia, S.: Energy-aware survivable networks. In: Proceedings of INOC 2015. ENDM, vol. 52, pp. 133–140 (2016)

    Google Scholar 

  3. Agarwal, Y.: K-partition-based facets of the network design problem. Networks 47(3), 123–139 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Avella, P., Mattia, S., Sassano, A.: Metric inequalities and the network loading problem. Disc. Opt. 4, 103–114 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Benhamichea, A., Mahjoub, R., Perrot, N., Uchoa, E.: Unsplittable non-additive capacitated network design using set functions polyhedra. Comp. Oper. Res. 66, 105–115 (2016)

    Article  MathSciNet  Google Scholar 

  6. Bienstock, D., Chopra, S., Günlük, O., Tsai, C.Y.: Minimum cost capacity installation for multicommodity network flows. Math. Prog. Ser. B 81, 177–199 (1998)

    MathSciNet  MATH  Google Scholar 

  7. Bienstock, D., Mattia, S.: Using mixed-integer programming to solve power grid blackout problems. Disc. Opt. 4, 115–141 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Botton, Q., Fortz, B., Gouveia, L., Poss, M.: Benders decomposition for the hop-constrained survivable network design problem. INFORMS J. Comput. 25, 13–26 (2013)

    Article  MathSciNet  Google Scholar 

  9. Codato, G., Fischetti, M.: Combinatorial Benders’ cuts for mixed-integer linear programming. Oper. Res. 54(4), 756–766 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Crainic, T., Frangioni, A., Gendron, B.: Bundle-based relaxation methods for multicommodity capacitated fiwed charge network design. Disc. Appl. Math. 112, 73–99 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fortz, B., Poss, M.: An improved benders decomposition applied to a multi-layer network design problem. Oper. Res. Lett. 37(5), 777–795 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gendron, B., Larose, M.: Branch-and-price-and-cut for large-scale multicommodity capacitated fixed-charge network design. EURO J. Comput. Optim. 2, 55–75 (2014)

    Article  MATH  Google Scholar 

  13. Holmberg, K., Yuan, D.: A lagrangian heuristic based branch-and-bound approach for the capacitated network design problem. Oper. Res. 48, 461–481 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Iri, M.: On an extension of the max-flow min-cut theorem to multicommodity flows. J. Oper. Res. Soc. Jpn. 13, 129–135 (1971)

    MathSciNet  MATH  Google Scholar 

  15. Lee, C., Lee, K., Park, S.: Benders decomposition approach for the robust network design problem with flow bifurcations. Networks 62(1), 1–16 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Magnanti, T., Mirchandani, P., Vachani, R.: The convex hull of two core capacitated network design problems. Math. Prog. 60, 233–250 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. Martello, S., Toth, P.: Lower bounds and reduction procedures for the bin packing problem. Disc. Appl. Math. 28, 59–70 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mattia, S.: Separating tight metric inequalities by bilevel programming. Oper. Res. Lett. 40(6), 568–572 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mattia, S.: Solving survivable two-layer network design problems by metric inequalities. Comput. Optim. Appl. 51(2), 809–834 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mattia, S.: A polyhedral study of the capacity formulation of the multilayer network design problem. Networks 62(1), 17–26 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mattia, S.: The robust network loading problem with dynamic routing. Comput. Optim. Appl. 54(3), 619–643 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mattia, S.: The cut property under demand uncertainty. Networks 66(2), 159–168 (2015)

    Article  MathSciNet  Google Scholar 

  23. Onaga, K., Kakusho, O.: On feasibility conditions of multicommodity flows in network. IEEE Trans. Circ. Theor. 18(4), 425–429 (1971)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Mattia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Mattia, S. (2016). Benders Decomposition for Capacitated Network Design. In: Cerulli, R., Fujishige, S., Mahjoub, A. (eds) Combinatorial Optimization. ISCO 2016. Lecture Notes in Computer Science(), vol 9849. Springer, Cham. https://doi.org/10.1007/978-3-319-45587-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45587-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45586-0

  • Online ISBN: 978-3-319-45587-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics