Skip to main content

Efficient Simplification Techniques for Special Real Quantifier Elimination with Applications to the Synthesis of Optimal Numerical Algorithms

  • Conference paper
  • First Online:
Computer Algebra in Scientific Computing (CASC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9890))

Included in the following conference series:

  • 761 Accesses

Abstract

This paper presents efficient simplification techniques tailored for sign semi-definite conditions (SsDCs). The SsDCs for a polynomial \(f\in \mathbb {R}[y]\) with parametric coefficients are written as \(\underset{\begin{array}{c} y\\ L \le y \le U \end{array}}{\forall }\ f(y) \ge 0\) and \(\underset{\begin{array}{c} y\\ L \le y \le U \end{array}}{\forall }\ f(y) \le 0\). We give sufficient conditions for the simplification techniques to be sound for linear and quadratic polynomials. We show their effectiveness compared to state of the art quantifier elimination tools for input formulae occurring in the optimal numerical algorithms synthesis problem by an implementation on top of Reduce command of Mathematica.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We will not consider here the sign definite conditions but they can be treated in a similar fashion.

  2. 2.

    (2) was motivated by the desire for simplifying the bounds of \(\sqrt{x}\). (3) and (4) are motivated by (1) and (2) and by the initial definitions of \(L^{\prime }\) and \(U^{\prime }\):

    $$\begin{aligned} L^{\prime }&=L+\frac{y^{2}+(p_{0}+p_{1}+p_{2})L^{2}+(p_{1}+2p_{2} )LW+p_{2}W^{2}}{(p_{3}+p_{4})L+p_{4}W}\\ U^{\prime }&=L+W+\frac{y^{2}+(q_{0}+q_{1}+q_{2})L^{2}+(2q_{0} +q_{1})LW+q_{0}W^{2}}{(q_{3}+q_{4})L+q_{3}W} \end{aligned}$$

    .

References

  1. Abraham, E.: Building bridges between symbolic computation and satisfiability checking. In: ISSAC 2015 Proceedings, pp. 1–6. ACM, New York (2015)

    Google Scholar 

  2. Anai, H., Yanami, H.: SyNRAC: a Maple-package for solving real algebraic constraints. In: Sloot, P.M.A., Abramson, D., Bogdanov, A.V., Gorbachev, Y.E., Dongarra, J., Zomaya, A.Y. (eds.) ICCS 2003, Part I. LNCS, vol. 2657, pp. 828–837. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  3. Brown, C.W.: Improved projection for cylindrical algebraic decomposition. J. Symbolic Comput. 32(5), 447–465 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brown, C.W.: QEPCAD-B: a program for computing with semi-algebraic sets using CADs. SIGSAM Bull. 37(4), 97–108 (2003)

    Article  MATH  Google Scholar 

  5. Brown, C.W.: Constructing a single open cell in a cylindrical algebraic decomposition. In: ISSAC 2013 Proceedings, pp. 133–140. ACM, New York (2013)

    Google Scholar 

  6. Caviness, B., Johnson, J. (eds.): Quantifier Elimination and Cylindrical Algebraic Decomposition. Texts and Monographs in Symbolic Computation. Springer, Heidelberg (1998)

    MATH  Google Scholar 

  7. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In: Brakhage, H. (ed.) Automata Theory and Formal Languages. LNCS, vol. 33, pp. 134–183. Springer, Heidelberg (1975)

    Google Scholar 

  8. Corzilius, F., Kremer, G., Junges, S., Schupp, S., Ábrahám, E.: SMT-RAT: an open source C++ toolbox for strategic and parallel SMT solving. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS, vol. 9340, pp. 360–368. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24318-4_26

    Chapter  Google Scholar 

  9. Davenport, J., Heintz, J.: Real quantifier elimination is doubly exponential. J. Symbolic Comput. 5(1–2), 29–35 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dolzmann, A., Seidl, A., Sturm, T.: Efficient projection orders for CAD. In: ISSAC 2004 Proceedings, pp. 111–118. ACM, New York (2004)

    Google Scholar 

  11. Dolzmann, A., Sturm, T.: REDLOG: computer algebra meets computer logic. SIGSAM Bull. (ACM Spec. Interest Group Symbolic Algebraic Manipulation) 31(2), 2–9 (1997)

    MathSciNet  Google Scholar 

  12. Erascu, M., Hong, H.: Synthesis of optimal numerical algorithms using real quantifier elimination (case study: square root computation). In: ISSAC 2014 Proceedings, pp. 162–169. ACM, New York (2014)

    Google Scholar 

  13. Erascu, M., Hong, H.: Real quantifier elimination for the synthesis of optimal numerical algorithms (case study: square root computation). J. Symbolic Comput. 75, 110–126 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Heintz, J., Roy, M.-F., Solern, P.: On the theoretical and practical complexity of the existential theory of reals. Comput. J. 36(5), 427–431 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Iwane, H., Higuchi, H., Anai, H.: An effective implementation of a special quantifier elimination for a sign definite condition by logical formula simplification. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2013. LNCS, vol. 8136, pp. 194–208. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  16. Jovanović, D., de Moura, L.: Solving non-linear arithmetic. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 339–354. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  17. Meggitt, J.E.: Pseudo division and pseudo multiplication processes. IBM J. Res. Dev. 6(2), 210–226 (1962)

    Article  MATH  Google Scholar 

  18. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. Society for Industrial and Applied Mathematics, Philadelphia (2009)

    Book  MATH  Google Scholar 

  19. Wolfram Research. Mathematica Edition: Version 8.0. Wolfram Research (2010)

    Google Scholar 

  20. Revol, N.: Interval Newton iteration in multiple precision for the univariate case. Numer. Algorithms 34(2–4), 417–426 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Strzebonski, A.: Cylindrical algebraic decomposition using validated numerics. J. Symbolic Comput. 41(9), 1021–1038 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tarski, A.: A decision method for elementary algebra and geometry. Bull. Am. Math. Soc. 59, 91–93 (1953)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author thanks Hoon Hong for providing feedback on an earlier draft of this paper and to anonymous referees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mădălina Eraşcu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Eraşcu, M. (2016). Efficient Simplification Techniques for Special Real Quantifier Elimination with Applications to the Synthesis of Optimal Numerical Algorithms. In: Gerdt, V., Koepf, W., Seiler, W., Vorozhtsov, E. (eds) Computer Algebra in Scientific Computing. CASC 2016. Lecture Notes in Computer Science(), vol 9890. Springer, Cham. https://doi.org/10.1007/978-3-319-45641-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45641-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45640-9

  • Online ISBN: 978-3-319-45641-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics