Skip to main content

On Multiple Eigenvalues of a Matrix Dependent on a Parameter

  • Conference paper
  • First Online:
Computer Algebra in Scientific Computing (CASC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9890))

Included in the following conference series:

Abstract

In this paper, a square matrix with elements linearly dependent on a parameter is considered. We propose an algorithm to find all the values of the parameter such that the matrix has a multiple eigenvalue. We construct a polynomial whose roots are these values of the parameter. A numerical example shows how the algorithm works.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Björk, Å., Dahlquist, G.: Numerical Mathematics and Scientific Computations, vol. 1. SIAM, Philadelphia (2008)

    Google Scholar 

  2. Burke, J.V., Lewis, A.S., Overton, M.: Optimization and pseudospectra, with applications to robust stability. SIAM J. Matrix Anal. Appl. 25(1), 80–104 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Coppersmith, D., Winograd, Sh.: Matrix multiplication via arithmetic progressions. J. Symbolic Comput. 9(3), 251–280 (1990)

    Google Scholar 

  4. Giorgi, P., Jeannerod, C.-P., Villard, G.: On the complexity of polynomial matrix computations. In: ISSAC 2003, pp. 135–142. ACM Press, New York (2003)

    Google Scholar 

  5. Golub, G.H., Van Loan, Ch.F: Matrix Computations. The Johns Hopkins University Press, Baltimore and London (1996)

    Google Scholar 

  6. Jarlebring, E., Kvaal, S., Michiels, W.: Computing all pairs \((\lambda; \mu )\) such that \(\lambda \) is a double eigenvalue of \(A+\mu B\). SIAM J. Matrix Anal. Appl. 32, 902–927 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Horn, R.A., Johnson, Ch.R.: Matrix Analysis. Cambridge University Press, New York (2013)

    Google Scholar 

  8. Horn, R.A., Johnson, Ch.R.: Topics in Matrix Analysis. Cambridge University Press, New York (1991)

    Google Scholar 

  9. Karow, M.: Eigenvalue condition numbers and a formula of Burke, Lewis and Overton. Electron. J. Linear Algebra 15, 143–153 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kressner, D., Peláez, M.J., Moro, J.: Structured Hölder condition numbers for multiple eigenvalues. SIAM J. Matrix Anal. Appl. 31(1), 175–201 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Leverrier, U.J.J.: Sur les variations séculaires des élements des orbites pour les sept planètes principales. J. de Math. 1(5), 220–254 (1840)

    Google Scholar 

  12. Littlewood, D.E.: The Theory of Group Characters and Matrix Representations of Groups. Oxford University Press, Oxford (1950)

    MATH  Google Scholar 

  13. MacDuffee, C.C.: The Theory of Matrices. Chelsea Publishing Company, New York (1956)

    MATH  Google Scholar 

  14. Mailybaev, A.A.: Computation of multiple eigenvalues and generalized eigenvectors for matrices dependent on parameters. Numer. Linear Algebra Appl. 13, 419–436 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Muhič, A., Plestenjak, B.: A method for computing all values \(\lambda \) such that \(A+\lambda B\) has a multiple eigenvalue. Linear Algebra Appl. 440, 345–359 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Pan, V.: Algebraic complexity of computing polynomial zeros. Comput. Math. Appl. 14(4), 285–304 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  17. Strassen, V.: Gaussian elimination is not optimal. Num. Math. 13, 354–356 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  18. Schucan, T.H., Weidenmüller, H.A.: Perturbation theory for the effective interaction in nuclei. Ann. Phys. 76, 483–501 (1973)

    Article  MathSciNet  Google Scholar 

  19. Gantmacher, F.R.: Theory of Matrices, vol. 2. AMS Chelsea Publishing Company, Providence (1960)

    MATH  Google Scholar 

  20. Wilkinson, J.H.: The Algebraic Eigenvalue Problem. Clarendon Press, Oxford (1965)

    MATH  Google Scholar 

  21. Wayland, H.: Expansion of determinantal equations into polynomial form. Quart. Appl. Math. 2(4), 277–305 (1945)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author is grateful to the anonymous referees for valuable suggestions that helped to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth A. Kalinina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Kalinina, E.A. (2016). On Multiple Eigenvalues of a Matrix Dependent on a Parameter. In: Gerdt, V., Koepf, W., Seiler, W., Vorozhtsov, E. (eds) Computer Algebra in Scientific Computing. CASC 2016. Lecture Notes in Computer Science(), vol 9890. Springer, Cham. https://doi.org/10.1007/978-3-319-45641-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45641-6_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45640-9

  • Online ISBN: 978-3-319-45641-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics