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Abstract

Pretropisms are candidates for the leading exponents of Puiseux series

that represent positive dimensional solution sets of polynomial systems.

We propose a new algorithm to both horizontally and vertically prune the

tree of edges of a tuple of Newton polytopes. We provide experimental

results with our preliminary implementation in Sage that demonstrates

that our algorithm compares favorably to the definitional algorithm.

1 Introduction

Almost all polynomial systems arising in applications are sparse, as few mono-
mials appear with nonzero coefficients, relative to the degree of the polyomials.
Polyhedral methods exploit the sparse structure of a polynomial system. In the
application of polyhedral methods to compute positive dimensional solution sets
of polynomial systems, we look for series developments of the solutions, and in
particular we look for Puiseux series [29]. The leading exponents of Puiseux
series are called tropisms. The Newton polytope of a polynomial in several vari-
ables is the convex hull of the exponent tuples of the monomials that appear
with nonzero coefficient in the polynomial.

In [10], polyhedral methods were defined in tropical algebraic geometry. We
refer to [27] for a textbook introduction to tropical algebraic geometry. Our
textbook reference for definitions and terminology of polytopes is [39].

Our problem involves the intersection of polyhedral cones. A normal cone of
a face F of a polytope P is the convex cone generated by all of the facet normals
of facets which contain F . The normal fan of a polytope P is the union of all of
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the normal cones of every face of P . Given two fans F1 and F2, their common
refinement F1 ∧ F2 is defined as

F1 ∧ F2 =
⋃

C1 ∈ F1

C2 ∈ F2

C1 ∩C2. (1)

As the common refinement of two fans is again a fan, the common refinement
of three fans F1, F2, and F3 may be computed as (F1 ∧ F2) ∧ F3.
Problem Statement. Given the normal fans (F1, F2, . . . , Fn) of the Newton
polytopes (P1, P2, . . . , Pn), a pretropism is a ray in a cone C,

C = C1 ∩ C2 ∩ · · · ∩ Cn ∈ F1 ∧ F2 ∧ · · · ∧ Fn, (2)

where each Ci is the normal cone to some ki-dimensional face of Pi, for ki ≥ 1,
for i = 1, 2, . . . , n. Our problem can thus be stated as follows: given a tuple of
Newton polytopes, compute all pretropisms.

We say that two pretropisms are equivalent if they are both perpendicular
to the same tuples of faces of the Newton polytopes. Modulo this equivalence,
there are only a finite number of pretropisms. Ours is a difficult problem be-
cause of the dimension restrictions on the cones. In particular, the number of
pretropisms can be very small compared to the total number of cones in the
common refinement.

Pretropisms are candidates tropisms, but not every pretropism is a tropism,
as pretropisms depend only on the Newton polytopes of the system. For poly-
nomial systems with sufficiently generic coefficients, every tropism is also a
pretropism. See [9] for an example.
Related Work. A tropical prevariety was introduced in [10] and Gfan [26] is
a software system to compute the common refinement of the normal fans of the
Newton polytopes. Gfan relies on the reverse search algorithms [4] in cddlib [20].

The problem considered in this paper is a generalization of the problem to
compute the mixed volume of a tuple of Newton polytopes, for which prun-
ing methods were first proposed in [15]. Further developments can be found
in [21] and [31], with corresponding free software packages MixedVol [22] and
DEMiCS [30]. A recent parallel implementation along with a complexity study
appears in [28]. The relationship between triangulations and the mixed subdi-
visions is explained and nicely illustrated in [13].

The main difference between mixed volume computation and the compu-
tation of the tropical prevariety is that in a mixed volume computation the
vertices of the polytopes are lifted randomly, thus removing all degeneracies.
This lifting gives the powers of an artificial parameter. In contrast, in a Pui-
seux series development of a space curve, the first variable is typically identified
as the parameter and the powers of the first variable in the given polynomials
cannot be considered as random.

A practical study on various software packages for exact volume computa-
tion of a polytope is described in [12]. Exact algorithms on Newton polytopes
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are discussed in [18]. The authors of [16] present an experimental study of ap-
proximate polytope volume computation. In [17], a polynomial-time algorithm
is presented to compute the edge skeleton of a polytope. Computing integer
hulls of convex polytopes can be done with polymake [3].
Our contributions and organization of the paper. In this paper we out-
line two different types of pruning algorithms for the efficient computation of
pretropisms. We report on a preliminary implementation in Sage [36] and illus-
trate the effectiveness on a parallel computer for various benchmark problems.
This paper extends the results of our EuroCG paper [35] as well as [34].

2 Pruning Algorithms

2.1 Horizontal and Vertical Pruning Defined

Because we are interested only in those cones of the common refinement that
contain rays perpendicular to faces of dimension one or higher, we work with
the following modification of (1):

F1 ∧1 F2 =
⋃

C1 ∈ F1, C1 ⊥ edge of P1

C2 ∈ F2, C2 ⊥ edge of P2

C1 ∩ C2. (3)

The ∧1 defines the vertical pruning as the replacement of ∧ by ∧1 in (F1∧F2)∧F3

so we compute (F1 ∧1 F2) ∧1 F3. Cones in the refinement that do not satisfy
the dimension restrictions are pruned away in the computations. Our definition
of vertical pruning is currently incomplete, but we will refine it in 2.5 after we
have formally defined our algorithms.

The other type of pruning, called horizontal pruning is already partically
implicitly present in the

⋃

operator of (3), as in a union of sets of cones, every
cone is collected only once, even as it may originate as the result of many
different cone intersections. With horizontal pruning we remove cones of F1∧1F2

which are contained in larger cones. Formally, we can define this type of pruning
via the ∧2 operator:

F1 ∧2 F2 =
⋃

C ∈ F1 ∧1 F2, C 6⊂ C′

C′ ∈ F1 ∧1 F2 \ {C}

C. (4)

2.2 Pseudo Code Definitions of the Algorithms

Algorithm 2 sketches the outline of our algorithm to compute all pretropisms of
a set of n polytopes. Along the lines of the gift wrapping algorithm, for every
edge of the first polytope we take the plane that contains this edge and consider
where this plane touches the second polytope. Algorithm 1 starts exploring the
edge skeleton defined by the edges connected to the vertices in this touching
plane.
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The exploration of the neighboring edges corresponds to tilting the ray r
in Algorithm 1, as in rotating a hyperplane in the gift wrapping method. One
may wonder why the exploration of the edge skeleton in Algorithm 1 needs to
continue after the statement on line 4. This is because the cone C has the
potential to intersect many cones in P , particularly if P has small cones and
C is large. Furthermore it is reasonable to wonder why we bother checking
cone containment when computing the intersection of two cones provides more
useful information. Checking cone containment means checking if each of the
generators of C is contained in CE , which is a far less computationally expensive
operation than computing the intersection of two cones.

In the Newton-Puiseux algorithm to compute series expansions, we are in-
terested only in the edges on the lower hull of the Newton polytope, i.e. those
edges that have an upward pointing inner normal. For Puiseux for space curves,
the expansions are normalized so that the first exponent in the tropism is pos-
itive. Algorithm 2 is then easily adjusted so that calls to the edge skeleton
computation of Algorithm 1 are made with rays that have a first component
that is positive.

2.3 Correctness

To see that these algorithms will do what they claim, we must define an ad-
ditional term. A pretropism graph is the set of edges for a polytope that have
normal cones intersecting a given cone. We will now justify why the cones out-
put by Algorithm 1 correspond to the full set of cones that live on a pretropism
graph.

Theorem 2.1. Pretropism graphs are connected graphs.

Proof. Let C be a cone, and let P be a polytope with edges e1, e2 such that
they are in the pretropism graph of C. Let C1 be the cone of the intersection
of the normal cone of e1 with C, and let C2 be the cone of the intersection of
the normal cone of e2 and C. If we can show that there exists a path between
e1 and e2 that remains in the pretropism graph, then the result will follow.

Let n1 be a normal to e1 that is also in C1 and let n2 be a normal to e2 that
is also in C2. Set n = tn1 + (1− t)n2 where 0 ≤ t ≤ 1. Consider varying t from
0 to 1; this creates the cone Cn, a cone which must lie within C, as both n1 and
n2 lie in that cone. As n moves from 0 to 1, it will progressively intersect new
faces of P that have all of their edges in the pretropism graph. Eventually, this
process terminates when we reach e2, and we have constructed a path from e1
to e2. Since a path always exists, we can conclude that pretropism graphs are
connected graphs.

Since pretropism graphs are connected, Algorithm 1 will find all cones of
edges on the pretropism graph. In Algorithm 2, we iteratively explore the edge
skeleton of polytope Pi, and use the pruned set of cones to explore Pi+1. From
this, it is clear that Algorithm 2 will compute the full set of pretropisms.
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2.4 Analysis of Computational Complexity

In estimating the cost of our algorithm to compute all pretropisms, we will
first consider the case when there are two polytopes. We will take the primi-
tive operation of computing pretropisms to be the number of cone intersections
performed, as that number will drive the time required for the algorithm to
complete. For a polytope P , denote by ne(P ) its number of edges. The up-
per bound on the number of primitive operations for two polytopes P1 and P2

is the product ne(P1) × ne(P2), while the lower bound equals the number of
pretropisms.

Denote by EP,e the pretropism graph resting on polytope P corresponding
to the ray determined by edge e. Let ne(EP,e) denote the number of edges
in EP,e.

Proposition 2.2. The number of primitive operations in Algorithm 2 on two
polytopes P1 and P2 is bounded by

ne(P1)
∑

i=1

ne(EP2,ei), (5)

where ei is the i-th edge of P1.

As EP,e is a subset of the edges of P : ne(EP,e) ≤ ne(P ). Therefore, the
bound in (5) is smaller than ne(P1)× ne(P2).

To interpret (5), recall that Algorithm 2 takes a ray from inside a normal
cone to an edge of the first polytope for the exploration of the edge graph of the
second polytope. If we take a simplified view on the second polytopes as a ball,
then shining a ray on that ball will illuminate at most half of its surface. If we
use the estimate: ne(EP2,ei) ≈ ne(P2)/2, then Algorithm 2 cuts the the upper
bound on the number of primitive operations in half.

Estimating the cost of the case of n polytopes follows naturally from the
cost analysis of the case of 2 polytopes. For n polytopes, the upper bound on
the number of primitive operations required is the product ne(P1) × ne(P2) ×
. . .× ne(Pn).

Proposition 2.3. The number of primitive operations in Algorithm 2 on n
polytopes P1, P2, . . . , Pn is bounded by

ne(P1)
∑

i=1





n
∏

j=2

ne(EPj ,ei)



 (6)

where ei is the i-th edge of P1.

Again, if we use the estimate that ne(EPj ,ei) ≈ ne(Pj)/2, then Algorithm 2
reduces the upper bound on the number of primitive operations by 1

2n−1 . This
estimate depends entirely on the intuition that we are cutting the number of
comparisons in half. This estimate may not hold in the case when we have large
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lineality spaces, and thus have huge input cones. This situation can be partially
remedied by sorting the input polytopes from smallest dimension of lineality
space to highest. This seeds Algorithm 2 with the smallest possible input cones.

2.5 Horizontal and Vertical Pruning Revisited

The definitional algorithm of pretropism can be interpreted as creating a tree
structure. From a root node, connect the cones of P1. On the next level of the
tree, place the cones resulting from intersecting each of the cones of P2 with
the cones of P1, connecting the new cones with the cone from P1 that they
intersected. It is likely that at this level of the tree there are many cones that
are empty. Continue this process creating new levels of cones representing the
intersection of the previous level of cones with the next polytope until the nth
polytope has been completed. The cones at the nth layer of the tree represent
the cones generated by pretropisms.

Our algorithms can be seen to improve on this basic tree structure in two
distinct ways. Algorithm 1 reduces the number of comparisons needed through
exploring the edge skeletons of the polytopes. Because of this, there are many
times that we do not perform cone intersections that will result in 0 dimensional
cones. From the perspective of the tree, this is akin to avoiding drawing edges
to many 0 dimensional cones; we call this vertically pruning the tree. We
horizontally prune the tree through Algorithm 2 which reduces the number
of cones necessary to follow for a given level. This is illustrated in Figure 1.
By both horizontally and vertically pruning the tree of cones, we are able to
avoid performing many unnecessary cone intersections. We will demonstrate
the benefits of pruning experimentally in the sections to come.

3 Implementation

Our algorithm takes as input a modified version of the data structure output by
the gift wrapping algorithm to compute convex hulls. It conceptually exploits
the connectivity between vertices, edges, and facets, but only requires the edge
skeleton of the polytope. To accomplish this, we created edge objects that had
vertices, references to their neighboring edges, and the normal cone of the edge.
When polytopes were not full dimensional, we included the generating rays of
the lineality space when we created the normal cones. This has the negative
effect of increasing the size of the cone, but is essential for the algorithm to
work.

3.1 Code

We developed a high level version of Algorithm 2 in Sage [36], using its mod-
ules for lattice polytopes [32], and polyhedral cones [11]. To compute the in-
tersections of cones, Sage uses PPL [6]. Our preliminary code is available at
https://github.com/sommars/GiftWrap.
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A B C

D E F G H I F J H G

K L MNOP Q R S TUMNOP R S Q

A B C

D E F G H I F J H G

K L MNOP Q R S TU

Figure 1: Nodes A, B, C represent cones to P1. Nodes D, E, F, and G represent
intersections of cone A with cones to P2, etc. Nodes K and L represent inter-
sections of cone D with cones to P3, etc. Duplicate nodes are removed from the
second tree at the bottom.

3.2 Parallelism

To improve the performance of our core algorithms, we also implemented high
level parallelism. We used the built in Python queue structure to create a job
queue of cones in lines 5 through 7 of Algorithm 2. Each call to the Algorithm 1
is done independently on a distinct process, using the computers resources more
efficiently.

Additionally, we have implemented parallelism in checking the cone contain-
ments in lines 8 through 12 of Algorithm 1. To check if cone C1 is contained
within another cone C2, it requires checking if each of the linear equations and
inequalities of C1 is or is not restricted by each of the linear equations and
inequalities of C2. However, there is much overlap between cones, with many
distinct cones sharing some of the same linear equations or inequalities. Because
of this, we optimized by creating a lookup table to avoid performing duplicate
calculations. However, with large benchmark problems, creation of this table
becomes prohibitively slow. To amend this problem, we parallelized the creation
of the table, with distinct processes performing distinct calculations.
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4 Generic Experiments

To test the algorithms, we generate n − 1 simplices spanned by integer points
with coordinates uniformly generated within the range of 0 to 30. This input
corresponds to considering systems of n − 1 sparse Laurent polynomials in n
variables with n+ 1 monomials per equation. We can compare with the mixed
volume computation if we add one extra linear equation to the Laurent poly-
nomial system. Then the mixed volume of the n-tuple will give the sum of the
degrees of all the curves represented by the Puiseux series. Assuming generic
choices for the coefficients, the degrees of the curves can be computed directly
from the tropisms, as used in [38] and applied in [1, 2].

Denoting by MV(P ) the mixed volume of an n-tuple P of Newton polytopes:

MV(P ) =
∑

v

(

n
max
i=1

vi −min

(

n

min
i=1

vi, 0

))

(7)

where the sum ranges over all tropisms v.
All computations were done on a 2.6 GHz Intel Xeon E5-2670 processor

in a Red Hat Linux workstation with 128 GB RAM using 32 threads. When
performing generic tests, the program did not perform any cone containment
tests because no cone can be contained in another cone in this case.

4.1 Benchmarking

Table 4.1 shows a comparison between the two distinct methods of comput-
ing pretropisms. The mixed volume was computed with the version of Mixed-
Vol [22], available in PHCpack [37] since version 2.3.13. For systems with generic
coefficients, the mixed volume equals the number of isolated solutions [7]. While
a fast multicore workstation can compute millions of solutions, a true supercom-
puter will be needed in the case of billions of solutions. For larger dimensions,
the new pruning method dominates the method suggested by the definition of
pretropism.

Table 1: Comparisons between the definitional and our pruning method, for
randomly generated generic simplices. Timings are listed in seconds.

n Definitional Pruning #Pretropisms Mixed Volume

3 0.008 0.20 7 319
4 0.11 0.42 18 7,384
5 1.33 0.76 58 152,054
6 13.03 2.75 171 4,305,758
7 243.88 20.17 614 91,381,325
8 2054.11 220.14 1,878 2,097,221,068
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4.2 Number of Cone Intersections

Another way that the definitional algorithm can be compared to our new algo-
rithm is through comparing the number of cone intersections required for each
algorithm. Table 2 contains a comparison of these numbers. A large number of
trials were performed at each dimension so we could conclude statistically if our
mean number of intersections differed from the number of intersections required
by the cone intersection algorithm. To test this hypothesis, we performed t-
tests using the statistical software package R [33]. For every dimension from 3
to 8, we were able to reject the null hypothesis that they had the same mean
and we were able to conclude that the new algorithm has a lower mean number
of intersections (p < 2 × 10−16 for every test). We had estimated the cost to
be an improvement by a factor of 1

2n−1 , but experimentally we found a greater
improvement as can be seen in Table 2.

Table 2: Average number of cone intersections required for each algorithm,
comparing the definitional algorithm with our pruning algorithm for generic
inputs. The second to last column contains the ratio predicted by our cost
estimate and the final column contains the actual ratio.

n Definitional Pruning Predicted Ratio Actual Ratio

3 36 29 0.5 0.72
4 1,000 288 0.25 0.288
5 50,625 2,424 0.125 0.0478
6 4,084,101 18,479 0.0625 0.00452
7 481,890,304 145,134 0.03125 0.000301
8 78,364,164,096 1,150,386 0.015625 0.0000147

4.3 Comparison with Gfan

In the generic case, our code is competitive with Gfan. Table 3 contains timing
comparisons, with input polynomials determined as they were previously deter-
mined; the timings in the Gfan column were obtained by running the current
version 0.5 of Gfan [25].

5 Benchmark Polynomial Systems

Many of the classic mixed volume benchmark problems like Katsura-n, Chandra-
n, eco-n, and Noonberg-n are inappropriate to use as benchmark systems for
computing pretropisms. A good testing system needs to have a positive dimen-
sional solution set as well as being a system that can be scaled up in size. The
aforementioned mixed volume benchmark problems all lack positive dimensional
solution sets, so we did not perform tests on them. We have found the cyclic
n-roots problem to be the most interesting system that fulfills both criteria,
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Table 3: Comparisons between Gfan and our implementation, for dimensions 3
through 8. Timings are listed in seconds.

n Gfan Pruning

3 0.036 0.12
4 0.23 0.25
5 2.03 0.80
6 23.49 10.73
7 299.32 49.53
8 3,764.83 540.32

as there are a variety of sizes of solution sets within them and the difficulty
of computing pretropisms increases slowly. We also provide experimental data
for the n-vortex and the n-body problem, but these problems quickly become
uncomputable with our prototype Sage implementation.

5.1 Cyclic-n Experiments

The cyclic n-roots problem asks for the solutions of a polynomial system, com-
monly formulated as



















x0 + x1 + · · ·+ xn−1 = 0

i = 2, 3, 4, . . . , n− 1 :

n−1
∑

j=0

j+i−1
∏

k=j

xk mod n = 0

x0x1x2 · · ·xn−1 − 1 = 0.

(8)

This problem is important in the study of biunimodular vectors, a notion
that traces back to Gauss, as stated in [19]. In [5], Backelin showed that if n
has a divisor that is a square, i.e. if d2 divides n for d ≥ 2, then there are
infinitely many cyclic n-roots. The conjecture of Björck and Saffari [8], [19,
Conjecture 1.1] is that if n is not divisible by a square, then the set of cyclic
n-roots is finite. As shown in [1], the result of Backelin can be recovered by
polyhedral methods.

Instead of directly calculating the pretropisms of the Newton polytopes of
the cyclic n-root problem, we chose to calculate pretropisms of the reduced
cyclic n-root problem. This reformulation [14] is obtained by performing the
substitution xi = yi

y0

for i = 0 . . . n − 1. Clearing the denominator of each
equation leaves the first n − 1 equations as polynomials in y1, . . . yn−1. We
compute pretropisms of the Newton polytopes of these n− 1 equations because
they yield meaningful sets of pretropisms. Calculating with the reduced cyclic
n-roots problem has the benefit of removing much of the symmetry present in
the standard cyclic n-roots problem, as well as decreasing the ambient dimension
by one. Unlike the standard cyclic n-roots problem, some of the polytopes of the
reduced cyclic n-roots problem are full dimensional, which leads to calculation
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speed ups. A simple transformation can be performed on the pretropisms we
calculate of reduced cyclic n-root problem to convert them to the pretropisms
of cyclic n-root problem, so calculating the pretropisms of reduced cyclic n-
roots problem is equivalent to calculating the pretropisms of the cyclic n-roots
problem.

Table 4 shows how our implementation scales with time. As with the generic
case, our implementation shows great improvement over the definitional algo-
rithm as n becomes larger. For n > 8, the definitional algorithm was too
inefficient to terminate in the time allotted.

Table 4: Comparisons between the definitional and our pruning method for
reduced cyclic-n. Timings are listed in seconds.

n Definitional Pruning #Pretropisms Mixed Volume

4 0.02 0.62 2 4
5 0.43 1.04 0 14
6 17.90 1.56 8 26
7 301.26 2.57 28 132
8 33681.66 9.43 94 320
9 44.97 259 1224
10 978.67 712 3594

Just as we surpassed our estimates of the expected number of cone intersec-
tions in the generic case, we also surpassed our estimated ratio in the case of
reduced cyclic-n. Table 5 contains experimental results.

Table 5: Number of cone intersections required for each algorithm, comparing
the definitional algorithm with our pruning algorithm for reduced cyclic-n. The
second to last column contains the ratio predicted by our cost estimate and the
final column contains the actual ratio.

n Definitional Pruning Predicted Ratio Actual Ratio

4 120 44 0.25 0.36
5 1850 210 0.125 0.113
6 63,981 2,040 0.0625 0.0318
7 989,751 6,272 0.03125 0.00634
8 58,155,904 39,808 0.015625 0.000684
9 198,300 0.0078125
10 1,933,147 0.00390625

5.2 n-body and n-vortex

The n-body problem [23] is a classical problem from celestial dynamics that
states that the acceleration due to Newtonian gravity can be found by solving
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a system of equations (9). These equations can be turned into a polynomial
system by clearing the denominators.

ẍj =
∑

i6=j

mi(xi − xj)

r3ij
1 ≤ j ≤ n (9)

The n-vortex problem [24] arose from a generalization of a problem from
fluid dynamics that attempted to model vortex filaments (10). Again, these
equations can be turned into polynomials through clearing denominators.

Vi = I
∑

i6=j

Γj

zi − zj
1 ≤ j ≤ n (10)

Table 6 displays experimental results for both the n-body problem and the n-
vortex problem. We expect to be able to compute higher n for these benchmark
problems when we develop a compiled version of this code.

Table 6: Experimental results of our new algorithm. Timings are in seconds.
The last column gives the number of cone intersections.

System n Pruning Time #Pretropisms #Intersections

n-body 3 0.62 4 121
4 5.07 57 25,379
5 13,111.42 2,908 18,711,101

n-vortex 3 0.71 4 87
4 2.93 25 10,595
5 1457.48 569 5,021,659

6 Conclusion

To compute all pretropisms of a Laurent polynomial system, we propose to
exploit the connectivity of edge skeletons to prune the tree of edges of the tuple
of Newton polytopes. The horizontal and vertical pruning concepts we introduce
are innovations that reduce the computational complexity of the problem. Our
first high level implementation in Sage provides practical evidence that shows
that our new pruning method is better than the definitional method with a
variety of types of polynomial systems.
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[12] B. Büeler, A. Enge, and K. Fukuda. Exact volume computation for poly-
topes: a practical study. In G. Kalai and G.M. Ziegler, editors, Polytopes
– Combinatorics and Computation, volume 29 of DMV Seminar, pages
131–154. Springer-Verlag, 2000.

[13] J.A. De Loera, J. Rambau, and F. Santos. Triangulations. Structures for
Algorithms and Applications, volume 25 of Algorithms and Computation in
Mathematics. Springer-Verlag, 2010.

13

http://arxiv.org/abs/1408.4653


[14] I.Z. Emiris. Sparse Elimination and Applications in Kinematics. PhD
thesis, University of California at Berkeley, Berkeley, 1994.

[15] I.Z. Emiris and J.F. Canny. Efficient incremental algorithms for the
sparse resultant and the mixed volume. Journal of Symbolic Computation,
20(2):117–149, 1995.

[16] I.Z. Emiris and V. Fisikopoulos. Efficient random-walk methods for approx-
imating polytope volume. In Proceedings of the thirtieth annual symposium
on computational geometry (SoCG’14), pages 318–327. ACM, 2014.

[17] I.Z. Emiris, V. Fisikopoulos, and B. Gärtner. Efficient edge-skeleton compu-
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Algorithm 1 Explores the skeleton of edges to find pretropisms of a polytope
and a cone.
1: function ExploreEdgeSkeleton(Polytope P , Cone C)
2: r := a random ray inside C
3: inr(P ) := vertices of P with minimal inner product with r
4: EdgesToTest := all edges of P that have vertices in inr(P )
5: Cones := ∅
6: TestedEdges := ∅
7: while EdgesToTest 6= ∅ do

8: E := pop an edge from EdgesToTest
9: CE := normal cone to E

10: ShouldAddCone := False
11: if CE contains C then

12: ConeToAdd := C
13: ShouldAddCone := True
14: else if C ∩ CE 6= {0} then

15: ConeToAdd := C ∩ CE

16: ShouldAddCone := True
17: end if

18: if ShouldAddCone then

19: Cones := Cones ∪ ConeToAdd
20: Edges := Edges ∪ E
21: for each neighboring edge e of E do

22: if e 6∈ TestedEdges then
23: EdgesToTest := EdgesToTest∪e
24: end if

25: end for

26: end if

27: TestedEdges := TestedEdges ∪ E
28: end while

29: return Cones
30: end function
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Algorithm 2 Finds pretropisms for a given set of polytopes

1: function FindPretropisms(Polytope P1, Polytope P2, . . . , Polytope Pn)
2: Cones := set of normal cones to edges in P1

3: for i := 2 to n do

4: NewCones := ∅
5: for Cone in Cones do
6: NewCones := NewCones ∪ ExploreEdgeSkeleton(Pi, Cone)
7: end for

8: for Cone in NewCones do
9: if Cone is contained within another cone in NewCones then

10: NewCones := NewCones - Cone
11: end if

12: end for

13: Cones := NewCones
14: end for

15: Pretropisms := set of generating rays for each cone in Cones
16: return Pretropisms
17: end function
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