Skip to main content

MathCheck2: A SAT+CAS Verifier for Combinatorial Conjectures

  • Conference paper
  • First Online:
Book cover Computer Algebra in Scientific Computing (CASC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9890))

Included in the following conference series:

Abstract

In this paper we present MathCheck2, a tool which combines sophisticated search procedures of current SAT solvers with domain specific knowledge provided by algorithms implemented in computer algebra systems (CAS). MathCheck2 is aimed to finitely verify or to find counterexamples to mathematical conjectures, building on our previous work on the MathCheck system. Using MathCheck2 we validated the Hadamard conjecture from design theory for matrices up to rank 136 and a few additional ranks up to 156. Also, we provide an independent verification of the claim that Williamson matrices of order 35 do not exist, and demonstrate for the first time that 35 is the smallest number with this property. Finally, we provided more than 160 matrices to the Magma Hadamard database that are not equivalent to any matrices previously included in that database.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    From Doron Zeilberger’s talk at the Fields institute in Toronto, December 2015 (http://www.fields.utoronto.ca/video-archive/static/2015/12/379-5401/mergedvideo.ogv, minute 44).

  2. 2.

    For more information on this format, please refer to http://www.satcompetition.org/2009/format-benchmarks2009.html.

References

  1. Ábrahám, E.: Building bridges between symbolic computation and satisfiability checking. In: Proceedings of the 2015 ACM on International Symposium on Symbolic and Algebraic Computation, pp. 1–6. ACM, New York (2015)

    Google Scholar 

  2. Armand, M., Faure, G., Grégoire, B., Keller, C., Théry, L., Wener, B.: Verifying SAT and SMT in CoQ for a fully automated decision procedure. In: PSATTT 2011: International Workshop on Proof-Search in Axiomatic Theories and Type Theories, pp. 11–25 (2011)

    Google Scholar 

  3. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)

    Google Scholar 

  4. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system I: the user language. J. Symbolic Comput. 24(3), 235–265 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bouton, T., Caminha B. de Oliveira, D., Déharbe, D., Fontaine, P.: veriT: an open, trustable and efficient SMT-Solver. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 151–156. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  6. Char, B.W., Fee, G.J., Geddes, K.O., Gonnet, G.H., Monagan, M.B.: A tutorial introduction to Maple. J. Symbolic Comput. 2(2), 179–200 (1986)

    Article  Google Scholar 

  7. Colbourn, C.J., Dinitz, J.H. (eds.): Handbook of Combinatorial Designs. Discrete Mathematics and its Applications (Boca Raton), 2nd edn. Chapman & Hall/CRC, Boca Raton (2007)

    Google Scholar 

  8. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms, 2nd edn. Springer, New York (1992)

    Book  MATH  Google Scholar 

  9. Decker, W., Greuel, G.M., Pfister, G., Schönemann, H.: Singular 4-0-2 – A computer algebra system for polynomial computations (2015). http://www.singular.uni-kl.de

  10. Hadamard, J.: Résolution d’une question relative aux déterminants. Bull. Sci. Math. 17(1), 240–246 (1893)

    MATH  Google Scholar 

  11. Hearn, A.: Reduce user’s manual, version 3.8 (2004)

    Google Scholar 

  12. Hedayat, A., Wallis, W.: Hadamard matrices and their applications. Ann. Stat. 6(6), 1184–1238 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hnich, B., Prestwich, S.D., Selensky, E., Smith, B.M.: Constraint models for the covering test problem. Constraints 11(2), 199–219 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Holzmann, W.H., Kharaghani, H., Tayfeh-Rezaie, B.: Williamson matrices up to order 59. Des. Codes Crypt. 46(3), 343–352 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Junges, S., Loup, U., Corzilius, F., Ábrahám, E.: On Gröbner bases in the context of satisfiability-modulo-theories solving over the real numbers. In: Muntean, T., Poulakis, D., Rolland, R. (eds.) CAI 2013. LNCS, vol. 8080, pp. 186–198. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  16. Konev, B., Lisitsa, A.: A SAT attack on the Erdős discrepancy conjecture. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 219–226. Springer, Heidelberg (2014)

    Google Scholar 

  17. Kotsireas, I.S.: Algorithms and metaheuristics for combinatorial matrices. In: Handbook of Combinatorial Optimization, pp. 283–309. Springer, New York (2013)

    Google Scholar 

  18. Liang, J.H., Ganesh, V., Poupart, P., Czarnecki, K.: Learning rate based branching heuristic for SAT solvers. In: Creignou, N., Le Berre, D., Le Berre, D., Le Berre, D., Le Berre, D., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 123–140. Springer, Heidelberg (2016). doi:10.1007/978-3-319-40970-2_9

    Chapter  Google Scholar 

  19. Liang, J.H., Ganesh, V., Poupart, P., Czarnecki, K.: Exponential recency weighted average branching heuristic for SAT solvers. In: Proceedings of AAAI 2016 (2016)

    Google Scholar 

  20. Marques-Silva, J.P., Sakallah, K., et al.: GRASP: a search algorithm for propositional satisfiability. IEEE Trans. Comput. 48(5), 506–521 (1999)

    Article  MathSciNet  Google Scholar 

  21. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an efficient SAT solver. In: Proceedings of the 38th Annual Design Automation Conference, pp. 530–535. ACM, New York (2001)

    Google Scholar 

  22. de Moura, L., Kong, S., Avigad, J., van Doorn, F., von Raumer, J.: The lean theorem prover (system description). In: Felty, P.A., Middeldorp, A. (eds.) CADE-25. LNCS, vol. 9195, pp. 378–388. Springer, Switzerland (2015)

    Chapter  Google Scholar 

  23. Muller, D.E.: Application of Boolean Algebra to Switching Circuit Design and to Error Detection. Electron. Comput. Trans. IRE Prof. Group Electron. Comput. EC-3(3), 6–12 (1954)

    Google Scholar 

  24. Nadel, A., Ryvchin, V.: Efficient SAT solving under assumptions. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 242–255. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  25. Đoković, D.Ž.: Williamson matrices of order \(4n\) for \(n = 33\), \(35\), \(39\). Discrete Math. 115(1), 267–271 (1993)

    MathSciNet  MATH  Google Scholar 

  26. Đoković, D.Ž., Kotsireas, I.S.: Compression of periodic complementary sequences and applications. Des. Codes Crypt. 74(2), 365–377 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Paley, R.E.: On orthogonal matrices. J. Math. Phys. 12(1), 311–320 (1933)

    Article  MATH  Google Scholar 

  28. Prestwich, S.D., Hnich, B., Simonis, H., Rossi, R., Tarim, S.A.: Partial symmetry breaking by local search in the group. Constraints 17(2), 148–171 (2012)

    Article  MathSciNet  Google Scholar 

  29. Reed, I.: A class of multiple-error-correcting codes and the decoding scheme. Trans. IRE Prof. Group Inf. Theory 4(4), 38–49 (1954)

    Article  MathSciNet  Google Scholar 

  30. Riel, J.: nsoks: A Maple script for writing \(n\) as a sum of \(k\) squares

    Google Scholar 

  31. Seberry, J.: Library of Williamson Matrices. http://www.uow.edu.au/~jennie/WILLIAMSON/williamson.html

  32. Sloane, N.: Library of Hadamard Matrices. http://neilsloane.com/hadamard/

  33. Sylvester, J.J.: Thoughts on inverse orthogonal matrices, simultaneous sign successions, and tessellated pavements in two or more colours, with applications to Newton’s rule, ornamental tile-work, and the theory of numbers. London Edinb. Dublin Philos. Mag. J. Sci. 34(232), 461–475 (1867)

    Google Scholar 

  34. SC\({{}^{2}}\): Satisfiability checking and symbolic computation. http://www.sc-square.org/

  35. The Sage Developers: Sage Mathematics Software (Version 7.0) (2016). http://www.sagemath.org

  36. Walsh, J.L.: A closed set of normal orthogonal functions. Am. J. Math. 45(1), 5–24 (1923)

    Article  MathSciNet  MATH  Google Scholar 

  37. Williamson, J.: Hadamard’s determinant theorem and the sum of four squares. Duke Math. J 11(1), 65–81 (1944)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wolfram, S.: The Mathematica Book, version 4. Cambridge University Press (1999)

    Google Scholar 

  39. Zulkoski, E., Ganesh, V., Czarnecki, K.: MathCheck: a math assistant via a combination of computer algebra systems and SAT solvers. In: Felty, P.A., Middeldorp, A. (eds.) CADE-25. LNCS, vol. 9195, pp. 607–622. Springer, Switzerland (2015)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Heinle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Bright, C., Ganesh, V., Heinle, A., Kotsireas, I., Nejati, S., Czarnecki, K. (2016). MathCheck2: A SAT+CAS Verifier for Combinatorial Conjectures. In: Gerdt, V., Koepf, W., Seiler, W., Vorozhtsov, E. (eds) Computer Algebra in Scientific Computing. CASC 2016. Lecture Notes in Computer Science(), vol 9890. Springer, Cham. https://doi.org/10.1007/978-3-319-45641-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45641-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45640-9

  • Online ISBN: 978-3-319-45641-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics