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A b s t r a c t . Graph theory is an evident paradigm for analyzing social net­
works, which are the main tool for collective behavior research, address­
ing the interrelations between members of a more or less well-defined 
community. Particularly, social network analysis has important impli­
cations in the fight against organized crime, business associations with 
fraudulent purposes or terrorism. 

Classic centrality functions for graphs are able to identify the key 
players of a network or their intermediaries. However, these functions 
provide little information in large and heterogeneous graphs. Often the 
most central elements of the network (usually too many) are not related 
to a collective of actors of interest, such as be a group of drug traffickers 
or fraudsters. Instead, its high centrality is due to the good relations of 
these central elements with other honorable actors. 

In this paper we introduce complicity functions, which are capable of 
identifying the intermediaries in a group of actors, avoiding core elements 
that have nothing to do with this group. These functions can classify a 
group of criminals according to the strength of their relationships with 
other actors to facilitate the detection of organized crime rings. 

The proposed approach is illustrated by a real example provided by 
the Spanish Tax Agency, including a network of 835 companies, of which 
eight were fraudulent. 

1 Introduction 

Graph theory is able to represent the relationships between all kinds of objects, 
such as human relationships, probabilistic relationships between events, elec­
tronic circuit components, computer networks, atomic networks... The analysis 
of these networks can be useful for valuable tasks such as detecting business 
associations with fraudulent purposes, counterterrorism investigation or politi­
cal communication. 

A graph [20] is a pair G = (V, E), where V is the set of vertices or nodes and 
set E includes the edges or arcs of the graph. We denote a vertex or node by 
v ∈ V , and an arc by a pair of (not necessarily different) nodes (u, v). In that 
case, both nodes, u and v, are neighboring nodes. If the arc (u, v) is different to 
(v, u), then the graph is directed (a digraph). 



We define the arc-node incidence of v in an undirected graph as the number 
of arcs incident to or from node v, i.e., the number of arcs starting or ending 
at v. If the graph is a digraph then we define the indegree of a node v as the 
number of arcs ending at (or incident to) v and the outdegree as the number of 
arcs starting at v. Therefore, the incidence degree is the sum of both. 

The arcs of a graph can be assigned a weight, which denotes the intensity 
of the relation between the endpoint nodes of the arc. In this case, the graph is 
called a weighted graph. 

The adjacency matrix of a given graph G with n nodes is an n × n matrix 
AG = (aG

u,v), where aG
u,v = 1 if (u, v) ∈ E and aG

u,v = 0 otherwise. In a weighted 
graph, this value will be the weight of the arc (u, v). 

A path from u to v in a graph is a sequence of arcs, starting at node u and 
ending at node v. If such a path exists, u and v are connected. A geodesic path 
between two nodes of the graph is the shortest path between both nodes and 
the geodesic distance is the length of the geodesic path. 

A graph is connected when there is a path between each pair of nodes and 
complete when all pairs of nodes are connected by an arc. 

An important aspect in social network analysis is its visualization. A graph 
can be displayed in different ways. Classic visualization algorithms are studied 
in [4,8–10,19]. Secondly, the detection of communities, i.e., groups of nodes that 
are clearly differentiated in the graph [6,11,17], is interesting in social network 
analysis. Finally, another key feature of social network analysis is to identify 
different roles depending on the position of each actor in the network. For exam­
ple, a social network may have key players, communication or action leaders that 
attract many other actors. The detection of these leaders can be critical in the 
development of information campaigns. We can also observe intermediate actors 
connecting different communities or other key players. All these actors can be 
identified by means of centrality and intermediation indicators. 

The first studies on centrality in graphs date back to the 1950s and were 
conducted at [7] the Massachusetts Institute of Technology Group Networks 
Laboratory, in the field of sociology. Several works [1,16,21] report research into 
the the centrality characteristics of a group and the efficiency in the development 
of several more or less cooperative tasks. But the centrality concept in networks 
was later proven to be useful for explaining and analyzing geographical [18], 
political [2], economics or business [3] questions. 

According to Freeman [7], it is difficult to define a centrality notion for graphs 
that accounts for different situations and interests. Instead the central elements 
are inspected to check that they have an intuitively evident set of properties. 
These properties are as follows: 

1. The elements of a network with a higher adjacency degree, i.e., nodes that 
are more related with others nodes, are its central elements. 

2. The elements of a network belonging to the highest possible number of geo-
desics between any two nodes of the network, are its central elements. These 
nodes are good intermediaries because they have to be traversed along the 
shortest path from one node to another. 



3. The elements of a network closest to the other nodes, i.e., nodes that minimize 
the sum of geodesic distances to the other nodes, are its central elements. 

Thus, the centrality function with the best trade-off between these three, not 
necessarily conflicting but not strictly correlated, properties will be the best, as 
we shall see later. 

The first centrality functions in the literature were, predictably, functions 
that primarily satisfied the first of the three properties. However, the adjacency 
degree of the node it is not, by itself, a good centrality indicator. Consequently, 
centrality measures should be collective, where the centrality of a node depends 
not only on the local individual structure of the node, but also on the neighbor­
hood structure, i.e., the centrality of a node is a function not only of the number 
of nodes connected to it, but also of the centrality of these nodes. This idea 
directly leads to two major centrality indicators: eigenvector centrality [14] and 
the PageRank coefficient [15], which is the basis of the Google engine search. 

Besides, hub/authority centrality is based on the correlation between nodes 
with a high indegree (authority nodes) and nodes with a high outdegree (hub 
nodes). The HITS (Hiperlink-Induced Topic Search) [13] algorithm computes a 
membership value from each node to each one of these classes. 

In this paper we propose a five-phases procedure for organized crime ring 
detection. The first phase computes the complicity of each actor with each fraud­
ulent actor. Section 2 introduces the concept of complicity or suspicion of col­
laboration between one actor and another previously identified as fraudulent. 
Section 3 defines the strength of attraction between fraudulent actors, shown as 
the set of fraudulent nodes projected using multidimensional scaling in a plane 
(phase 3). These points are then grouped according to the DBSCAN algorithm 
(phase 4). Finally each identified actor is added to the group of fraudulent actors 
that maximizes its complicity (phase 5). Section 4 illustrates our approach with 
a real example including 835 Spanish companies, eight of which are fraudulent. 
Finally, some conclusions are provided in Sect. 5. 

2 Dangerous Liaisons 

The classic centrality measures are designed for graphs representing uniform 
collectives. However, the fight against organized crime requires an analysis that 
goes beyond the study of closed groups of individuals with common interests. 
In our society, honest and fraudster people are interrelated, and the fraudster 
take advantage of this circumstance and to commit crimes without being caught. 
Fraudulent companies take advantage of good faith of honorable companies to 
conceal fraudulent activities. Terrorists mix with citizens, and drug traffickers 
often have the appearance of respectable business entrepreneurs, who pay taxes 
and create jobs, etc. A good example are the so-called carousel fraud plots, in 
which a group of companies cooperates to commit value added tax fraud. This 
network of companies usually forges relationships with legitimate companies, 
which are unaware of the fraudulent activity of their partners, suppliers and 
clients. 



The good news is that countries have increasingly improved technologies, 
capable of saving and monitoring networks of taxpayers, consumers, citizens, 
businessmen..., and these networks include both the honest and the fraudster 
subject. However, the above centrality functions do not work in these hetero­
geneous networks. For example, given a wide collective of companies, some of 
which have committed carousel fraud, the question is which other companies 
have a good relation with the companies implicated in fraud? In other words, 
which companies are suspicious of aiding and abetting the carousel fraud? Cen­
trality measures are unable to identify these suspected companies, since they 
make computations on the basis of the relations with all nodes, irrespective of 
whether or not they are fraudsters. 

2.1 Complicity Functions 

We propose the concept of complicity or suspicion of collaboration between one 
actor and another previously marked as toxic (fraudulent), rather than centrality 
functions. In the following, we assume that the graph G is undirected, and we 
consider a set of toxic nodes in G, T C V. Our aim is to study the relation 
between the nodes in V — T and the toxic nodes and assign a complicity value 
to those nodes depending on their relations. 

The complicity function must satisfy the following three properties: 

1. Nodes directly or indirectly connected to toxic nodes should have higher com­
plicity values than nodes not related to toxic nodes. In fact, nodes without a 
direct or indirect connection to toxic nodes should be assigned zero complicity. 

2. Distance should be penalized, i.e., the complicity of nodes that are closer to 
toxic nodes is greater. 

3. Node connection to toxic nodes should be considered, i.e., the complicity 
nodes that are connected to a high number of toxic nodes is higher. 

The above properties can be stated using the following expression, which 
represents the complicity of v with respect to the set of toxic nodes T: 

where L is a decreasing function and g(v,u) is the geodesic distance between u 
and v. L can be an exponential or hyperbolic tangent function, as follows: 

\ en -g{v,u)) (exponential) or 

pr—rg(u:v) prg(u:v)—r 1 

+ + 1 (hyperbolic tangent), 
prg(u,v)—r i pr—rg(u,v) 

where g(v,u) is the geodesic distance from v to u without passing through any 
toxic node and r is a constant that models the differences. These complicity 
functions satisfy the above properties and output values within [0,1]. 

C(v) = 1 

C(v) = 1 

C(v) = 1 



The reason why we used geodesics that do not traverse the other toxic nodes 
to compute each summand of the above expression is that the connection with 
a toxic node could be overestimated if a toxic node is connected to other toxic 
nodes, which is commonplace. If an actor is connected to a toxic node which is 
in turn connected to other toxic nodes, then the actor is also connected to the 
latter, but this would not be an indicator of complicity. However, if the actor is 
connected repeatedly to the set of toxic nodes, then it is an accomplice. 

These functions are suitable when the graph is connected. However, when the 
graph is formed by two or more disconnected subgraphs (two or more connected 
components), then the distance between two nodes belonging to different sub­
graphs is oo, and the complicity of a node with respect to a fraudster in another 
connected component is zero. Besides, complicity is also zero for a node in the 
same component as, but at a large distance from, the fraudster. It is critical for 
the classification model to be able to deal with these two situations; otherwise 
disconnected plots would not be distinguishable from sets of nodes that are very 
far apart within the same component. One possibility would be to smooth the 
decrease by controlling parameter r, but this method does not yield good results 
in practice since complicity would have to be negligible as of some value of the 
geodesic distance. In this situation, a finite distance is the same as an infinite 
distance, which does not solve the problem. To overcome this drawback, we have 
to substitute a straight line (y = k > 0) (small) for the horizontal asymptote at 
infinity within the hyperbolic tangent model and put a step in the infinity, i.e., 
we control the parameters a and (3 rather than parameter r in the expression: 

C(v) = 1 
1 rpr—rg(u,v) prg(u,v)—r | 

+ P\ prg(u,v)—r + pr—rg(u,v) 

such that 
Vpr—rx prx—r | 

lira a 8 = a(B — 1) = k and 
x >00 prx—r i pr — x ' v 

Ypr-rx_erx-r 1 1+ k 1 _ k 
lira a p = a(fJ + 1 ) = 1, i.e., p = and a = 

x—>• — oo prx—r + pr — x 1 h. 2 

2.2 Markov Chain-Based Approach 

Markov chains are widely used to compute some classic centrality measures. 
Markov chains can simulate dynamic systems with a set of possible states where 
it is possible to pass from one state to another with certain probability. 

In the above PageRank algorithm, given an adjacency matrix A = (aij), 
where a^ = 1 if there is an arc between «j and Uj and a^ = 0 otherwise. If 
each row is divided by the sum of its elements, then we have a stochastic matrix 
T = (tij) (where each row is a probability distribution). This matrix is called 
a transition matrix since each element tij represents the probability of passing 

from node «j to node Uj. In fact, matrix Tn = (t\ • ) represents the probability 



of reaching node Uj in a path of length n starting at «j . This probability will be 
higher if the number of paths connecting both nodes increase. 

The complicity of a toxic node Vj with another node «j can be computed as: 

oo 

n=1 

where a € (0,1) penalizes the distance between the nodes and £? are elements 
of (TJ)n, where TJ is the transition matrix accounting for all nodes except toxic 
nodes different to Vj. 

This function is similar to Katz centrality [12], except that we use the tran­
sition rather than the adjacency matrix and it is constrained to the toxic node 
Vj with respect to the node «j. In other words, we are interested in the commu­
nication channels between toxic nodes and other nodes rather than the relations 
between all nodes in the graph, whereas Katz centrality sums all these values 
and outputs a single value for each node using the adjacency matrix. 

In practice, it is sufficient to define a limit value, such as the graph diam­
eter (length of the longest geodesic in the graph), S, and compute the pow­
ers Ti,(Ti)2,...,(Ti)s for each Vj G T. If we take the row in matrix CJ' = 
aTi + a2(Ti)2 +... + as(Ti)s corresponding to the toxic node Vj and remove the 
element corresponding to that toxic node Vj, then we have a transposed vector 
denoted by c?. 

Now, let C be the rectangular matrix whose rows are the above transposed 
vectors c? for the different toxic nodes, i.e. \/VJ G T. Then, the total complicity of 
each non-toxic node can be computed as the sum of the elements in the column 
in C associated to that non-toxic node, and the complicity mean by dividing the 
above amount by the number of toxic nodes: 

1 1 (n) 

2.3 Detection of Suspects of Complicity 

The complicity function is useful for fighting against organized crime, identifying 
all actors represented by nodes that are highly related to a list of toxic nodes. To 
do this, we propose Algorithm 1, which accounts for a minimum number s G N 
(for example, s = 1) of toxic nodes to which the actor should be related in 
order to be suspected of complicity. The higher the number is, the more suspect 
the actor will be. Besides, we consider a percentile p G (0,100) as of which 
complicity is significantly high. To do this, we look at the distribution of the 
complicity values in the graph, considering the relation between the number of 
toxic and non-toxic nodes. 

0 



A l g o r i t h m 1 . Detection of partners in crime 

Input: (G undirected graph, Flist of toxic nodes, s£N minimum number of connected 
toxic nodes with the suspect node, p G (0,100) value for the complicity percentile). 

1. For each w G V, compute the number s(w) of elements of J- connected to w without 
passing through other toxic actors. 

2. For each element v G J-: 
3. Remove all nodes u G J- such that U = D from V. 
4. V « y such that s(w) > a calculate c(w,v) = e ^ - ^ ) ) . 
5. For each w G V: 
6. Compute C(w) = n̂ y ̂ 2vejr c(w,v). 
7. Compute the percentile of order p from the vector C. 
8. Save and rank all nodes with a complicity value above percentile p. 

3 Detection of Organized Crime Rings 

Each toxic node Vi G T is associated with a vector Vi = (v1,..., Vir) where 
Vij = c(vi,Uj) is the complicity of the toxic node v^ with the actor Uj. 

We define the strength of attraction between the toxic nodes v^ and vi~ by 

Jik = Vi • V]~ = Z^o=1 vijvkj, which can be normalized as follows: ji]~ = i—>II—>i; 

representing the cosine of the angle defined by vectors v^ and v^. 

Matrix / is a symmetrical, nonnegatively defined matrix such tha t the max­
imum value in the i-th row, fa = 1, is located on the diagonal, i.e., it is a 
normalized similarity function, in which completely different nodes are in differ­
ent components, i.e., fy = 0 if and only if <?(WJ, Uj) = oo. 

It is possible to derive a distance metric in [0,1] from the similarity func­
tion S as follows: d(u, v) = y S(u, u) — 2S(u, v) + S(v, v). In our case, d(u, v) = 

y/2-2f(u,v).We can use this distance to project all the nodes using multi­
dimensional scaling to represent fraudsters in [0,1]2 with a maximum distance 
A/2, which matches the maximum reachable distance by d when f(u, v) = 0. If a 
larger area is required, then a nonnormalized distance could be used, d! = a • d. 

Multidimensional scaling (MDS) [22] is a visualization algorithm of high-
dimensional da ta arranged in a plane or 3D space. Data are represented by 
means of points whose distance is proportional to the differences between the 
da ta tha t they represent. The classic example illustrating this procedure is to 
plot a geographic map in a plane where the only available information is the 
distance between a set of cities. 

Torgerson [22] proves tha t a matr ix with the features of / (symmetrical 
and nonnegatively defined) can be decomposed as / = UAUf, where U is the 
normalized eigenvector matr ix and A is the eigenvalue diagonal matrix. If we 
denote Y = UA1/2, then YYf = UA^A^HP = RRK 

If two matrices from two different bases have the same matrix of scalar prod­
ucts, then one is the transform of the other by a change of basis. Then, Y is the 
matr ix R in the basis of proper vectors, i.e., each row of Y is the strength vector 
from a fraudster in the basis of proper vectors. 



Now, since Y = UA ' , if the first p eigenvalues are somewhat larger than 
the others, we can consider an approximation X of the initial fraudster matrix, 
which can be represented in p dimensions. If p = 2, fraudsters can be represented 
by points in a plane where their distances are proportional to the complicity 
differences of their related nodes. 

Therefore, the percentage of the sum of the first two eigenvalues over the sum of 
all eigenvalues is a measure of how good the visualization is, i.e., the visualization 
is more realistic and better represents the differences, the greater the difference is 
between the sum of the first two eigenvalues and the sum of all eigenvalues. 

We proceed to group the nodes according to the distances from the MDS 
projection on the plane of the set of toxic nodes. A simple and useful algorithm 
for this purpose is the density-based spatial clustering of applications with noise 
(DBSCAN) [5], which assesses the density of each region of the plane by comput­
ing the numbers of points that are within spheres with radius eps of each element 
in the population. Accordingly, the density of a neighborhood is satisfactory if 
the number of points in this neighborhood is equal to or greater than a prefixed 
value MinPt. The initial parameters of the DBSCAN then are the radius eps 
and the minimum density value MinPt. Note that the choice of these values is 
a critical decision because if eps is very small, then the spheres only have one 
point, whereas if they are too big, all points could belong to the sphere. 

In summary, the procedure for ring detection is: 

1. Compute the complicity of each node with each toxic node. 
2. Compute the strength of attraction / between toxic nodes. 
3. Project the set of toxic nodes using multidimensional scaling in a plane in 

such a way that the distance between nodes are proportional to A/2 — 2f. 
4. Group the points of the projection according to the DBSCAN algorithm. 
5. Add each non-toxic node to the group of toxic nodes that maximizes its 

complicity. 

After performing this assignment we can tune the algorithm considering con­
necting paths connecting partners in crime and toxic nodes. 

4 An Illustrative Example 

This section illustrates the ring detection procedure with a real example includ­
ing 835 linked companies, of which eight are fraudulent. Data was provided by 
the Spanish Tax Agency. These are missing trade companies that are suspicious 
of belonging to carousel fraud plots (EU VAT plots) for the year 2013. These com­
panies should have paid the full amount of VAT charged on an intra-Community 
acquisition of goods (a commodity purchase by a EU member country destined 
for a domestic market) to the national tax authorities. However, the company 
disappeared after selling the commodity without making this payment. 

Figure 1 shows a graph describing the relationships between the 835 compa­
nies, highlighting the fraudulent companies in green. These relationships refer 
to any corporate, family, representation, management, authorization and co-
ownership bank accounts for the year 2013. 



Fig . 1 . 835 linked companies (Color figure online) 

Our goal is to compute the complicity of companies with the fraudsters, 
group fraudsters depending on their relationship and complicity with each other 
and, finally, assign each company to a group of fraudsters accounting for average 
complicity with fraudsters from each ring following the procedure described in 
Sect. 3. 

Figure 2(a) shows the projection by multidimensional scaling of the fraudster 
group, whereas Fig. 2(b) shows the resulting cluster after applying the DBSCAN 
algorithm. Four clusters are identified using different colors. Specifically, compa­
nies 582 and 579 (in green) constitute a cluster, whereas companies 17, 34 and 
58 (in red) form another cluster. Companies 121 and 460 are in the third cluster. 
Finally company 240 is itself the fourth cluster. 

Next, we build a ring for each cluster including the 827 remaining companies. 
To do this, we compute the average complicity of each company regarding the 
fraudster companies in each cluster. Thus, the company will be a member of the 
ring with which it has the highest average complicity. Each company is located 
in the selected cluster (ring) at a distance from the centroid of the cluster equal 
to its average complicity. Figure 2(c) shows the rings for the four clusters. The 
colors in the respective rings are associated with the percentiles of complicity 
values. Specifically, companies whose average complicity regarding the fraudsters 
in the corresponding cluster is under percentile 75 are shaded green, companies 
above percentile 95 are colored red and yellow is used for companies between 
the above percentiles. 

Finally, Fig. 3 illustrates the original graph including the 835 linked compa­
nies in this case highlighting the companies with different colors (red, pink, blue 
and so on) in the different rings with an average complicity above percentile 95. 
These are the companies that could be considered as being suspicious of taking 
part in an organized crime ring. 

The Spanish Tax Agency is currently using the proposed approach to rank, 
on the basis of the above average complicities, companies suspicious of fraud for 
inspection, since the number of inspectors and their availability are limited. This 
has led to an increment in the success rate. 



Multidimensional Scaling on Toxic Nodes 
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5 Conclusions 

Social network analysis has important implications in the fight against organized 
crime, business associations with fraudulent purposes or terrorism. We have 
introduced several functions to measure the degree of complicity between the 
actors in an heterogenous social network with a set of previously identified toxic 
actors, with the aim of detecting the partners of an organized crime plot. This 
complicity function naturally induces a similarity function between toxic nodes, 
the strength of attraction, which can be transformed into a distance metric. 

Then, toxic nodes can be projected as points in a plane where the distances 
between points are proportional to the original distances between the toxic nodes 
(multidimensional scaling algorithm). The DBSCAN algorithm then groups the 
toxic nodes according to different high-density regions, and nodes with higher 
complicity are assigned to the different rings accounting for the maximization of 
average complicity. 

The methodology has been illustrated by a real example, including 835 com­
panies, of which eight are fraudulent according to the Spanish Tax Agency. The 
proposed approach detects organized crime rings and computes, for each ring, 
the complicity level of its actors. The Spanish Tax Agency is currently using the 
proposed approach to rank suspicious companies for inspection, since the num­
ber of inspectors and their availability are limited. This has led to an increment 
in the success rate. 

We propose as a future research line to conduct a comparative analysis 
between the proposed method and other group detection methods, and between 
the complicity function and other centrality functions. Besides, further avail­
able information about the considered companies could be incorporated into the 
analysis and artificial intelligence tools, such as machine learning and statistics, 
could be used to derive a more robust crime ring detection method. 
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