

City, University of London Institutional Repository

Citation: Meulemans, W. & Haunert, J-H. (2016). Partitioning Polygons via Graph

Augmentation. Lecture Notes in Computer Science, 9927, pp. 18-33. doi: 10.1007/978-3-
319-45738-3

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/15169/

Link to published version: https://doi.org/10.1007/978-3-319-45738-3

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Partitioning Polygons via Graph Augmentation

Jan-Henrik Haunert1,? and Wouter Meulemans2

1 Institute of Computer Science, University of Osnabrück, Germany.
janhhaunert@uni-osnabrueck.de

2 giCentre, City University London, United Kingdom.
wouter.meulemans@city.ac.uk

Abstract. We study graph augmentation under the dilation criterion.
In our case, we consider a plane geometric graph G = (V,E) and a set C
of edges. We aim to add to G a minimal number of nonintersecting edges
from C to bound the ratio between the graph-based distance and the Eu-
clidean distance for all pairs of vertices described by C. Motivated by the
problem of decomposing a polygon into natural subregions, we present
an optimal linear-time algorithm for the case that P is a simple poly-
gon and C models an internal triangulation of P . The algorithm admits
some straightforward extensions. Most importantly, in pseudopolynomial
time, it can approximate a solution of minimum total length or, if C is
weighted, compute a solution of minimum total weight. We show that
minimizing the total length or the total weight is weakly NP-hard.
Finally, we show how our algorithm can be used for two well-known
problems in GIS: generating variable-scale maps and area aggregation.

1 Introduction

Polygons representing geographic objects can contain millions of vertices and
thus can be difficult to handle. Often, they consist of multiple regions that are
connected only via narrow bottlenecks, such as isthmuses in the case of land
or straits in the case of water areas. To ease the handling of such polygons
and to identify natural subregions, such as the Iberian Peninsula as a part of
Europe, one often seeks a partition of a polygon into multiple smaller polygons
of a certain type (e.g., into convex polygons). A triangulation of a polygon is
the most common type of a polygon partition, yet often one is interested in
larger (non-triangular) subregions. We present new algorithms for partitioning
a polygon based on an internal triangulation of it: every output region is the
union of a set of triangles of that triangulation. We consider our algorithm a
useful tool for shape manipulation and demonstrate its effectiveness on two use
cases: the generation of variable-scale maps and the aggregation of areas.

Our basic idea is to consider the polygon partitioning problem as a special
graph augmentation problem. The vertices and edges of the input polygon P
define a geometric graph G, which we augment with a selection of edges from a
set C of candidate edges (that is, diagonals of P) to split P into multiple pieces.

? Corresponding author

After the augmentation, the graph shall be well connected. More precisely, for
each candidate edge {u, v} ∈ C we require that the dilation for u and v in
the augmented graph is bounded by a user-set parameter. For any two vertices
u, v of a geometric graph G, the dilation (sometimes also called stretch factor or
detour factor) is defined as the ratio between the shortest u-v path via G and the
Euclidean distance between u and v. By selecting a minimum number of edges
from C we obtain a nice decomposition of the input polygon. As an alternative
optimization objective we consider minimizing the total weight of the selected
edges, assuming that for each edge in C a weight is given as part of the input.

Contributions. We introduce terminology and a general problem definition
with three primary variants (unweighted, length-weighted and general weights)
in Section 2. We review related work in Section 3. In Section 4 we consider the
problem variants for the case that the graph to be augmented is a simple polygon
without holes and the edges that can be added are an internal triangulation. We
provide an optimal linear-time algorithm for the unweighted case, and present
some extensions. We prove that both the general-weights case and the length-
weighted case are weakly NP-hard, present a pseudopolynomial-time algorithm
for the general-weights case, and show that it can provide a (1+ε)-approximation
algorithm for the length-weighted case. We discuss our two use cases in Section 5.

2 Preliminaries

Graphs. Let G = (V,E) denote a graph defined by its vertices V and edges
E ⊆ {{u, v} | u, v ∈ V }. We call G a geometric graph if every vertex is assigned
a position in R2 and each edge is represented by the line segment connecting its
endpoints. A geometric graph is plane if vertices have unique positions and no
two edges intersect, except at common endpoints.

Dilation. Let G = (V,E) be a geometric graph and u, v ∈ V be two vertices of
G. We denote the Euclidean distance between u and v as ‖u − v‖; we use ‖e‖
to denote the length of edge e. The length of the shortest path in G between
u and v is denoted by dG(u, v). We define the (vertex) dilation between u and
v as ∆G(u, v) = dG(u, v)/‖u − v‖; the dilation of the entire graph is ∆G =
maxu,v∈V,u6=v∆G(u, v). If G is disconnected, its dilation is infinite.

Problem statement. In this paper, we consider graph augmentation problems,
where the augmentation is constrained to a prescribed set of vertex pairs. We
call such vertex pairs candidate edges. Hence, a problem instance comprises

– a plane geometric graph G = (V,E),
– a set C ⊆ {{u, v} | u, v ∈ V }\E of candidate edges, and
– a real number τ ≥ 1.

Consider S ⊆ C to be a subset of the candidate edges. We denote by GS =
(V,E∪S) the graph obtained by augmentingG with the candidate edges in S. We
call a candidate edge {u, v} ∈ C satisfied with respect to S if ∆GS

(u, v) ≤ τ . A

simple path in GS whose length is sufficiently small to prove that ∆GS
(u, v) ≤ τ

is called a witness of {u, v}. Set S is a solution to the problem if all edges in
C are satisfied (with respect to S). Note that we ask to satisfy only the pairs
specified by the candidate edges; we do not guarantee that the dilation between
all vertices is bounded by τ . This is a trade-off that we make to guarantee that
solutions exist. In particular, S = C is a solution for any problem instance.

However, we want to find a “good” solution. A primary criterion, in the
context of polygon partitioning, is that the edges in S do not intersect each
other or existing edges of G. Furthermore, we consider optimizing three different
objective functions, resulting in the following problems:

– MinSize: minimize |S|.
– MinLength: minimize

∑
e∈S ‖e‖.

– MinWeight: minimize
∑
e∈S w(e), given weights w : C → R+.

In the above, we provide an upper bound on the allowed dilation and mini-
mize the cost (size, length or weight) of the solution. The dual variants instead
bound the allowed cost and ask to minimize the dilation. We focus on the stated
variants; our algorithms can solve the dual variant by a binary search on τ . This
is possible since the problem is monotonic: any solution for τ is also a solution
for τ ′ > τ , and thus increasing the dilation can only reduce the minimal cost.

3 Related Work

Partitioning. Partitions of polygons into triangles, monotone polygons, or con-
vex polygons are common in the context of GIS [19] and have intensively been
studied in computational geometry. For example, for the case that no additional
vertices (i.e., Steiner points) are allowed, Keil and Snoeying [13] have shown that
a simple polygon with n vertices and r reflex vertices can be partitioned into a
minimum number of convex polygons in O(n+ r2 min{r2, n}) time. In the case
that Steiner points are allowed, the problem can be solved in O(n+ r3) time [5].
For polygons with holes, the problem is NP-hard in both cases [16].

Often motivated by problems in computer vision and pattern recognition,
researchers have developed methods for partitioning polygons into “natural and
intuitive” [17], “simpler” [8], or “approximately convex” [15] pieces, which need
not be convex. However, these methods do not provide any guarantee of opti-
mality with respect to the number of output pieces or a different measure.

Dilation. Algorithmic work involving dilation is motivated mostly by applica-
tions in infrastructure design (e.g. road or electricity networks). Much research
has been done without planar considerations, e.g. [2]. Considering our use cases,
we focus here on results with such planar considerations; see [4] for a survey.

Giannopoulos et al. [9] prove that, given a point set Q, computing a graph
G = (Q,E) with ∆G ≤ 7 is NP-hard, if |E| is bounded to O(|Q|). They also
prove that adding O(|E|) edges to a geometric graph to bound the dilation to 7 is
NP-hard. Both claims hold with and without requiring planarity. This supports

the investigation of our variant, where we do not consider satisfying all pairs,
but only those provided in a (constrained) candidate set.

Farshi et al. [7] show that it is possible to compute, for a given geometric
graph, the edge that results in the largest dilation reduction in O(n4) time. This
was later improved by Wulff-Nilsen [20] to O(n3 log n) time. Note that repeatedly
applying this greedy choice does not yield an optimal result. Aronov et al. [1]
present algorithms for the following problem: given a point inside a polygon,
compute a segment from the point to the boundary of the polygon such that the
dilation from the given point to any point on the boundary is minimized.

If we measure dilation via the geodesic distance and only between vertices
of which one is contained in a given small set, an FPTAS exists to compute a
minimal-dilation triangulation of a simple polygon [14]. Klein et al. [14] attribute
to folklore that a constrained Delaunay triangulation of a simple polygon has
dilation at most π(1 +

√
6)/2 < 5.09. This readily implies that our algorithms—

run with τ and using as C the constrained Delaunay triangulation—compute a
small set of edges such that all vertex pairs have dilation less than 5.09τ (in the
geodesic model). A similar result was proven by Bose and Keil [3], stating that
a constrained Delaunay triangulation (not necessarily of a polygon) has dilation
at most 4π

√
3/9 ≈ 2.42, though only between pairwise visible points.

4 Triangulated Polygons

Here we study the dilation problem restricted to instances where G is a simple
polygon P and C is an inner triangulation of P . We denote the resulting problems
by MinSizePoly, MinLengthPoly and MinWeightPoly.

We present a linear-time optimal algorithm for MinSizePoly in Section 4.1.
In Section 4.2 we show how to deal with any nonintersecting set of internal di-
agonals as candidate edges; and in Section 4.3 we present a heuristic for dealing
with holes. Finally, in Section 4.4 we prove that MinLengthPoly and Min-
WeightPoly are weakly NP-hard; we present a pseudopolynomial-time algo-
rithm for MinWeightPoly with integer weights and, via rounding, obtain an
approximation algorithm for MinLengthPoly.

4.1 Minimizing the number of selected edges

To solve MinSizePoly, we apply a recursive algorithm. Its recursion is struc-
tured using a rooted binary tree T on the edges of P and C. By maintaining
three possible subsolutions for each node in T , we show that we compute an
optimal subsolution for each node based only on its children in T .

Building a tree. We define a directed binary tree T with nodes corresponding
to the edges P ∪ C as follows. First, we pick an arbitrary edge of polygon P as
root r. Then, we add the two edges incident to the same unprocessed triangle
as children to r and recurse on each child. The result is a tree on the edges and
candidate edges, rooted at r; see Fig. 1. If the embedding is given—the cyclic
order of candidate edges at each vertex—we can compute T in O(n) time, where
n is the number of polygon edges. Otherwise, O(n log n) time suffices.

r

Fig. 1. (left) A binary tree T with root r. (right) A feasible role assignment for τ = 3;
the solid black diagonal is the only selected candidate edge in C, but allows a shorter
path for another candidate edge.

Components of T . Every edge e ∈ P ∪C (a node in the tree) partitions T into
two components†. The component that contains r is referred to as T root

e , the
other as T leaf

e . Both of these components exclude e itself. For root r we define
T root
r = ∅ and T leaf

r = T \ {r}. For uniformity of presentation, we also define a
component T self

e containing only edge e.
In a solution S ⊆ C for MinSizePoly, each candidate edge e = {u, v} ∈ C

must have a witness: a simple u-v path of length at most τ‖e‖. A witness of e
lies fully within one of the three components of T defined by e.

Role assignment. With our algorithm we compute a role assignment α : C →
{self, leaf,root} for all candidate edges. The role assignment indicates which

component must contain a witness; we call α feasible if T α(e)e indeed contains
a witness for all e ∈ C. A role assignment α directly prescribes the set Sα of
edges that are part of the solution: Sα = {e | e ∈ C ∧ α(e) = self}. Hence, we
refer to |Sα| as the size of α, using |α| as a shorthand. For uniformity, we define
α(e) = self for all edges e ∈ P , but these are not part of Sα.

Fig. 1 shows an instance with a role assignment. Every edge e ∈ C is displayed
according to its role: self-edges are black; root- and leaf-edges are gray with
a small triangle indicating the direction of their shortest path.

As an edge can play three different roles, there are up to 33 = 27 config-
urations of a role assignment for a triangle; see Fig. 2. We reduce this to 20
configurations as follows. Consider two edges e1 and e2. We call e1 and e2 con-
flicting in α if either: e1 is the parent of e2 in T , α(e1) = leaf and α(e2) = root;
or e1 and e2 are siblings in T and α(e1) = α(e2) = root. The following lemma
implies that we may indeed discard the bracketed configurations in Fig. 2.

Lemma 1. There exists a feasible role assignment with minimal size that does
not contain any conflict.

Proof. Consider a solution S with minimal size. Let α be the role assignment
obtained by assigning self to e ∈ S and root or leaf to the remaining edges,
depending on which component of T contains the shortest path between the
endpoints of e. To derive a contradiction, assume α contains a conflict between

e1 and e2. This implies that e2 ∈ T α(e1)e1 and vice versa. By construction, the

† In this paper “edge” always indicates an element of P ∪C—a node in T —and never
an edge between nodes (parent-child relation) in T .

(3)

(2)

(1)
e

e1 e2

Fig. 2. The 27 configurations of roles for a triangle of an edge e and its children e1 and
e2 in T . The bracketed roles are not needed for an optimal solution.

shortest path π1 for e1 is contained in T α(e1)e1 . Hence, π1 must pass through
the endpoints of e2. However, this implies that the shortest path for e2 is a

subpath of π1, and thus not in T α(e2)e2 as this component contains e1. This is a
contradiction, thus α cannot contain a conflict. ut

Partial assignments. Our algorithm computes role assignments for subtrees
of T . A partial role assignment αe is an assignment on {e} ∪ T leaf

e . Its partial
solution Sαe is defined as {e′ | e′ ∈ C ∩ ({e} ∪ T leaf

e) ∧ αe(e′) = self}; again
we use |αe| as a shorthand for the size of Sαe . A partial assignment for the root
r corresponds to a (full) role assignment. Assignment αe is feasible if one of the
following holds for all e′ ∈ {e} ∪ T leaf

e :

1. αe(e
′) = self; or

2. αe(e
′) = leaf and (Sαe ∪ P) ∩ T leaf

e′ contains a witness for e′; or
3. αe(e

′) = root and either:
a) (Sαe ∪ P) ∩ T root

e′ ∩ ({e} ∪ T leaf
e) contains a witness for e′;

b) the combined length of the two shortest paths in Sαe ∪ P from the
endpoints of e′ to the endpoints of e is at most τ · ‖e′‖ − ‖e‖.

The rationale for case 3 is that either the edge is already satisfied (3a) or it is to
be satisfied by what has yet to come (3b). However, the latter must ensure that
there is still some length “to be spent” in order to complete the solution.

Lemma 1 and the triangle inequality imply that, for a feasible αe with αe(e) ∈
{self, leaf}, all edges in {e} ∪ T leaf

e are satisfied. It presents a shortest path
between the endpoints of e to future computations. The length of this path is
the front-length of αe, denoted by L(αe). Moreover, if αe(e) = root, then a
contiguous subset of T leaf

e may all have this assignment. The front-allowance
R(αe) is the maximal allowed length on the root side of e, such that all these
assignments are still satisfied. If αe(e) 6= root, it is infinite.

In the following, all role assignments are feasible, unless mentioned otherwise.

Algorithm. The algorithm relies on a postorder recursive traversal of T to
compute the partial assignment αe for each edge e. Calling this with r hence
results in the full role assignment α. However, to do the recursion correctly, we
cannot simply compute a single partial assignment, but compute three instead:

Definition 1. The following three partial role assignments are defined:

– αself
e : the smallest partial role assignment with αe(e) = self.

– αleaf
e : the partial role assignment with minimal front-length among the small-

est partial role assignments with αe(e) = leaf.
– αroot

e : the partial role assignment with maximal front-allowance, among the
smallest partial role assignments with αe(e) = root and R(αe) ≥ ‖e‖.

We compute these assignments based on the partial assignments of the child
nodes. The base case, a leaf of T , corresponds precisely to an edge of P . For
these, we consider only αself

e to be defined, with size 0 and front-length L(αe) =
‖e‖. For root r, again corresponding to an edge of P , we are interested only in
computing αself

r , the size of which (not counting r) is the size of the solution.
Any other node of T is a candidate edge e, with precisely two children in T : e1
and e2. To compute the partial assignments in this case, we simply try the 20
cases of Fig. 2 and find those that satisfy Definition 1. By storing the size of the
partial assignments, the size of a new partial assignment is simply the sum of the
sizes of the children’s partial assignments, increased by 1 if e is assigned self.
However, not all cases may lead to feasible assignments. We therefore check the
feasibility as follows, where row numbers refer to the labels in Fig. 2.

Cases in the first row correspond to computing αself
e . For cases involving

αroot
e1 (and analogously for e2), the front-allowance is met if L+ ‖e‖ ≤ R(αroot

e1)
holds, where L is the front-length provided by sibling.

Cases in the second row correspond to computing αleaf
e . Cases with a root

assignment for a child can be ignored by Lemma 1. We must ensure that the
combined front-length of e1 and e2 is at most τ · ‖e‖.

Cases in the third row correspond to computing αroot
e . We check and com-

pute front-allowances. Since e is not part of the solution, a front-allowance of
a child is “propagated”. For a child with a root assignment, its propagated
front-allowance is its front-allowance minus the front-length of its sibling. The
minimum of this propagated front-allowance (if any) and τ ·‖e‖ is the new front-
allowance for e in this case and we check whether it is longer than ‖e‖.

Note that αself
e always exists, but αleaf

e and αroot
e need not exist. Only cases

for which both partial assignments for the children exist are computed.

Correctness. To prove the algorithm correct, we shall prove that the computed
partial assignments, αself

e , αleaf
e and αroot

e , indeed are the smallest feasible par-
tial assignments according to Definition 1. The lemma below is at the heart of
this proof. Essentially, it states that we can always get a partial assignment with
infinite front-allowance and minimal front-length by increasing the size of an
assignment by at most one.

Lemma 2. For any edge e in T , we know that |αself
e | ≤ 1+min{|αleaf

e |, |αroot
e |},

where the size of a partial assignment is considered infinite if it does not exist.

Proof. Consider αleaf
e or αroot

e . If we change the assignment of e to self, we
obtain again a feasible partial assignment. The lemma readily follows. ut

Lemma 3. The computed partial assignments correspond to Definition 1.

Proof. We prove this lemma via structural induction. In the base case, e is a leaf
of T . Hence, it is an edge of P and the only partial role assignment is αself

e with
size zero (since e is not in C). Trivially, this has minimal size.

In the inductive case, e is not a leaf of T . It has two children, e1 and e2. Let
βe be an optimal partial assignment, according to Definition 1. It implies partial

assignments βe1 and βe2 for its two subtrees. Let αe1 = α
βe(e1)
e1 be a shorthand

for the partial assignment computed by our algorithm, for the given case; αe2 is
defined analogously. We use ∗ to consistently indicate either e1 or e2.

If |β∗| < |α∗|, we arrive at a contradiction with the induction hypothesis,
which implies that α∗ has minimal size.

To argue about the case that |β∗| ≥ |α∗| holds for both children, we first
make the following observations. If |β∗| = |α∗|, then we can replace β∗ with α∗
without making the solution worse: by the induction hypothesis, α∗ cannot have
a greater front-length or a lower front-allowance. If |β∗| > |α∗|, we cannot make
this replacement as α∗ may have a greater front-allowance or lower front-length.
However, by Lemma 2, we now know that |αself

∗ | ≤ |β∗| and this assignment
has overall minimal front-length and infinite front-allowance. Hence, replacing
β∗ with αself

∗ does not make the solution worse.
When we carry out both replacements as described above, we obtain a partial

assignment that is not worse than βe and thus adheres to Definition 1. Due to
exhaustive case analysis, our algorithm computes this partial assignment. ut

The computed partial assignment αself
r corresponds to a full role assignment;

it is minimal by Lemma 3. This readily implies the following theorem.

Theorem 1. The algorithm computes an optimal solution to MinSizePoly.

Complexity. After building T , the straightforward implementation of this al-
gorithm runs in optimal O(n) time, for a polygon with n edges. Keeping track of
which cases give the best result in the computation of each partial assignment,
allows the recovery of the optimal solution in O(n) time as well.

4.2 Fewer diagonals

Suppose we require only that C is a nonintersecting set of diagonals inside P .
Our algorithm can be modified to also deal with such a case. The most significant
change is that T is no longer binary: nodes may have higher degree. Lemma 1
and Lemma 2 straightforwardly generalize to this case. Hence, we may conclude
that an optimal partial assignment can be obtained by using leaf assignments
of those children of e that have the smallest front-length. Thus, we sort the
children according to front-length of their leaf assignment. Testing every child
with a root assignment, we can do a binary search to find the best selection of
other children to use a leaf assignment, the rest using self. Hence, processing
a single edge e takes O(de log de) time, where de is the degree in T . The total
execution time is O(n log d) where d is the maximal degree in T .

Fig. 3. (left) A polygon with two holes. (middle) Two edges are used as T , to connect
the boundaries. (right) T is used to define a single polygon without holes.

4.3 Polygons with holes

Let us consider a simple polygon P with holes; C is an inner triangulation of
P . To bound the dilation, we need at least some edges to connect the outer
boundary of P and each hole. We thus proceed as follows, similar to [8]. First,
we compute a minimal-length set T ⊆ C that connects these boundaries, i.e., a
minimal spanning tree on the boundary components of P . We use these edges
to carve open P into a polygon PT without holes (see Fig. 3). We then run our
algorithm on PT ; let ST denote its solution. The solution S to P is given by
ST ∪ T . This heuristic does not provide an approximation guarantee, since the
distance along the boundary of PT can be higher than the distance in the graph
P ∪ T ; this may result in adding edges to the solution unnecessarily.

4.4 Minimizing the total weight or length of the selected edges

We now analyze the computational complexity of MinLengthPoly and Min-
WeightPoly and, thereafter, present algorithms for their solution.

Theorem 2. MinLengthPoly is weakly NP-hard.

vn+1

u

5 7
18A 4A

v1 v2 vi vn
3ai

4ai5ai

11
18A

Fig. 4. MinLength instance constructed
for instance {a1, a2, . . . , an} of Partition.

Proof. Our proof is by reduction
from the weakly NP-complete prob-
lem Partition, defined as follows: let
A = {a1, . . . , an} be a set of posi-
tive integers and let A =

∑
ai∈A ai;

is there a set I ⊆ A such that∑
ai∈I ai = A/2? For a Partition in-

stance, we construct a MinLength-
Poly instance M with τ = 3 and
the polygon P and triangulation C as
shown in Fig. 4, using one last point at
distance 7A to the right of vn+1. We
prove that M admits a solution S of
total length at most 3A/2 if and only
if A is a yes-instance of Partition.

Let A = {a1, . . . , an} be a yes-instance of Partition and let I ⊆ A be such
that

∑
ai∈I ai = A/2. We show that S = {{vi, vi+1} | i ∈ I} is a solution to

MinLength instanceM with total length at most 3A/2. Every edge {vi, vi+1} ∈
C with i ∈ {1, . . . , n} (i.e., every horizontal edge) is trivially satisfied as P
already contains a path of length 3ai. The vertical edge {u, vn+1} is exactly
satisfied: walking in counter-clockwise direction along P yields a u-vn+1 path of
length 15A and every horizontal edge {vi, vi+1} ∈ S reduces the length of this
path by 5ai+4ai−3ai = 6ai; therefore, the shortest u-vn+1 path has total length
15A − 6A/2 = 12A = τ4A = τ‖{u, vn+1}‖. Every other edge {u, vi} incident
to u is satisfied, because it is longer than {u, vn+1}, while at the same time the
shortest u-vi path is shorter than the shortest u-vn+1 path. By construction, the
selected edges have total length 3A/2.

Now, let S ⊆ C be a solution to M of total length at most 3A/2. Because
every non-horizontal edge has a length of at least 4A, S contains only horizontal
edges. The edge {u, vn+1} can be satisfied only if the total length of horizontal
edges in S is at least 3A/2: hence, the total length of S is exactly 3A/2. Therefore,
the numbers in A corresponding to the edges in S sum up to A/2.

The coordinates of the vertices of the input polygon are rationals—or integer
if we scale by a factor of 18—and polynomial in the sum A of A. Therefore, the
reduction can be computed in pseudopolynomial time. �

Theorem 3. MinWeightPoly is weakly NP-hard.

Proof. We use the same reduction as in the proof of Theorem 2, except that we
define the weights as a part of the MinWeightPoly instance: we set the weight
of each horizontal edge to its length and of each other edge to 4A. All weights
are polynomial in A. With this the argument works as before. ut

Since MinLengthPoly and MinWeightPoly are weakly NP-hard, the
more general problems MinLength and MinWeight are weakly NP-hard too.

Furthermore, the polygon that we constructed for our reduction admits only
one triangulation. Therefore, the problems do not become easier, if we restrict
the triangulation implied by C, e.g. to a constrained Delaunay triangulation [6].

Exact solution of MinWeightPoly. The algorithm for MinSizePoly can be
adapted to solve MinWeightPoly, assuming integer weights. Let w : C → N
denote the weight function. In the unweighted case, Lemma 2 implies that leaf
or root assignments with size over |αself

e | − 1 are never needed. Its weighted
variant states that, for an edge e, leaf or root assignments with size over
W (αself

e)−w(e) are never needed, where W (·) denotes the sum of weights over
all edges with a self assignment. Thus, for each diagonal e and i ∈ {1, . . . , w(e)},
we compute a leaf assignment with total weight exactly w(αself

e)− i and mini-
mal front-length. Analogously, we compute up to w(e) root assignments, with
maximal front-allowance. A straightforward implementation for computing the
partial solutions for an edge from its children’s solutions thus takes O(w(e)2)
time. Therefore, this algorithm takes O(

∑
e∈P∪C w(e)2) ⊆ O(wmax · wsum) ⊆

O(nw2
max) time, where wmax = maxe∈C w(e) and wsum =

∑
e∈C w(e).

Approximating MinLengthPoly. If edge lengths are integer or fixed-point
numbers, the weighted algorithm can compute the solution in pseudopolynomial
time. Otherwise, rounding yields an approximate solution, as detailed below.

Let λ denote a small constant and assume 1+λ ≤ mine∈C ‖e‖. We define two
weight functions: w(e) = 2λ ·round(‖e‖/(2λ)) and w′(e) = round(‖e‖/(2λ)). We
run the weighted algorithm using w′ as its integer weight function. However, w
and w′ are identical up to scaling and thus produce the same optimal results.
The rounding in w implies ‖e‖−λ < w(e) ≤ ‖e‖+λ and w(e) > 1 by assumption.

Let S denote the result of the algorithm; it has weight w(S) =
∑
e∈S w(e)

and length l(S) =
∑
e∈S ‖e‖. We find that w(S) > l(S)− λ|S| > l(S)− λw(S),

implying l(S) < (1 + λ)w(S). Let S∗ denote an optimal solution to Min-
LengthPoly; we find w(S∗) ≤ l(S∗) + λ|S∗| ≤ l(S∗) + λw(S∗) and thus
l(S∗) ≥ (1 − λ)w(S∗). The approximation ratio obtained by our algorithm is
l(S)/l(S∗) < (1 +λ)w(S)/((1−λ)w(S∗)). Since S is optimal in terms of weight,
this simplifies to (1 + λ)/(1− λ).

The running time of this approach is O(nW ′2) where W ′ = maxe∈C w
′(e).

As w′(e) ≤ ‖e‖/(2λ)+ 1
2 , we find that this is O(nL2/λ2) where L = maxe∈C ‖e‖.

We thus get a (pseudo)PTAS to approximate MinLengthPoly, that computes
a (1 + ε)-approximation in O(nL2(2+ε

ε)2) = O(nL2/ε2) time.

5 Use Cases

Two vertices lying on opposite sides of a narrow part of a polygon typically have
a very large dilation: a connection across the strait of Gibraltar, for example,
is much shorter than a path along the coast, all around the Mediterranean Sea.
Hence, our dilation-based method may find natural subregions of a polygon. This
general hope is confirmed by the results that we obtained with implementations
of our algorithms; see Fig. 5. Here we apply our method to two specific problems:
computing distorted maps (Section 5.1) and aggregating areas (Section 5.2).

5.1 Computing distorted maps

Several methods exist to distort a map, for example, to resolve spatial conflicts
or to emphasize certain information. Such methods often rely on constraints that

(a) MinSizePoly, τ = 2 (b) MinSizePoly, τ = 5 (c) MinLengthPoly, τ = 5

Fig. 5. Results of our algorithms for a part of Europe. Especially the MinLengthPoly
solution (c) nicely reflects the Iberian and Italian peninsulas.

are defined based on a geometric graph representing the map [10,11]. An edge in
this graph may represent a line segment of a map object, but usually additional
edges are needed to model the constraints for the output map. We consider our
graph augmentation method as a useful tool for finding such relevant edges.

The method of Harrie and Sarjakoski [10] for the resolution of conflicts relies
on a constrained Delaunay triangulation of the map objects. A constraint for
the length of a triangle edge e = {u, v} is introduced if e is shorter than a
threshold ε and the map does not contain a u-v path of less than a number k of
line segments. Similarly, our method selects edges of a triangulation based on a
geometric distance and a graph-theoretical distance between two vertices of the
map. However, while the method of Harrie and Sarjakoski measures the graph-
theoretical distance in the input map, our method considers the graph-theoretical
distance after augmenting the map with the selected edges. We consider our
approach promising as it avoids redundant constraints.

The method of Haunert and Sering [11] enlarges a user-selected focus region
in a map while minimizing the distortion, which is measured at the edges of a
graph representing the map objects, for example, a network of roads or country
borders. Additional edges are necessary if the relative position should be main-
tained for some pairs of vertices: e.g., vertices on opposite sides of a strait. To
make a good selection of edges, Van Dijk et al. [18] have developed a greedy
heuristic that iteratively augments the map with an edge of maximal dilation
(among all edges of a constrained Delaunay triangulation) while the dilation of
the graph exceeds a certain threshold. In contrast, our linear-time algorithm for
polygons makes an optimal selection of multiple edges.

Fig. 6 shows results that we obtained with the method of Haunert and Ser-
ing [11] when enlarging Wales in a polygon representing Great Britain. For the
result in Fig. 6(middle), only distortions of the edges of that polygon were taken
into account, which almost caused a collision of England’s east and west coast. A
better result is obtained with the additional edges (see Fig. 6(right)): east-west
relations are preserved more accurately, yielding a more “solid” deformation.

5.2 Area aggregation

Information on land cover is often given as a planar subdivision that consists of
regions of different classes (urban, rural, forest, etc.). To generalize such data, one
often aggregates the areas into larger regions such that many-to-one relationships
arise. Usually, every output area must have at least a certain minimal size.
Subject to this requirement, Haunert and Wolff [12] suggested minimizing a cost
function that combines two objectives: the overall weighted class change should
be small and the resulting areas should be geometrically compact. They showed
that the problem is NP-hard and developed an exact method based on integer
linear programming and a heuristic method based on simulated annealing.

Fig. 7(a) shows a sample from the German digital landscape model ATKIS
DLM 50, corresponding to a topographic map of scale 1:50 000. We processed this
sample with the simulated-annealing-based aggregation method of Haunert and
Wolff [12]; see Fig. 7(c). Each output polygon has at least 400 000 m2, which is a

Fig. 6. (left) A polygon representing Great Britain with the edges of a MinSizePoly
solution with τ = 2. Variable-scale maps computed (middle) without and (right) with
consideration of the selected diagonals. The method of Haunert and Sering [11] was
used with a scale factor of 2 for Wales; the results were scaled to the same height.

0 200 m

Drestedt

(a) original landscape model (b) result of partitioning polygons in (a)

a

b

c

(c) result of aggregating polygons in (a)

a

b

c

(d) result of aggregating polygons in (b)

Fig. 7. Results of the simulated-annealing-based aggregation method of Haunert and
Wolff [12] when applied to an example from the landscape model ATKIS DLM 50
(c) without and (d) with application of our MinSizePoly algorithm with τ = 4 for
pre-processing. Three corresponding parts in the solutions are labeled with a, b, and c.

requirement for the scale 1:250 000. Observe that several settlement areas (red)
are lost. To obtain a better solution, we apply our algorithm for MinSizePoly
with τ = 4 and use its result (Fig. 7(b)) as input for the aggregation method.
The solution that we obtain (Fig. 7(d)) is clearly better with respect to the
total class change: the relatively large settlement labeled with a is retained.
Moreover, more compact shapes have been produced, for example, by filling
small concavities in the polygons; see the labels b and c. Based on the objective
function defined by Haunert and Wolff we can quantify this improvement: for
a sample of n1 = 325 polygons from ATKIS DLM 50 the aggregation method
yielded a solution of 7.1% less total cost when using the polygon partitioning
algorithm, which resulted in n2 = 881 polygons. The cost for class change was
reduced by 3.2% and the cost for non-compactness by 12.2%. The higher quality
comes at the cost of an increased number of input polygons for the aggregation
method. Hence, fast heuristics for aggregation are needed and it is reasonable to
minimize the number of output polygons when using our polygon partitioning
method. In our experiments, we ran simulated annealing with the same very large
number (8 810 000 = n2 · 104) of iterations to produce near-optimal solutions;
this took slightly more than half an hour on a desktop PC.

6 Conclusion

We studied the algorithmic problem of augmenting a simple polygon P of n
edges by adding edges from an internal triangulation to bound its dilation. We
described an optimal linear-time algorithm to minimize the number of edges
added. Moreover, we gave an O(n log d) algorithm for dealing with any crossing-
free set C of candidates (d is the maximal number of neighbors of a region
induced by P and C) and a heuristic for polygons with holes. Furthermore, we
proved that the weighted case and the length-weighted case are weakly NP-hard.
We gave an O(nw2

max) algorithm for the former problem (wmax is the maximal
weight of an edge) and a (1 + ε)-approximation algorithm for the latter.

We evaluated the benefits of using augmentation in two use cases: distorting
maps and area aggregation. When distorting a map to enlarge a focus region,
the augmentation leads to a better preserved shape throughout the map. When
aggregating areas, it yields 3.2% less class change and 12.2% better compactness.

Future work. Our results leave several interesting open algorithmic problems.
E.g., can we construct an algorithm that can deal with a candidate set C that
contains intersecting edges, but the solution must be planar? However, this may
imply that no solution exists. What if we allow not only internal diagonals of a
polygon, but any edge that does not cross the polygon boundary?

We plan to run extensive experiments to further explore graph augmentation
for our use cases, to provide guidelines for parameter and weight selection and
model the trade-offs between computation time and quality more explicitly.

Acknowledgments. The authors would like to thank Johannes Oehrlein for
helpful discussions on the topic of this paper. W. Meulemans is supported by
Marie Sk lodowska-Curie Action MSCA-H2020-IF-2014 656741.

References

1. B. Aronov, K. Buchin, M. Buchin, B. Jansen, T. de Jong, M. van Kreveld,
M. Löffler, J. Luo, R. I. Silveira, and B. Speckmann. Connect the dot: computing
feed-links for network extension. J. Spatial Inf. Sci., 3:3–31, 2011.

2. B. Aronov, M. de Berg, O. Cheong, J. Gudmundsson, H. Haverkort, M. Smid,
and A. Vigneron. Sparse geometric graphs with small dilation. Comp. Geom.,
40:207–219, 2008.

3. P. Bose and J. Keil. On the stretch factor of the constrained Delaunay triangula-
tion. In Proc. 3rd Int. S. Vor. Diag. in Sci. & Eng., pages 25–31, 2006.

4. P. Bose and M. Smid. On plane geometric spanners: a survey and open problems.
Comp. Geom., 47(7):818–830, 2013.

5. B. Chazelle and D. Dobkin. Decomposing a polygon into its convex parts. In Proc.
11th S. Theory of Comp., pages 38–48, 1979.

6. L. P. Chew. Constrained Delaunay triangulations. Algorithmica, 4(1–4):97–108,
1989.

7. M. Farshi, P. Giannopoulos, and J. Gudmundsson. Improving the stretch factor of
a geometric network by edge augmentation. SIAM J. Comp., 38(1):226–240, 2008.

8. H. Y. F. Feng and T. Pavlidis. Decomposition of polygons into simpler compo-
nents: Feature generation for syntactic pattern recognition. IEEE Trans. Comput.,
24(6):636–650, 1975.

9. P. Giannopoulos, R. Klein, C. Knauer, M. Kutz, and D. Marx. Computing geomet-
ric minimum-dilation graphs is NP-hard. Int. J. Comp. Geom. & Appl., 20(2):147–
173, 2010.

10. L. Harrie and T. Sarjakoski. Simultaneous graphic generalization of vector data
sets. GeoInformatica, 6(3):233–261, 2002.

11. J.-H. Haunert and L. Sering. Drawing road networks with focus regions. IEEE
Trans. Vis. & Comp. Graph., 17(12):2555–2562, 2011.

12. J.-H. Haunert and A. Wolff. Area aggregation in map generalisation by mixed-
integer programming. Int. J. Geogr. Inf. Sci., 24(12):1871–1897, 2010.

13. J. M. Keil and J. Snoeyink. On the time bound for convex decomposition of simple
polygons. Int. J. Comp. Geom. & Appl., 12(3):181–192, 2002.

14. R. Klein, C. Levcopoulos, and A. Lingas. A PTAS for minimum vertex dilation
triangulation of a simple polygon with a constant number of sources of dilation.
Comp. Geom., 34:28–34, 2006.

15. J.-M. Lien and N. M. Amato. Approximate convex decomposition of polygons.
Comp. Geom. Theory & Appl., 35(1):100–123, aug 2006.

16. A. Lingas. The power of non-rectilinear holes. In Proc. 9th Colloquium on Au-
tomata, Languages and Programming, pages 369–383, 1982.

17. K. Siddiqi and B. B. Kimia. Parts of visual form: Computational aspects. IEEE
Trans. Pattern Anal. Mach. Intell., 17(3):239–251, 1995.

18. T. C. van Dijk, A. van Goethem, J.-H. Haunert, W. Meulemans, and B. Speck-
mann. Accentuating focus maps via partial schematization. In Proc. 21st ACM
SIGSPATIAL Int. C. Advances Geogr. Inf. Syst., pages 418–421, 2013.

19. A. Voisard, M. O. Scholl, and P. Rigaux. Spatial Databases: With Application to
GIS. Morgan Kaufmann, 2002.

20. C. Wulff-Nilsen. Computing the dilation of edge-augmented graphs in metric
spaces. Comp. Geom., 43(2):68–72, 2010.

	Partitioning Polygons via Graph Augmentation

