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Abstract. Public-Index Predicate Encryption (PIPE) allows users to
encrypt according to boolean predicates defined on arbitrary attributes.
The expensive algebraic operations are the major efficiency obstacle for
PIPE to be applied to mobile clouds. This paper proposes a general
Online/Offline PIPE (OO-PIPE) framework to address this issue. First,
we propose a generic transformation from a Large Universe PIPE (LU-
PIPE) secure against chosen plaintext attack (CPA) to OO-PIPE in the
same security model. The challenge is to generate ciphertext without the
knowledge of the associated ciphertext attributes in the offline phase. We
address the challenge by identifying an interesting attribute-malleability
property in many LU-PIPE schemes. The property allows an encryptor to
efficiently malleate a ciphertext associated with one ciphertext attribute
to any assigned ciphertext attribute. Second, we design a generic trans-
formation from CPA-secure LU-PIPE to OO-PIPE secure against adap-
tively chosen ciphertext attack (CCA2), assuming the underlying LU-
PIPE has attribute-malleability and public-verifiability properties. The
main obstacle here is that the online/offline mechanism endogenously
implies forgery in the sense that a pre-computed ciphertext must be
able to be efficiently malleated to the resulting ciphertext associated
with a different ciphertext attribute and a plaintext, while any efficient
valid ciphertext forgery is forbidden in CCA2 security. We circumvent
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this obstacle by employing a universally collision resistant Chameleon
hash, namely, only the original encryptor can malleate the ciphertext
to associate with different attributes and provide a hash collision of the
ciphertext components.

1 Introduction

Mobile cloud computing becomes more and more attracting in cloud-assisted
networks. However, security risks of mobile computing may hinder its wide appli-
cations. Since data are outsourced to the cloud, it is required that data must
be stored securely, while allowing legal access for authenticated users. Tradi-
tional encryption techniques supporting limited access control are not seam-
lessly applicable to mobile cloud computing. Public-Index Predicate Encryption
(PIPE) is an emerging asymmetric encryption allowing fine-grained access con-
trol over encrypted data. In a PIPE system, the access control policy is described
by a predicate. A ciphertext is associated with a ciphertext attribute, and a secret
key is assigned to a key attribute. One can decrypt if and only if the ciphertext
attribute specified in the ciphertext matches the key attribute in his/her secret
key according to the pre-defined predicate.

PIPE is a general cryptographic concept capturing a wide range of crypto-
graphic primitives, including Identity-Based Encryption (IBE) [5,34], Revoca-
tion Encryption (RE) [23], Attribute-Based Encryption (ABE) [33] in Key-Policy
settings [15] and in Ciphertext-Policy settings [2]. PIPE is classified into two cat-
egories: Small Universe PIPE (SU-PIPE) and Large Universe PIPE (LU-PIPE).
In SU-PIPE, the size of attribute is polynomially bounded in security parame-
ter [9,12,15], which poses constraints in practice. LU-PIPE does not suffer from
this constraint and its attribute space can be exponentially large [25,31,32].
This desirable feature makes many instances of LU-PIPE, e.g., (H)IBE [19,20],
ABE [39], become attractive to secure mobile cloud computing.

There are still hindrances for LU-PIPE to be widely deployed in mobile cloud
computing. Most LU-PIPE schemes require time-consuming algebraic operations
and encryption time grows with the number of ciphertext attributes. This may
limit their efficiency. When the encryption is run on a mobile device, it may
raise poor user experience with long latency and meanwhile, exhaust the battery
quickly. Moreover, since LU-PIPE is usually suggested to secure data stored
on untrusted but powerful servers, a strong security level, i.e., CCA2 security,
is necessary for holding against powerful active attackers. Note that CCA2-
secure LU-PIPE is less efficient than its CPA-secure counterpart. This further
deteriorates the resource consumption and user experience.

Online/offline encryption may mitigate the efficiency problem. The encryp-
tion is split into offline and online phases. In the offline phase, an encryptor con-
ducts the majority of the computation task on a high-end computer or when bat-
tery recharge before knowing the ciphertext attributes. In the online phase, the
encryptor needs only few computations to fulfill the encryption when knowing
the corresponding ciphertext attributes. In this way, it is feasible to implement
LU-PIPE on resource-limited mobile devices with desirable user experience.
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Several online/offline PIPE (OO-PIPE) schemes have been designed in an ad
hoc way [10,17,18,27,29]. It is desirable to investigate generic OO-PIPE trans-
formation from LU-PIPE. Theoretically, such a work allows a better under-
standing on LU-PIPE and online/offline mechanism. Practically, it enables one
to instantly obtain OO-PIPE with better security and/or efficiency whenever an
advantageous LU-PIPE scheme is available.

1.1 Our Contributions

We aim at proposing a framework for constructing OO-PIPE with CCA2 secu-
rity. Our contribution includes the following aspects.

We start by identifying a useful property, i.e., attribute-malleability consist-
ing of private malleability and public malleability, of many LU-PIPE schemes.
The private malleability allows an encryptor to malleate a ciphertext associated
with one ciphertext attribute to a ciphertext associated with any given cipher-
text attribute at a very low cost. In contrast, the public malleability states that
even through others may malleate a ciphertext associated with one ciphertext
attribute to a ciphertext associated with some other ciphertext attribute, they
cannot know (the key of) any matching key attribute.

We propose a generic CPA-secure OO-PIPE construction from attribute-
malleable CPA-secure LU-PIPE. With private malleability, an encryptor pre-
pares a ciphertext under a randomly chosen ciphertext attribute in the offline
phase, and then replaces it with the target ciphertext attribute in the online
phase. With public malleability, we show that the security of the resulting OO-
PIPE can be tightly reduced to the CPA security of the underlying LU-PIPE.

We next propose a generic CCA2-secure OO-PIPE construction from any
CPA-secure attribute-malleable LU-PIPE with public-verifiability. The public-
verifiability states that there exists a public verification mechanism to verify
whether the ciphertext has been honestly generated. This property enables one to
establish a built-in LU-PIPE ciphertext validation check mechanism. We further
exploit universally collision resistant Chameleon hash for ciphertext validation
so that an encryptor can replace the randomly encrypted ciphertext attribute in
the offline phase with the target ciphertext attribute in the online phase, while
an attacker cannot make such malleation.

Technically, our constructions offer a novel application of Chameleon hash
in encryption systems. Chameleon hash was previously used in (online/offline)
signature applications [35]. It has been recently used as a security proof tool
in constructing CCA2-secure KP-ABE [28]. We strengthen regular Chameleon
hash with universal collision resistance and propose a generic universally colli-
sion resistant Chameleon hash from a regular Chameleon hash and a standard
cryptographic hash. Our work illustrates the unique value of Chameleon hash
in online/offline encryption cryptosystems, in contrast to its previous use in
online/offline signatures.
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1.2 Related Work

LU-PIPE. The simplest LU-PIPE is IBE that was theoretically introduced by
Shamir [34] and practically constructed by Boneh and Franklin [5]. In 2005,
Sahai and Waters [33] proposed Fuzzy IBE with a more expressive predicate.
The concept of ABE, a versatile type of LU-PIPE, was also introduced in their
work. Subsequently, two types of ABE, i.e., KP-ABE and CP-ABE, were respec-
tively proposed by Goyal et al. [15] and Bethencourt et al. [2]. These schemes are
proven secure in the selective security model. Fully secure ABE constructions
were provided by Okamoto et al. [30,31] and Lewko et al. [26]. They follow the
dual system encryption methodology due to Waters [36] and Lewko et al. [24]
to achieve fully security. Another kind of typical LU-PIPE systems, i.e., Revo-
cation Encryption (RE), was introduced by Lewko, Sahai and Waters [23] in the
selective and fully security model.

CCA2-Secure LU-PIPE. Many researches have devoted their efforts to the
constructions of CCA2-secure LU-PIPE schemes. The Canetti-Halevi-Katz app-
roach [8] is widely used for the CCA2 security transformation at the cost of
one-time signatures. Their approach was first applied for converting CPA-secure
IBE to CCA2-secure PKE, and converting CPA-secure Hierarchical IBE (HIBE)
to CCA2-secure IBE. It was later used to obtain CCA2-secure KP-ABE from
CPA-secure KP-ABE by Goyal et al. [15], and CCA2-secure CP-ABE from CPA-
secure CP-ABE by Cheung et al. [2]. Yamada et al. [37] generalized this app-
roach and introduced a generic framework to transform CPA-secure ABE to
CCA2-secure ABE. Yamada et al. [38] further extended this approach into PE
settings and showed that any CPA-secure PE scheme could be converted into a
CCA2-secure one assuming that the underlying PE scheme is verifiable, i.e., all
legitimate receivers of a ciphertext can obtain the same message upon decryp-
tion. All the above CCA2-secure PE constructions need one-time signatures.
Boyen et al. [7] introduced a shrink approach to obtain CCA2-secure PKE from
CPA-secure IBE using standard collision resistant hash functions, by exploit-
ing the specific ciphertext structure of the underlying schemes [4]. Recently, Liu
et al. [28] refined this technique in KP-ABE and proposed a direct CCA2-secure
KP-ABE scheme from the Rouselakis-Waters KP-ABE [32].

OO-PIPE. Online/offline cryptosystems were first proposed by Even et al. [11].
The goal of design is to have a very short response time after a pre-processing
phase in which all expensive operations are pre-computed. They instantiated
this technique in the context of digital signatures. The signing process is divided
into online and offline phases. Most of the computation work is done in the
offline phase without knowledge of the message to be signed. Once the mes-
sage to be signed is given, the resulting signature can be quickly obtained in
the online phase. Shamir and Tauman [35] showed how to use Chameleon hash
functions to transform any digital signature scheme to an online/offline signature
scheme. In the online phase, one only needs to find a Chameleon hash collision,
which usually only requires several modular multiplications [22]. Guo et al. [17]
considered online/offline variants of the Boneh-Boyen IBE [3] and the Gentry



592 W. Liu et al.

IBE [14], followed by the work of Liu et al. [27]. Subsequently, online/offline
HIBE [29] and online/offline Identity-Based Key Encapsulation [10] were pro-
posed. Hohenberger and Waters [18] proposed CPA-secure online/offline ABE
schemes based on the Rouselakis-Waters ABE [32]. Most of the existing CCA2-
secure OO-PIPE schemes employ the Canetti-Halevi-Katz approach [17,29] with
the help of one-time signatures. Chow et al. [10] presented a generic transfor-
mation to get CCA2-secure OO-IBE from any OO-IBE in the key encapsulation
mechanism. Their transformation, inspired by the technique from Fujisaki and
Okamoto [13], is actually very efficient, although one needs to model the output
of the hash function as a random oracle.

2 Preliminaries

We write [a, b] to denote the set {a, a+1, · · · , b} containing consecutive integers,
and [a] as shorthand for [1, a] if there is no ambiguity. For a set S, we use |S|
to denote the number of elements in S. We use s1, s2, · · · , sn

R← S for n ∈ N to
represent that si

R← S for each i ∈ [n].
For a randomized algorithm A, we denote y ← A(x;R) as the process of

running the algorithm A on input x with randomness R to output y, where R is
sampled from the space RA, i.e., R

R← RA. We interchangeably use the notations
y ← A(x) and y ← A(x;R), depending on whether we need emphasis on the
randomness. We denote S[A(x)] as the range space of A with the input x.

2.1 Definition of LU-PIPE

We follow the LU-PIPE definition given by Yamada et al. [38]. We work in
the Key Encapsulation Mechanism (KEM) setting, where the ciphertext hides
a symmetric session key key for encryption of regular digital contents. Let U =
{0, 1}∗ be an attribute space and Pn = {Kn × En → {0, 1}|n ∈ N} be a large
universe predicate family, where n denotes the dimension of the predicate Pn. Let
Kn denote the “key attribute” space and En denote the “ciphertext attribute”
space over U . A Large Universe Public-Index Predicate KEM (LU-PIP-KEM)
for Pn consists of four polynomial time algorithms:

(msk, pp) ← Setup(λ, n). Take as inputs a security parameter λ ∈ N and a
dimension n of the predicate Pn. It outputs a master secret key msk and a
public parameter pp.

skx ← KeyGen(pp,msk, x). Take as inputs the public parameter pp, the master
secret key msk, and a key attribute x ∈ Kn. It outputs a secret key skx associated
with the key attribute x.

(key, cty) ← Encrypt(pp, y;Ry). Take as inputs the public parameter pp and a
ciphertext attribute y ∈ En. It outputs a session key key and a ciphertext cty
associated with the ciphertext attribute y under the randomness Ry.
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key ← Decrypt(pp, cty, y, skx, x). Take as inputs the public parameter pp, a
ciphertext cty associated with the ciphertext attribute y ∈ En, and a secret key
skx associated with the key attribute x ∈ Kn. It outputs the session key key.

A LU-PIP-KEM scheme is correct if for all (msk, pp) ← Setup(λ, n), all
skx ← KeyGen(pp,msk, x) with x ∈ Kn, and all (key, cty) ← Encrypt(pp, y,Ry)
with y ∈ En, it holds that if Pn(x, y) = 1, then Decrypt(pp, cty, y, skx, x) = key;
else if Pn(x, y) = 0, then Decrypt(pp, cty, y, skx, x) = ⊥.

The chosen plaintext security in LU-PIP-KEM is defined through a game
played between an adversary A and a challenger C. Both of them take the security
parameter λ and the dimension n of the predicate as input.

Setup. C runs Setup to generate and give the public parameter pp to A.

Phase 1. A adaptively submits secret key queries for the key attribute x ∈ Kn.
C generates a secret key skx for x and returns it to A.

Challenge. A outputs a challenge ciphertext attribute y∗ ∈ En on which it
wishes to be challenged. The challenge ciphertext attribute y∗ must satisfy that
Pn(x, y∗) = 0 for any x that A has already queried for the secret key skx. C runs
Encrypt(pp, y∗) to obtain (key∗, ct∗). Then, it flips a random coin b ∈ {0, 1}. If
b = 0, C returns (key∗, ct∗) to A. If b = 1, it selects a random session key key∗

R

and returns (key∗
R, ct∗).

Phase 2. Phase 1 is repeated with a restriction that A cannot submit secret
key queries for x ∈ Kn with Pn(x, y∗) = 1.

Guess. Finally, A outputs a guess b′ ∈ {0, 1} and wins in the game if b = b′.
The advantage of A in attacking the LU-PIP-KEM system with security

parameter λ is defined as AdvLU-PIP-KEM
A (λ) =

∣
∣Pr[b′ = b] − 1

2

∣
∣.

Definition 1. A LU-PIP-KEM system is CPA-secure if for any polynomial time
adversary A, the advantage of winning the above game is a negligible function ε
in λ, i.e., AdvLU-PIP-KEM

A (λ) < ε.

A weaker security notion called selective security can be defined in the above
game with an extra Init phase in which A must commit to the challenge cipher-
text attribute y∗ ∈ En before Setup.

We next review the notion of OR-compatibility for a predicate. A predicate Pn

is said to have OR-compatibility if for two ciphertext attributes, the predicate
is able to capture the presence of one or the other. This property was first
introduced by Yamada et al. [38]. They commented that OR-compatibility is
commonly achieved in many concrete LU-PIPE schemes [2,15,21].

Definition 2. A predicate Pn = {Kn × En → {0, 1}|n ∈ N} is said to have
OR-compatibility if for all d ∈ N, there exists a map OR : En × Ed → En+d and
two attribute extension maps EN : Kn → Kn+d, ED : Kd → Kn+d such that
for all x1 ∈ Kn, x2 ∈ Kd, y1 ∈ En, y2 ∈ Ed,
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Pn+d(EN(x1), OR(y1, y2)) = Pn(x1, y1),
Pn+d(ED(x2), OR(y1, y2)) = Pd(x2, y2).

2.2 Definition of Public-Verifiability

We review the public-verifiability of a LU-PIP-KEM scheme. This property was
first defined in the IBE setting [16] and then be extended to FE settings by
Yamada et al. [37]. Intuitively, a LU-PIP-KEM has public-verifiability if there
exists a public verification mechanism to verify whether a given ciphertext is
honestly generated. As remarked by Abdalla et al. [1], any encryption schemes
with public-verifiability cannot be anonymous (or known as Private Index Pred-
icate Encryption [6]). Hence, public-verifiability can only be achieved in PIPE,
which is also the focus of this paper.

To define public-verifiability, we introduce a polynomial time algorithm Verify.

0 or 1 ← Verify(pp, cty, y). Take as inputs the public parameter pp and a cipher-
text cty ∈ {0, 1}∗ under a ciphertext attribute y ∈ En. It outputs 0 or 1.

Verify needs to satisfy that for all (key, cty) ∈ S[Encrypt(pp, y,Ry)], it holds
that Verify(pp, cty, y) = 1, while for all (key, cty) /∈ S[Encrypt(pp, y,Ry)], it must
have that Verify(pp, cty, y) = 0 except with a negligible probability.

Definition 3. A LU-PIP-KEM scheme is said to have public-verifiability if
there exists an algorithm Verify in the LU-PIP-KEM scheme satisfying the com-
pleteness requirement defined above.

3 Modelling OO-PIPE

We formally define OO-PIPE in the KEM setting. An OO-PIP-KEM scheme con-
sists of five polynomial time algorithms OO.Setup, OO.KeyGen, OO.OffEncrypt,
OO.OnEncrypt and OO.Decrypt. The definitions of OO.Setup and OO.KeyGen are
identical to those of LU-PIP-KEM systems shown in Sect. 2.1. The others are
defined as follows.

ict ← OO.OffEncrypt(pp). Only take as input the public parameter pp and out-
puts an intermediate ciphertext ict.

(key, cty) ← OO.OnEncrypt(pp, y, ict). Take as inputs the public parameter pp, a
target ciphertext attribute y ∈ En, and an intermediate ciphertext ict. It outputs
a session key key and a ciphertext cty associated with y.

key ← OO.Decrypt(pp, cty, y, skx, x). Take as inputs the public parameter pp, a
ciphertext cty associated with the ciphertext attribute y ∈ En, and a secret key
skx associated with the key attribute x ∈ Kn. It outputs the session key key.

The correctness requires that for all (msk, pp) ← OO.Setup(λ, n), all x ∈ Kn,
all skx ← OO.KeyGen(pp,msk, x), all ict ← OO.OffEncrypt(pp), all y ∈ En, and
all (key, cty) ← OO.OnEncrypt(pp, y, ict), if Pn(x, y) = 1, then we have that
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OO.Decrypt(pp, cty, y, skx, x) = key; else if Pn(x, y) = 0, then we have that
OO.Decrypt(pp, cty, y, skx, x) = ⊥ except with a negligible probability.

We next define chosen ciphertext security in OO-PIP-KEM. The security
model is similarly defined through a game played between an adversary A and
a challenger C, both of which are given the parameter λ and the dimension n of
the predicate as inputs.

Setup. C runs OO.Setup to generate public parameter pp and sends it to A.

Phase 1. A adaptively issues queries:

– Secret Key Query. A submits a key attribute x ∈ Kn to C. C generates and
gives a secret key skx for x to A.

– Decryption Query. A submits a ciphertext cty with ciphertext attribute
y ∈ En to C. C constructs a key attribute x ∈ Kn with Pn(x, y) = 1,
and runs OO.KeyGen(pp,msk, x) to generate a secret key skx. It then runs
OO.Decrypt(pp, cty, y, skx, x) and returns the decryption result to A.

Challenge. A outputs a challenge ciphertext attribute y∗ ∈ En on which it
wishes to be challenged. The challenge ciphertext attribute y∗ must satisfy that
Pn(x, y∗) = 0 for any x that A queried for the secret key skx. C generates a
session key key∗ and a ciphertext ct∗ under the challenge attribute y∗. Then, it
flips a random coin b ∈ {0, 1}. If b = 0, C returns (key∗, ct∗) to A. Otherwise, it
randomly selects a session key key∗

R and returns (key∗
R, ct∗) to A.

Phase 2. A further adaptively issues the following two kinds of queries:

– Secret Key Query for key attributes x ∈ Kn satisfying Pn(x, y∗) = 0.
– Decryption Query for the ciphertext cty with a constraint that cty �= ct∗.

C responds the same as in Phase 1.

Guess. Finally, A outputs a guess b′ ∈ {0, 1} and wins in the game if b = b′.

The advantage of A who issues qS secret key queries and qD decryption
queries in attacking the OO-PIP-KEM system with security parameter λ is
defined as AdvOO-PIP-KEM

A,qS ,qD
(λ) =

∣
∣Pr[b′ = b] − 1

2

∣
∣.

Definition 4. An OO-PIP-KEM system is CCA2-secure if for any polynomial
time adversary A who makes a total of qS secret key queries and qD decryption
queries, the advantage of winning the security game defined above is at most
negligible function ε in λ, i.e., AdvOO-PIP-KEM

A,qS ,qD
(λ) < ε.

The CPA security for OO-PIP-KEM system can also be defined as in the
preceding game, with a constraint that A is not allowed to issue decryption
queries in Phase 1 and Phase 2.

Definition 5. An OO-PIP-KEM system is CPA-secure if for any polynomial
time adversary A who makes a total of qS secret key queries and no decryp-
tion query, the advantage of winning the security game defined above is at most
negligible function ε in λ, i.e., AdvOO-PIP-KEM

A,qS ,0 (λ) < ε.
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Similar to LU-PIP-KEM, the selective security of an OO-PIP-KEM system
can be defined in the above game by adding an Init phase before Setup phase.
A must decide the challenge ciphertext attribute y∗ ∈ En in the Init phase.

4 CPA-secure OO-PIP-KEM from LU-PIP-KEM

The major challenge in constructing OO-PIP-KEM is that in the offline phase,
the encryptor cannot know the ciphertext attribute that a ciphertext will be
associated with. We manage to overcome this challenge by identifying a useful
property, i.e., attribute-malleability, in many LU-PIPE schemes. Coarsely speak-
ing, a LU-PIP-KEM scheme has attribute-malleability if an encryptor can mal-
leate a ciphertext ctori associated with an original ciphertext attribute yori to a
new ciphertext ctnew associated with a new ciphertext attribute ynew with the
same session key key. The ones who have the secret key skx with key attribute
x satisfying P (x, ynew) = 1 can also correctly decrypt ctnew to recover key.

The attribute-malleability enables an encryptor to prepare the ciphertext
without knowing the associated ciphertext attribute. In the offline phase, the
encryptor randomly chooses a ciphertext attribute yori, and encapsulates a ses-
sion key key under that ciphertext attribute to generate a ciphertext ctori. When
the target ciphertext attribute y is available to the encryptor in the online phase,
he malleates the ciphertext ctori with the ciphertext attribute yori to a target
ciphertext cty associated with the given ciphertext attribute y with the same
session key key. In decryption, the receiver who has the secret key skx with the
key attribute x satisfying P (x, y) = 1 can decrypt the ciphertext cty and recover
the session key key.

4.1 Definition of Attribute-Malleability

We first introduce three polynomial time algorithms, PriMalleate, PubMalleate,
Combine in LU-PIP-KEM, and their necessary properties.

ymall ← PriMalleate(yori, ynew, Rori). Take as inputs the original ciphertext
attribute yori ∈ En, a new ciphertext attribute ynew, and the randomness Rori

used to run (key, ctori) ← Encrypt(pp, yori;Rori). It outputs a malleated cipher-
text attribute ymall ∈ En.

c̃tori ← PubMalleate(pp, c̃tnew, ỹmall). Take as inputs the public parameter pp,
a ciphertext c̃tnew associated with the new ciphertext attribute ynew, and a
malleated ciphertext attribute ỹmall ∈ En. It outputs a ciphertext c̃tori ∈ En.

ctnew ← Combine(pp, ctori, ymall). Take as inputs the public parameter pp, a
ciphertext ctori associated with the ciphertext attribute yori, and the malleated
ciphertext attribute ymall. It outputs a ciphertext ctnew associated with the given
ciphertext attribute ynew.

These algorithms need to meet the following requirements.
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– Private Malleability. For all (key, ctori) ← Encrypt(pp, yori;Rori) with a ran-
domly chosen ciphertext attribute yori

R← En and all ciphertext attribute
ynew ∈ En, if ymall is output by ymall ← PriMalleate(yori, ynew, Rori),
and ctnew is generated as ctnew ← Combine(pp, ctori, ymall), then we have
(key, ctnew) = Encrypt(pp, ynew;Rori).

– Public Malleability. For all (key, c̃tnew) ← Encrypt(pp, ynew;Rnew) with a
ciphertext attribute ynew ∈ En and randomly chosen ỹmall

R← En, if c̃tori ←
PubMalleate(pp, c̃tnew, ỹmall), then (key, c̃tori) = Encrypt(pp, ỹori;Rnew). Also,
c̃tnew = Combine(pp, c̃tori, ỹmall).

– Efficiency. Running ymall ← PriMalleate(yori, ynew, Rori) for all yori, ynew ∈
En is more efficient than running (key, ctnew) ← Encrypt(pp, ynew;Rnew).

Definition 6. We say a LU-PIP-KEM scheme has attribute-malleability if there
exist polynomial time algorithms PriMalleate, PubMalleate and Combine satisfy-
ing private malleability, public malleability and efficiency defined above.

4.2 Generic Transformation

We now describe our transformation. Let Π ′ = (Setup,KeyGen,Encrypt,Decrypt)
be a CPA-secure LU-PIP-KEM scheme for predicate Pn over the attribute uni-
verse U = {0, 1}∗ that has attribute-malleability defined in Definition 6. We
can construct a CPA-secure OO-PIP-KEM scheme Π =(OO.Setup, OO.KeyGen,
OO.OffEncrypt, OO.OnEncrypt, OO.Decrypt) for the same predicate Pn as follows.

OO.Setup(λ, n). The setup algorithm imply invokes (msk, pp) ← Setup(λ, n) and
outputs the master secret key and the public parameter as (msk, pp).

OO.KeyGen(pp,msk, x). Given a key attribute x ∈ Kn, the key generation algo-
rithm simply calls skx ← KeyGen(pp,msk, x) and outputs the secret key skx.

OO.OffEncrypt(pp). The offline encryption algorithm will generate a ciphertext
under a randomly chosen ciphertext attribute and treat it as an intermediate
ciphertext. In detail, it randomly chooses yori

R← En. Then, it runs (key, ctori) ←
Encrypt(pp, yori;Rori) with randomly chosen randomness Rori to obtain a session
key and a ciphertext associated with the original ciphertext attribute yori. The
intermediate ciphertext is ict = (key, yori, ctori, Rori).

OO.OnEncrypt(pp, y, ict). When knowing the target ciphertext attribute y ∈ En,
the online encryption algorithm first runs ymall ← PriMalleate(yori, y, Rori) to
obtain a malleated ciphertext attribute ymall ∈ En. The session key key is
unchange. The ciphertext associated with the ciphertext attribute y is cty =
(ctori, ymall). Note that the online encryption procedure only involves operations
for running algorithm PriMalleate.

OO.Decrypt(pp, cty, y, skx, x). If Pn(x, y) = 0, then the key attribute x does
not satisfy the predicate Pn for the ciphertext attribute y and the decryption
algorithm simply outputs ⊥. Otherwise, it first parses cty as (ctori, ymall). Then,
it runs cty ← Combine(pp, ctori, ymall) and gets a ciphertext cty associated with
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the ciphertext attribute y. It runs key ← Decrypt(pp, cty, y, skx, x) to recover
the session key key.

Correctness. Due to the private malleability, for the session key and the cipher-
text generated by calling (key, ctori) ← Encrypt(pp, yori;Rori) in OO.OffEncrypt

with the randomly chosen yori
R← En and for ymall ← PriMalleate(yori, y, Rori),

we get a LU-PIP-KEM ciphertext associated with the ciphertext attribute y
by running cty ← Combine(pp, ctori, ymall) in the decryption algorithm. There-
fore, if a secret key associated with key attribute x ∈ Kn satisfies Pn(x, y) = 1,
then the decryption algorithm can correctly recover the session key by running
key ← Decrypt(pp, cty, y, skx, x).

Performance. Only operations for running PriMalleate are required in the online
encryption procedure, whereas in the original LU-PIP-KEM, the encryption pro-
cedure involves running algorithm Encrypt. With the efficiency requirement, for
all ynew ∈ En, running PriMalleate is more efficient than running Encrypt. There-
fore, the efficiency of the online encryption procedure is improved.

4.3 Security Analysis

The CPA security of our OO-PIP-KEM relies on the CPA security of the under-
lying LU-PIP-KEM. The major obstacle in the security proof is how to convert
the challenge LU-PIP-KEM ciphertext into a challenge OO-PIP-KEM cipher-
text in the Challenge phase. We overcome this obstacle by exploiting the public
malleability implied by attribute-malleability.

When obtaining the challenge LU-PIP-KEM session key k̃ey
∗

and ciphertext
c̃t

∗
associated with the challenge ciphertext attribute y∗ from the LU-PIP-KEM

challenger, we randomly choose a malleated ciphertext attribute ỹ∗
mall ∈ En and

calls c̃t
∗
ori ← PubMalleate(pp, c̃t

∗
, ỹ∗

mall) to obtain a ciphertext c̃t
∗
ori. We then

construct the challenge OO-PIP-KEM ciphertext as ct∗ = (c̃t
∗
ori, ỹ

∗
mall).

– Since c̃t
∗
ori ← Encrypt(pp, ỹ∗

ori), c̃t
∗
ori is a LU-PIP-KEM ciphertext.

– Since c̃t
∗

= Combine(pp, c̃t
∗
ori, ỹ

∗
mall), c̃t

∗
is associated with y∗.

Therefore, ct∗ is a well-formed challenge OO-PIP-KEM ciphertext for the cipher-
text attribute y∗ due to the public malleability. In this way, the challenge cipher-
text simulation in the Challenge phase goes through. The formal proof is shown
in the full version of the paper.

Theorem 1. If the underlying LU-PIP-KEM for predicate Pn is CPA-secure
and attribute-malleable, then the proposed OO-PIP-KEM scheme is CPA-secure
for the same predicate Pn.

5 CCA2-secure OO-PIP-KEM from LU-PIP-KEM

5.1 Universally Collision Resistant Chameleon Hash Function

Collision Resistant Chameleon Hash. A Chameleon hash [22] has a hash key
chk and a trapdoor td. Anyone knowing the hash key chk can efficiently compute



Online/Offline Public-Index Predicate Encryption 599

the hash value for any given input. There also exists an efficient algorithm for
the holder of the trapdoor td to find collisions for every given input. However, it
is impossible for others unaware of td to compute collisions for any given input,
except with a negligible probability.

A Chameleon hash function [22] family CH with hash value space H consists
of three polynomial time algorithms CHGen, CHash and Coll defined as follows.

(chk, td) ← CHGen(λ). Take the security parameter λ ∈ N as input, and outputs
a Chameleon hash key/trapdoor pair (chk, td).

H ← CHash(chk,m, r). Take as inputs the Chameleon hash key chk, a message
m, and an auxiliary random parameter r. It outputs the hash value H ∈ H for
the given message m.

r′ ← Coll(td,m, r,m′). Take as inputs the Chameleon hash trapdoor td, a mes-
sage m with its auxiliary random parameter r for previously calculating the
hash value H, and another message m′ �= m. It outputs another auxiliary ran-
dom parameter r′ such that

CHash(chk,m, r) = CHash(chk,m′, r′) = H

A Chameleon hash function should satisfy the collision resistance require-
ment, i.e., given the Chameleon hash key chk as input, no efficient algorithm can
find two pairs (m, r) �= (m′, r′) such that CHash(chk,m, r) = CHash(chk,m′, r′)
except with a negligible probability.

Universally Collision Resistant Chameleon Hash. Our construction
exploits Chameleon hash with universal collision resistance. A Chameleon hash
function family is universal collision resistant if even though the attacker is
allowed to choose the Chameleon hash key chk, it remains hard to find a hash
collision for any given input. Roughly speaking, the hash value H can be only
computed using the fixed Chameleon hash key chk.

We denote such a Chameleon hash family as UCH consisting of algorithms
UCHGen, UCHash, UColl. Formally, UCH is universally collision resistant if, given
only a description of the Chameleon hash function family, no efficient algorithm
can find two tuples (chk,m, r) �= (chk′,m′, r′) such that UCHash(chk,m, r) =
UCHash(chk′,m′, r′) except with a negligible probability.

Generic Construction of UCH. We can construct universally collision resis-
tant Chameleon hash functions based on any regular Chameleon hash and a
standard cryptographic hash Hash : {0, 1}∗ → H. The construction is as follows.

UCHGen(λ). The hash key/trapdoor pair is (chk, td) ← CHGen(λ).

UCHash(chk,m, r). The hash value is H = Hash(CHash(chk,m, r)‖chk).

UColl(td,m, r,m′). Directly output r′ ← Coll(td,m, r,m′).

One with the trapdoor td can still find collisions for any given input since

H = UCHash(chk,m, r) = Hash(CHash(chk,m, r)‖chk)
= Hash(CHash(chk,m′, r′)‖chk) = UCHash(chk,m′, r′)
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Without td, any polynomial time algorithm cannot find two tuples (chk,m, r) �=
(chk′,m′, r′) with H = UCHash(chk,m, r) = UCHash(chk′,m′, r′). Otherwise,

UCHash(chk,m, r) = Hash(CHash(chk,m, r)‖chk)
= UCHash(chk′,m′, r′) = Hash(CHash(chk′,m′, r′)‖chk′)

which implies that we find a collision for either Hash or CH, contradicting to
their security notion.

5.2 Basic Idea

The public-verifiability in LU-PIPE allows a ciphertext verification mechanism,
i.e., testing whether the ciphertext is honestly generated with the assigned
ciphertext attribute. We can leverage such a built-in verification mechanism
to construct OO-PIPE with CCA2 security. Precisely, we add an on-the-fly ver-
ification attribute yv in the ciphertext. We split the attribute universe U into
two parts: one is the regular attribute universe U , and another is the verification
attribute universe V for the verification attributes. The verification attribute
yv ∈ V is only used for ciphertext verification. In encryption, the encryptor
hashes the components of a ciphertext, and treats the result as the ciphertext
attribute yv to encrypt again. In the decryption procedure, the receiver computes
the hash result again, and verifies whether the ciphertext is encrypted under the
assigned ciphertext attribute, and under the hash ciphertext attribute yv using
the ciphertext verification mechanism.

Similar built-in verification has been used by Boyen et al. [7]. However,
one may encounter an obstacle when directly employing their technique. The
online/offline mechanism implies ciphertext forgery in the sense that a ciphertext
with an ciphertext attribute can be efficiently malleated to a target ciphertext
with a genuine ciphertext attribute, while any efficient ciphertext forgery must
be prevented in CCA2 security. A plausible solution is to follow the technique
proposed by Liu et al. [28] by replacing the regular hash to a Chameleon hash
function. With the help of hash collision algorithm Coll in the Chameleon hash
function, it is possible to malleate the ciphertext with an ciphertext attribute to
a target ciphertext with the genuine ciphertext attribute, while remaining the
verification terms unchange. However, for invoking hash collision algorithm, all
encryptors must know the trapdoor of the target Chameleon hash key bounded
in the public parameter, which obviously implies security problem.

To circumvent this obstacle, we use a “dynamic” universally collision resistant
Chameleon hash to replace the regular Chameleon hash for each ciphertext.
In offline encryption, the encryptor generates a Chameleon hash key/trapdoor
pair (chk, td), chooses a random ciphertext attribute yori, and calculates the
intermediate ciphertext components for yori and the temporary hash value yv.
When learning the genuine ciphertext attribute in the online phase, the encryptor
replaces the random ciphertext attribute with the genuine one, while leveraging
UCHash with the trapdoor td to remain yv unchange. The cost is an additional
Chameleon hash key chk in the ciphertext. In the online phase, the encryptor
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will run UColl, which is efficient in some Chameleon hash instantiations based
on discrete log [22]. In this way, the online encryption cost keeps low.

5.3 Generic Transformation

Let Π ′ be a CPA-secure LU-PIP-KEM scheme consisting of four algorithms
Setup, KeyGen, Encrypt, Decrypt for predicate Pn over the attribute universe
U = {0, 1}∗. Suppose that the predicate Pn has OR-compatibility defined in
Definition 2, Π ′ has attribute-malleability defined in Definition 6, and Π ′ has
public-verificability defined in Definition 3. We below construct a CCA2-secure
OO-PIP-KEM scheme Π including the algorithms CCA.Setup, CCA.KeyGen,
CCA.OffEncrypt, CCA.OnEncrypt, CCA.Decrypt for the same predicate Pn over
the regular attribute universe U and the verification attribute universe V with
|U| = |V|, U ∩ V = ∅ and U ∪ V = U .

CCA.Setup(λ, n). The setup algorithm runs (msk, pp) ← Setup(λ, n+d). Then, it
chooses a secure UCH function UCH : {0, 1}∗ → Ed with an auxiliary parameter
universe R. The system restricts that Ed is over V. The master secret key is
msk. The public parameter is published as (pp,UCH,R).

CCA.KeyGen(pp,msk, x). Given the key attribute x ∈ Kn, the algorithm first
extends x to EN(x) ∈ Kn+d using the map EN . Then, it runs skEN(x) ←
KeyGen(pp,msk,EN(x)) and outputs the secret key skx = skEN(x).

CCA.OffEncrypt(pp). The offline encryption algorithm first randomly chooses an
original ciphertext attribute yori

R← En. Then, it runs (chk, td) ← UCHGen(λ).
It next picks a random r′ R← R, and calculates an on-the-fly verification attribute
yv = UCHash (chk, yori, r

′). It uses map OR to obtain the ciphertext attribute
OR(yori, yv) ∈ En+d and runs (key, ctori) ← Encrypt(pp,OR(yori, yv);Rori) with
randomness Rori to generate the session key and the ciphertext. The intermedi-
ate ciphertext is ict = (key, yori, yv, ctori, Rori, chk, td, r′).

CCA.OnEncrypt(pp, y, ict). Once the target ciphertext attribute y ∈ En is avail-
able, the online encryption algorithm extends the ciphertext attribute y ∈ En

to OR(y, yv) and obtains a malleated ciphertext attribute ymall ∈ En+d by
running ymall ← PriMalleate(OR(yori, yv), OR(y, yv), Rori). It next runs r ←
UColl(td, yori, r

′, ctori‖ymall). The session key is key, while the ciphertext cty
associated with the ciphertext attribute y is cty = (ctori, ymall, chk, r). Note
that the online encryption algorithm only needs invocations of PriMalleate and
UColl.

CCA.Decrypt(pp, cty, y, skx, x). The decryption algorithm recovers the on-the-
fly verification attribute yv = UCHash (chk, ctori‖ymall, r). Then, it runs
cty ← Combine(pp, ctori, ymall) to rebuild the ciphertext cty with the cipher-
text attribute OR(y, yv). One can verify whether the ciphertext is legitimate by
testing

Verify (pp, cty, OR(y, yv))
?= 1



602 W. Liu et al.

The property of Chameleon hash ensures yv = UCHash (chk, ctori‖ymall, r) =
UCHash (chk, yori, r

′) and the on-the-fly verification attribute remains the same
in the online encryption procedure. If Verify outputs 0, the ciphertext is invalid
and the decryption algorithm simply outputs ⊥. Otherwise, the decryption algo-
rithm runs key ← Decrypt(pp, cty, OR(y, yv), skx, EN(x)) to recover key.

Correctness. If the ciphertext cty is honestly generated by the encryptor with
the ciphertext attribute y, then (key, cty) = Encrypt(pp,OR(y, yv)) for cty ←
Combine(pp, ctori, ymall), where yv can be correctly obtained by invoking yv =
UCHash (chk, ctori‖ymall, r). Hence, we have that Verify(pp, cty, OR(y, yv)) = 1.
The decryption can be done using skx = skEN(x) for Pn+d (EN(x), OR(y, yv)) =
Pn(x, y) = 1. The session key can be correctly recovered with

key = Decrypt(pp, cty, OR(y, yv), skx, EN(x)).

Performance. Comparing with OO-PIP-KEM, operations for running UColl
are additionally required in the online encryption of our CCA2-secure OO-PIP-
KEM construction. By properly applying Chameleon hash functions with rather
efficient algorithm Coll [22], and by our construction shown in Sect. 5.1, UColl is
also efficient. Therefore, the online encryption algorithm remains efficient. The
additional communication cost is the extra ciphertext components chk, r, both
of which have constant size in all existing Chameleon hash instantiations.

5.4 Security Analysis

Our OO-PIP-KEM is CCA2-secure if the underlying LU-PIP-KEM is CPA-
secure. The obstacle in the CCA2 security proof is how to respond the decryption
queries for ciphertexts associated with the challenge ciphertext attributes y∗.

We overcome this obstacle by using the extended key attribute xd ∈ Kd

and the extended verification attribute yv ∈ Ed. In the Challenge phase, the
challenge attribute for the LU-PIP-KEM challenger is extended to OR(y∗, y∗

v).
When the adversary issues a decryption query for a ciphertext cty associated
with a ciphertext attribute OR(y∗, yv), where yv is its verification ciphertext
attribute corresponding to cty, we first run Verify to check the validity of the
ciphertext. The public-verifiability ensures that Verify outputs 1 if and only if the
ciphertext is honestly generated. Then, we construct a key attribute xv ∈ Ed such
that P (xv, yv) = 1, and issues the secret key associated with ED(xv) ∈ Kn+d

to the LU-PIP-KEM challenger. On one hand, the OR-compatibility ensures
Pn+d(ED(xv), OR(y∗, yv)) = Pd(xv, yv) so that we can use this secret key to
decrypt the ciphertext. On the other hand, the universal collision resistance
of UCH implies yv �= y∗

v except with a negligible probability. Hence, we have
P (ED(xv), OR(y∗, y∗

v)) = Pd(xv, y
∗
v) = 0, and the secret key query is valid to

the LU-PIP-KEM challenger. The decryption query is perfectly responded.
The universal collision resistance of UCH is crucial for the security proof.

Although chk∗ in the challenge ciphertext is chosen by the encryptor, and y∗
v is

generated honestly, if the Chameleon hash only hash collision resistance prop-
erty, it is possible for the adversary to replace chk∗ to others of its choice,
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while remaining y∗
v unchange. In detail, if the Chameleon hash is only collision

resistant, after obtaining the challenge ciphertext ct∗ = (c̃t
∗
ori, ỹ

∗
mall, chk∗, r∗),

the adversary can replace chk∗ with a hash key chk′
A of its own choice, for

which it knows its trapdoor td′
A in order to construct a ciphertext ct′ =

(c̃t
′
ori, ỹ

′
mall, chk′

A, r′
A), where (chk∗, r∗) �= (chk′

A, r′
A) but y′

v = y∗
v . In this case,

the decryption oracle would be stuck. The universal collision resistance of the
Chameleon hash family prevents the adversary from such attacks since the hash
key chk∗ is fixed into the hash value and can be verified by the decryption oracle.
The formal security proof is shown in the full version of the paper.

Theorem 2. The proposed OO-PIP-KEM is CCA2-secure if the underlying
CPA-secure LU-PIP-KEM has the properties of attribute-malleability, public-
verifiability and OR-compatibility.

6 Instantiations

Our OO-PIP-KEM transformations can apply to existing LU-PIPE schemes,
including OO-IBE schemes proposed by Guo et al. [17], and OO-ABE schemes
proposed by Hohenberger and Waters [18]. In addition, one can illustratively
instantiate a new OO-PIP-KEM scheme by applying our transformation to a
LU-PIP-KEM scheme. In 2010, Lewko, Sahai and Waters proposed a revocation
encryption (RE) scheme [23]. The ciphertext is associated with an identity set of
revoked users. Users who are not in the revoked set can decrypt. It can be shown
that their RE satisfies attribute-malleability and public-verifiability. Hence, one
can obtain an OO-RE scheme in the KEM setting by following our generic
transformation.

7 Conclusion

We provided a general framework for constructing CCA2-secure OO-PIPE. We
proposed a generic transformation from attribute-malleable LU-PIP-KEM to
OO-PIP-KEM with CPA security. We further transformed CPA-secure LU-PIP-
KEM to CCA2-secure OO-PIP-KEM at the cost of a Chameleon hash, assuming
the underlying LU-PIP-KEM has attribute-malleability and public-verifiability.
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