
ar
X

iv
:1

60
5.

02
82

4v
1 

 [
cs

.D
B

] 
 1

0 
M

ay
 2

01
6

RORS: Enhanced Rule-based OWL Reasoning

on Spark

Zhihui Liu, Zhiyong Feng, Xiaowang Zhang, Xin Wang, and Guozheng Rao

School of Computer Science and Technology, Tianjin University, China
Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin, China

{zhihuiliu,zyfeng,xiaowangzhang,wangx,rgz}@tju.edu.cn

Abstract. The rule-based OWL reasoning is to compute the deductive
closure of an ontology by applying RDF/RDFS and OWL entailment
rules. The performance of the rule-based OWL reasoning is often sensi-
tive to the rule execution order. In this paper, we present an approach to
enhancing the performance of the rule-based OWL reasoning on Spark
based on a locally optimal executable strategy. Firstly, we divide all rules
(27 in total) into four main classes, namely, SPO rules (5 rules), type rules
(7 rules), sameAs rules (7 rules), and schema rules (8 rules) since, as we
investigated, those triples corresponding to the first three classes of rules
are overwhelming (e.g., over 99% in the LUBM dataset) in our practical
world. Secondly, based on the interdependence among those entailment
rules in each class, we pick out an optimal rule executable order of each
class and then combine them into a new rule execution order of all rules.
Finally, we implement the new rule execution order on Spark in a pro-
totype called RORS. The experimental results show that the running
time of RORS is improved by about 30% as compared to Kim & Park’s
algorithm (2015) using the LUBM200 (27.6 million triples).

1 Introduction

The Web Ontology Language [7] (OWL) is a semantic web language designed
to represent rich and complex knowledge about things, groups of things, and
relations between things. There are mainly two modeling paradigms for the se-
mantic web. The first paradigm is based on the notion of the classical logics, such
as the description logics algorithms [2] on which the OWL is based. The other
paradigm is based on the Datalog paradigm. A subset of the OWL semantics is
transformed into rules that are used by a rule engine in order to infer implicit
knowledge. This paper focuses on the second paradigm, that is, a rule-based
OWL reasoning using OWL-Horst [3] rules.

Owing to the explosion of the semantic data, the number of RDF triples in
large public knowledge bases, e.g., DBpedia has increased to billions [4]. There-
fore, to improve the performance of OWL reasoning becomes a core problem.
The traditional single-node approaches are no longer viable for such large scale
data. Some existing ontology reasoning systems are based on MapReduce frame-
work [11,17,18,21]. The OWL reasoning in [21] and [11] perform reasoning over

http://arxiv.org/abs/1605.02824v1


MapReduce with rule execution mechanism. However, the MapReduce-based ap-
proaches are not very efficient due to the data communication between memory
and disk. To further improve the performance of reasoning, some researchers
have implemented the OWL reasoning on Spark, which is an in-memory and
distributed cluster computing framework [22].

Recently, Cichlid[4] has greatly improved the performance of OWL reason-
ing on Spark as compared to the state-of-the-art distributed reasoning systems,
but it only considers parts of OWL rules and does’t analyze the interdepen-
dence of rules. Reasoning based on OWL-Horst rules can infer many more im-
plicit information. And different rule execution strategy will influence the rea-
soning performance. For instance, let S be the set of triples of an ontology,
where S={〈A subClassOf B〉, 〈B subClassOf C〉}. R1 and O11 are the two
rules of OWL-Horst, where R1={〈C rdfs:subClassOf C1〉, 〈C1 rdfs:subClassOf

C2〉 ⇒ 〈C rdfs:subClassOf C2〉} and O11={〈V owl:equivalentClass W 〉 ⇒ 〈V
rdfs:subClassOf W 〉 }. By implementing the R1 entailment rule for subclass clo-
sure, we will get that S={〈A subClassOf B〉, 〈B subClassOf C〉, 〈A subClassOf

C〉}. If the O12 entailment rule for equivalent class is executed before the R1,
S will contain more new triples and reduce the iterative operation. Therefore, it
is desired to optimize reasoning by adjust the rule order. Although Kim & Park
[6] has also implemented parallel reasoning algorithms with an executable rule
order, but lacked the evidence to prove that the strategy is optimal.

To find the optimal executable strategy, we use the depth-first algorithm
to get all possible executable strategies, which are based on the dependency of
rules. There are 259367372 possible strategies among the 27 rules in Table 1.
Due to the very large number of strategies, it is challenge to find the optimal
strategy by test every strategy.

In this paper, we present an approach to enhancing the performance of the
rule-based OWL reasoning based on a locally optimal executable strategy and
implement the new rule execution strategy on Spark in a prototype called RORS.
The major contributions and novelties of our work are summarized as follows:

– We analyze the characteristic of dataset and divide the dataset into three
classes: SPO triples, sameAs triples and type triples with analysing the pro-
portion of the three classes respectively in the dataset. According to the data
partition, we divide the OWL-Horst rules into four classes.

– We respectively analyze the rule interdependence of each class, and find the
optimal executable strategies.

– Based on the locally optimal strategies, we pick out an optimal rule execution
order of each class and then combine them into a new rule execution strategy
of all rules and implement the new rule execution strategy on Spark.

The rest of this paper is organized as follows. Section 2 gives an brief intro-
duce to preliminary knowledge about OWL and Spark. Section 3 presents our
locally optimal strategies. Section 4 implements our proposed strategy on Spark
and Section 5 evaluates the experiment on the LUBM dataset. In Section 6, we
discuss related works and summarize this paper.

2



2 Preliminaries

In this section, we briefly recall the ontology language OWL and the framework
Spark, largely following the excellent expositions [7,22].

OWL An ontology is a formal naming and definition of the types, properties,
and interrelationships of the entities that really or fundamentally exist for a par-
ticular domain of discourse. Ontology is part of the W3C standards stacks for
the semantic web. The language OWL [7] is a family of knowledge representa-
tion languages for authoring ontologies. There are three variants of OWL, with
different levels of expressiveness. These are OWL Lite, OWL DL and OWL Full
(ordered by increasing expressiveness). Each of these sublanguages is a syntac-
tic extension of its simpler predecessor. OWL DL is designed to preserve some
compatibility with RDF Schema (or RDFS). However, OWL Full is undecidable,
so no reasoning software is able to perform complete reasoning for it. OWL DL
designed to provide the maximum expressiveness possible while retaining com-
putational completeness, decidability, and the availability of practical reasoning
algorithms. OWL Lite was originally intended to support those users primarily
needing a classification hierarchy and simple constraints. The three languages
are one subset of the other.

Spark: Distributed computing framework Spark [22] is an open source
cluster computing framework, which is developed at the University of Califor-
nia, Berkeley’s AMPLab. One of the main features is the in-memory parallel
computing model which all data will be loaded into the memory. Spark provides
programmers with an application programming interface centered on a data
structure called the resilient distributed dataset [23] (RDD), a read-only multiset
of data items distributed over a cluster of machines, that is maintained in a fault-
tolerant way. Each RDD will be divided into multiple partitions that exist on
different computing nodes. And it provides a variety of operations to transform
one RDD into another RDD. There are two kinds of operations. Transformations
are lazy operations that define a new RDD (e.g., map, filter, and join), while
actions launch a computation to return a value to the program or write data to
external storage, such as collect, count, saveAsTextFile, etc. RDD achieves fault
tolerance through a notion of lineage based on logging the transformations, if a
partition of an RDD is lost, the RDD has enough information about how it was
derived from other RDDs to recompute just that partition. More details about
Spark please see the official web site http://spark.apache.org/.

3 Locally optimal strategy

In this section, we propose a locally optimal strategy based on the dependency
among the rules.

3

http://spark.apache.org/


Table 1: OWL-Horst rules

Rule ID Condition Consequence

R1
c rdfs:subClassOf c1

c rdfs:subClassOf c2
c1 rdfs:subClassOf c2

R2
p rdfs:subPropertyOf p1

p rdfs:subPropertyOf p2
p1 rdfs:subPropertyOf p2

R3 s p o , p rdfs:subPropertyOf p1 s p1 o

R4 s rdfs:domain x , u s y u rdf:type x

R5 p rdfs:range o , s p v v rdf:type o

R6 c rdfs:subClassOf c1 , v rdf:type c v rdf:type c1

O1
p rdf:type owl:FunctionalProperty

v owl:sameAs w
u p v , u p w

O2
p rdf:type owl:InverseFunctionalProperty

v owl:sameAs w
v p u , w p u

O3
p rdf:type owl:SymmetricProperty

u p v
v p u

O4
p rdf:type owl:TransitiveProperty

u p v
u p w , w p v

O5 v owl:sameAs w w owl:sameAs v

O6
v owl:sameAs w

v owl:sameAs u
w owl:sameAs u

O7a p owl:inverseOf q, v p w w q v

O7b p owl:inverseOf q, v q w w p v

O8
v rdf:type owl:Class

v rdfs:subClassOf w
v owl:sameAs w

O9
p rdf:type owl:Property

p rdf:subPropertyOf q
p owl:sameAS q

O10
u p v, u owl:sameAs x

x p y
v owl:sameAs y

O11a v owl:equivalentClass w v rdfs:subClassOf w

O11b v owl:equivalentClass w w rdfs:subClassOf v

O11c
v owl:subClassOf w

v rdfs:equivalentClass w
w owl:subClassOf v

O12a v owl:equivalentProperty w v rdfs:subPropertyOf w

O12b v owl:equivalentProperty w w rdfs:subPropertyOf v

O12c
v owl:subPropertyOf w

v rdfs:equivalentProperty w
w owl:subPropertyOf v

O13
v owl:hasValue w

u rdf:type v
v owl:onProperty p, u p v

O14
v owl:hasValue w

u p vv owl:onProperty p
u rdf:type v

O15
v owl:someValuesFrom w

u rdf:type v
v owl:onProperty p
u p x, x rdf:type w

O16
v owl:allValuesFrom w

x rdf:type w
v owl:onProperty p
u rdf:type v, u p x

4



3.1 Dependance of rules

OWL-Horst [3] has a powerful expression and reasoning ability. In this paper,
the OWL reasoning is based on OWL-Horst rules shown in Table 1. There exists
interdependency among the rules. For example, the output of O13 can be the
condition of O14, whereas O14 affects O3, O4, O7a, O7b and R3. And more
than one rule can be the input of another rule. The output of O3, O4, and R3
affects O13, O15 and O16. If the input to a rule Ri depends on the output of
another rule Rj , then the rule Ri is dependent on Rj . The rule Rj should be
executed before the rule Ri. A rule dependency graph can be constructed based
on the interdependency among the rules. Each vertex represents a rule and an
outgoing edge between vertex vi and vj represents the dependency of vertex vi
on vj . The dependency graph of SPO rules is shown in the Figure 1. Based on
the dependency graph, there are 259367372 executable strategies among the 27
rules that adjacent rules satisfy dependency, and each rule is executed only once.
And the longest strategies contain 22 rules that cannot fully sequentially execute
all rules. The number is so huge that it is challenge to test every strategy. It is
known that reasoning has close relationship with the characteristic of datasets.
Therefore, we prefer to make a analysis of LUBM dataset.

3.2 Locally optimal strategy

LUBM [5] is a widely used standard benchmark for evaluating the performance of
ontology reasoning. We can use data generator to generate dataset with different
size. Data generator is carried out by the Univ-Bench Artificial data generator
(UBA), a tool developed for the benchmark. We firstly divide the dataset into
three classes as follows:
– Triples whose predicate is rdf:type. We call this class as type.
– Triples whose predicate is owl:sameAs. We call this class as sameAs .
– The remainder is classified as a class. We call this class as SPO.

The UBA uses specific rules to generate data so that all datasets generated by
it have same data characteristic. So we use the dataset LUBM-50 as the sample
and analyze the proportion of each class. The result is listed in Table 2.

Table 2: The proportion of each type in LUBM-50

Dataset type sameAs SPO

LUBM-50 20.055% 0 79.945%

From the Table 2, we can see that the SPO triples of LUBM 50 account for
absolute proportion, about 80% of the total. The type triples are in the second
place, but the number of sameAs triples is zero. Therefore, the OWL reasoning
should focus on the reasoning of SPO triples and type triples. The sameAs triples
are simply handled. Based on the statistic, we divide the OWL-Horst rules into
four classes as follow:
– Rules whose condition or consequence has triples of type class, including

R4, R5, R6, O13, O14, O15, O16. These rules are used to infer implicit type
data. The dependency graph of type rules is shown in Figure 2.

5



– Rules whose condition or consequence has triples of sameAs class, including
O1, O2, O5, O6, O8, O9, O10. There are certain rules for ontology merg-
ing(O8 and O9) [6], so we also exclude these rules from our reasoner. The
dependency graph of sameAs rules is shown in Figure 3.

– Rules whose condition or consequence has triples of SPO class, including R3,
O3, O4, O7a, O7b. The dependency graph of SPO rules is shown in Figure
1, which the rule O7a and O7b are classified as O7.

– The remainder is classified as a class, including R1, R2, O11a, O11b, O11c,
O12a, O12b, O12c. The dependency graph of schema rules is shown in Figure
4.

R3

O7

O3 O4

Fig. 1: SPO rules dependency graph

R4 R5 O13

R6 O14

O15 O16

Fig. 2: type rules dependency graph

O1 O2

O10

O5 O6

Fig. 3: sameAs rules dependency graph

O11a O11b R1

O11c

O12a O12b R2

O12c

Fig. 4: schema rules dependency graph

For each class, based on the dependency of rules, we use depth-first-search

(DFS) algorithm to find all possible executable orders among the rules and
acquire the optimal executable orders. Through the experiment, there is a large
number of orders for each class, but we should chose the longest orders that
contain rules as many as possible. The optimal executable orders for each class
are listed in Table 3.

Table 3: The optimal strategies of each class

SPO rules type rules
R4 → R6 → O14 → O13 → O15 → O16

O3 → R3 → O7 → O4 R4 → R6 → O14 → O13 → O16 → O15
O7 → R3 → O3 → O4 R5 → R6 → O14 → O13 → O15 → O16

R5 → R6 → O14 → O13 → O16 → O15

schema rules sameAs rules
O11a, O11b → R1 → O11c O1 → O10 → O2 → O6 → O5
O12a, O12b → R2 → O12c O2 → O10 → O1 → O6 → O5

6



The symmetric rule O3 and the inverseOf rule O7 are not affected by each
other because a property can not simultaneously involve these two feathers [6]. So
O7 and O3 don’t have dependence. The transitive rule O4 is used to compute the
SPO triples closure and should be applied at last in SPO rules before generating
more new triples. The second part is connected by type triples. We find that
each path lacks R4 or R5 because there is no type triples in their condition, so
they should be classified to same kind of rule. The R4 and R5 can be executed
in any order. The third part works with schema triples. Because the O11a and
O11b produce similar triples with the only different order of subject and object,
so there is no order between O11a and O11b. In the condition of O1 and O2,
owing to the different property of the predict, the paths are equivalent when
exchanging the order between O1 and O2. The O5 does not produce new triples
actually and should be placed at last.

4 Distributed rule-based OWL reasoning on Spark

There are two kinds of triples in OWL reasoning. The schema triples are OWL
rule schema which provides basic elements for the description of ontology while
the instance triples are actual statement in ontology, including SPO triples, type
triples and sameAs triples. After proposing the locally optimal orders for each
class, we design the overall strategy of the OWL reasoning shown in Figure 5.

schema rules order SPO rules order type rules order sameAs rules order

Fig. 5: The reasoning strategy

The reasoning of instance triples will use the output of schema triples, so the
schema reasoning should be executed firstly. There are several orders for each
class of instance triples. We can chose any one order and then combine an new
executable strategy. In this paper, we select first order for each class to perform
reasoning. The general workflow of the parallel OWL reasoning is described in
Algorithm 1.

Optimize join operation It is inevitable that there exists a lot of join opera-
tions on triples, especially the multiple triples in the condition, such as O14. The
join operation can greatly influence the performance of reasoning. Generally, the
schema triples of an ontology is small even if the ontology is very large [6]. Spark
provides the broadcast variables which can transform local data to all available
computing nodes and keep them cached on each machine. In our method, we
adopt the mechanism [4] dealing with join operation, which broadcasted the
schema triples to every computing node before the join operation. For the rules
containing multi-join operation, the join operation inside the schema triples can

7



Algorithm 1 OWL reasoning algorithm on Spark

Input: triples, OWL Horst rule set
Output: result
1: schema derived=triples.apply(schema rules)
2: val flag=true
3: while flag do
4: SPO derived=triples.apply(SOP rules)
5: if SPO derived!=null then
6: triples=triples.union(SPO derived)
7: end if
8: type derived=triples.apply(type rules)
9: if type derived!=null then
10: triples=triples.union(type derived)
11: end if
12: if SPO derived==null && type derived==null then
13: flag=false
14: end if
15: end while
16: sameAs derived=triples.apply(sameAs rules)
17: triples=triples.union(sameAs derived)
18: return triples

firstly be executed in memory locally. The instance triples will be divided into
many partitions and then execute the join operation between schema triples and
instance triples in parallel. Here we take the O16 as an example to describe the
operation. The execution procedure is described in Algorithm 2.

Algorithm 2 Optimized the join operation of rule O16 using broadcast variables

Input: triples
Output: results
1: val triples=sc.textFile(“hdfs://...”)
2: val op=triples.filter(t⇒t. 2.equals(“owl:onProperty”)).map(t⇒(t. 1, t. 3))
3: .collect.toMap
4: val opBroadcast=sc.broadcast(op)
5: val av=triples.filter(t⇒t. 2.equals(“owl:allValuesFrom”)).map(t⇒(t. 1, t. 3))
6: .collect.toMap
7: val avBroadcast=sc.broadcast(av)
8: val ins=triples.filter(t⇒av.value.contains(t. 1) && op.value.contains(t. 1))
9: .map(t⇒((t. 1, op.value(t. 2)), av.value(t. 2)))
10: val typ=triples.filter(t⇒op2.contains(t. 2) && av.value.contains(op2(t. 2)))
11: .map(t ⇒((t. 1, t. 2), t. 3))
12: val results=ins.join(type.map(t⇒(t. 2. 2, t. 2. 1)))
13: return results

Reasoning for owl:sameAs property The sameAs rules derived too many
triples and most of the output data is valueless in practical applications [18]. To
improve the performance, many existing methods prefer to build a sameAsTable
[18], [4], which design a hash-code function and compare the hash value. How-
ever, dealing with owl:sameAs property often consume too much time. Based on
the character of dataset, we do not adopt the above method but simplify the rea-
soning process. The O6 can also be dealt with the transitive closure Algorithm
3.

8



Algorithm 3 transitive closure algorithm

Input: transitive triples
Output: results
1: var flag=1L
2: var p=triples
3: var q=p
4: var l=q.map(t ⇒((t. 2, t. 3), t. 1)).partitionBy(partitioner)
5: while flag!= 0 do
6: val r=q.map(t ⇒((t. 2, t. 1), t. 3)).partitionBy(partitioner)
7: val q1=l.join(r).map(t ⇒(t. 2. 1, t. 1. 1, t. 2. 2))
8: q=q1.subtract(p, parallism).persist(storagelevel)
9: flag=q.count()
10: if flag!=0 then
11: l= q.map(t ⇒((t. 2, t. 3), t. 1)).partitionBy(partitioner)
12: val s=p.map(t ⇒((t. 2, t. 1), t. 3)).partitionBy(partitioner)
13: val p1=s.join(l).map(t ⇒(t. 2. 2, t. 1. 1, t. 2. 1)).persist(storagelevel)
14: p=p1.union(q).union(p)
15: end if
16: end while
17: return p

5 EVALUATION

In this section, we conduct a series of experiments to compare the performance
of the proposed approach with the KP [6] and Cichlid [4] under the same envi-
ronment.

5.1 Experiment and Dataset

We set up a cluster with one master and four worker nodes. Each node has 48
Xeon E5 4607 2.20GHz processors, 64GB memory and 10TB 7200 RPM SATA
hard disk. The nodes are connected with Gigabit Ethernet. All the nodes run on
64-bit Ubuntu 12.04 LTS operating system and Ext3 file system. The version of
the Spark is 1.0.2. And the corresponding Hadoop v2.2 with Java1.7 is installed
on this cluster. The Spark has special requirement for the version of Hadoop.
Besides, the version of the Scala is 2.10.6. We use the synthetic benchmarks.
LUBM [5] is a widely used standard benchmark for semantic program. Due to
the limitation of hardware, we use the data generator UBA to generate 5 sets of
data with different universities: LUBM 10, LUBM 50, LUBM 100, LUBM 150
and LUBM 200 in our experiment. The number of triples in each data set is
shown in Table 4 .

Table 4: The number of triples for each dataset

dataset LUBM 10 LUBM 50 LUBM 100 LUBM 150 LUBM 200

triples 1449832 6822632 12297500 20652819 27643644

9



5.2 Experiment Performance

We evaluate the performance of our method with KP and Cichlid, where KP
adopts the executable strategy in [6]. All experiments run three times and the
average value is listed as follow.

10 50 100 150 200

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

lubm/the number of university

re
a
so
n
in
g
ti
m
e/
se
c

RORS

KP

Fig. 6: The runtime of RORS and KP

10 50 100 150

4

5

6

7

8

·104

in
f
er
re
d
tr
ip
le
s

RORS Cichild

Fig. 7: The number of triples per sec

Figure 6 displays the reasoning time of our approach and KP with different
scale of data sets. The reasoning time includes the time of dividing input data
and eliminating duplicated triples. We can see that the reasoning time of RORS
and KP increase almost linearly with the growth of data size. The result shows
that our approach is better than the KP under the same environment. The
performance of reasoning is improved by 30% approximately.

Figure 7 shows the number of inferred triples per second. Our method can
infer more implicit triples than Cichlid and the performance is improved by 26%
approximately.

6 Discussions

In this paper, we present an approach to enhancing the performance of the rule-
based OWL reasoning on Spark based on a locally optimal executable strategy.
Our method performs better than KP in reasoning strategy. Although the ap-
proach does’t find the optimal executable strategy for global rules, our method
can be used as the valuable foundation for future research in the rule-based OWL
reasoning. Therefore, in the future work, we plan to design some algorithms to
find the optimal strategy for global rules.

There are many works to develop OWL reasoning systems, including early
works, such as Pellet [14], Jena [9], and Sesame [1], etc. These reasoners use a
composition tree model for ontology to infer implicit information and exhibit
both large time and space complexity. Due to the limitation of computing re-
source and running speed, these systems can hardly achieve excellent perfor-
mance. Therefore, many distributed reasoning system emerged. In [10] and [12],

10



they proposed a parallel reasoning method that the reasoning rules are exe-
cuted repeatedly until no extra data is generated. But there exists much more
data communication cost. In [20], Weaver and Handler proposed a data parti-
tioning model based on MPI, but this method do not filter duplicate data. [17]
presented a distributed reasoning system which based on MapReduce. It ana-
lyzed the dependency between rules and builded a dependence graph. But it
generated large amount of useless middle data and huge data communication
cost. Then Urbani proposed a MapReduce-based parallel reasoning system with
OWL-Horst rules called WebPIE [18]. It can deal with large scale ontology on a
distributed computing cluster. However, WebPIE exhibits poor reasoning time.
[16] are rule-based OWL reasoner. Although they can infer large scale triples, it
costs too much reasoning time.

[13] proposed a rule-based reasoner that used massively parallel hardware to
derive new facts based on a given set of rules, but that implementation was lim-
ited by the size of processable input data as well as on the number of used parallel
hardware devices. Seitz [15] presented an OWL reasoner for embedded devices
based on CLIPS. Urbani [19] proposed a hybrid rule-based reasoning method
that combined forward and backward chaining, and implemented a prototype
named QueryPIE. Terminological triples are pre-computed before query, which
is used to speed up backward-chaining at query time. In [4], although the author
has improved the reasoning time using Spark, it ignores the analysis of inter-
dependence among the rules and does not give the optimal executable strategy.
Besides, MPPIE [8] recently implemented the RDFS reasoning on Giraph.

7 Acknowledgments

This work is supported by the program of the National Natural Science Foun-
dation of China (NSFC) under 61502336, 61373035 and the National High-tech
R&D Program of China (863 Program) under 2013AA013204.

References

1. Broekstra J., Kampman A., & Van Harmelen F. (2002) Sesame: A generic archi-
tecture for storing and querying RDF and RDF schema. In: Proc. of ISWC 2002,
Springer, pp. 54–68.

2. Baader F. & Sattler U.(2001) An overview of tableau algorithms for Description
Logics. Studia Logica, 69(1):5–40.

3. Chang L., Guilin Q., Haofen W. & Yong Y. (2011) Large scale fuzzy pD* reasoning
using MapReduce. In: Proc. of ISWC 2011, Springer, pp. 405–420.

4. Gu R., Wang S., Wang F., Yuan C., & Huang Y.(2015) Cichlid: Efficient large scale
RDFS/OWL reasoning with Spark. In: Proc. of IPDPS 2015, IEEE, pp. 700–709.

5. Guo Y., Pan Z., & Heflin J.(2005) LUBM: A benchmark for OWL knowledge base
systems. J. Web Sem., 3(2-3):158–182.

6. Kim J. & Park Y. (2015) Scalable OWL-Horst ontology reasoning using Spark.
In: Proc. of BigComp 2015, pp. 79–86.

11



7. L. McGuinness D., van Harmelen F. (2004) Web Ontology Language. W3C Rec-

ommendation.
8. Lv X., Wang X., Feng Z., Rao G., Zhang X., & Xu G.(2016) MPPIE: RDFS

parallel inference framework based on message passing (in Chinese). Journal of

Frontiers of Computer Science and Technology, 10(4): 451-465.
9. McBride B. (2002) Jena: A semantic web toolkit. Internet computing 2002, IEEE,

6(5):55–59.
10. Mühleisen H. & Dentler K. (2012) Large-scale storage and reasoning for semantic

data using swarms. IEEE Comp. Int. Mag., 7(2):32–44.
11. Maeda R., Ohta N., & Kuwabara K.(2014) MapReduce-based implementation of

a rule system. In: Recent Developments in Computational Collective Intelligence

2014, Springer, pp. 197–206.
12. Oren E., Kotoulas S., Anadiotis G., Siebes R., ten Teije A., & van Harmelen

F.(2009) Marvin: Distributed reasoning over large-scale semantic web data. J.

Web Sem., 7(4):305–316.
13. Peters M., Brink C., Sachweh S., & Zündorf A. (2013) Rule-based reasoning on

massively parallel hardware. In: Proc. of SSWS 2013 at ISWC, pp. 33–49.
14. Sirin E., Parsia B., C. Grau B., Kalyanpur A., & Katz Y. (2007) Pellet: A practical

OWL-DL reasoner. J. Web Sem., 5(2):51–53.
15. Seitz C., & Schönfelder R. (2011) Rule-Based OWL reasoning for specific embedded

devices. In: Proc. of ISWC 2011, Springer, pp. 237-252.
16. Thakker D., Osman T., Gohil S., & Lakin P.(2010) A pragmatic approach to

semantic repositories benchmarking. In: Proc. of ESWC 2010, Springer, pp. 379–
393.

17. Urbani J., Kotoulas S., Oren E., & Van Harmelen F. (2009) Scalable distributed
reasoning using mapreduce. In: Proc. of ISWC 2009, Springer, pp. 634–649.

18. Urbani J., Kotoulas S., Maassen J., Van Harmelen F., & Bal H.(2010) OWL
reasoning with WebPIE: Calculating the closure of 100 billion triples. In: Proc. of
ESWC 2010, Springer, vol.1, pp. 213–227.

19. Urbani J., van Harmelen F., Schlobach S., & E. Bal H. (2011) QueryPIE: Backward
reasoning for OWL Horst over very large knowledge bases. In: Proc. of ISWC 2011,
Springer, pp. 730–745.

20. Weaver J. & A. Hendler J. (2009) Parallel materialization of the finite RDFS
closure for hundreds of millions of triples. In: Proc. of ISWC 2009, Springer,
pp. 682–697.

21. Wu H., Liu J., Ye D., Zhong H., & Wei J. (2013) A distributed rule execution
mechanism based on mapreduce in sematic web reasoning. In: Proc. of Internetware
2013, ACM, Article No. 6.

22. Zaharia M., Chowdhury M., J. Franklin M., Shenker S., & Stoica I. (2010) Spark:
Cluster computing with working sets. In: Proc. of HotCloud 2010, Boston, MA,
USA.

23. Zaharia M., Chowdhury M., Das T., Dave A., Ma J., McCauley M., J. Franklin
M., Shenker S., & Stoica I. (2012) Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing. In: Proc. of NSDI 2012 at USENIX,
pp. 15–28.

12


	RORS: Enhanced Rule-based OWL Reasoning on Spark
	1 Introduction
	2 Preliminaries
	3 Locally optimal strategy
	3.1 Dependance of rules
	3.2 Locally optimal strategy

	4 Distributed rule-based OWL reasoning on Spark
	5 EVALUATION
	5.1 Experiment and Dataset
	5.2 Experiment Performance

	6 Discussions
	7 Acknowledgments


