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Abstract. We consider how an (almost) optimal parameter adaptation
process for an adaptive DE might behave, and compare the behavior and
performance of this approximately optimal process to that of existing,
adaptive mechanisms for DE. An optimal parameter adaptation process
is an useful notion for analyzing the parameter adaptation methods in
adaptive DE as well as other adaptive evolutionary algorithms, but it
cannot be known generally. Thus, we propose a Greedy Approximate
Oracle method (GAO) which approximates an optimal parameter adap-
tation process. We compare the behavior of GAODE, a DE algorithm
with GAO, to typical adaptive DEs on six benchmark functions and the
BBOB benchmarks, and show that GAO can be used to (1) explore how
much room for improvement there is in the performance of the adap-
tive DEs, and (2) obtain hints for developing future, effective parameter
adaptation methods for adaptive DEs.

1 Introduction

Differential Evolution (DE) is an Evolutionary Algorithm (EA) that was pri-
marily designed for continuous optimization [17], and has been applied to many
real-world problems [4]. A DE population P = {x1, ...,xN} is represented as a
set of real parameter vector x

i = (xi
1, ..., x

i
D)T, i ∈ {1, ..., N}, where D is the

dimensionality of the target problem and N is the population size.
After initialization of the population, for each generation t, for each x

i,t,
a mutant vector v

i,t is generated from the individuals in P
t by applying a

mutation strategy. The most commonly used mutation strategy is the rand/1
strategy: vi,t = x

r1,t + Fi,t (x
r2,t − x

r3,t). The indices r1, r2, r3 are randomly
selected from {1, ..., N} such that they differ from each other as well as i. The
scale factor Fi,t ∈ (0, 1] controls the magnitude of the differential mutation
operator. Then, the mutant vector vi,t is crossed with the parent x

i,t in order
to generate a trial vector u

i,t. Binomial crossover, the most commonly used
crossover method in DE, is implemented as follows: For each j ∈ {1, ..., D},
if rand[0, 1] ≤ Ci,t or j = jr (where, rand[0, 1] denotes a uniformly generated
random number from [0, 1], and jr is a decision variable index which is uniformly
randomly selected from {1, ..., D}), then ui,t

j = vi,tj . Otherwise, ui,t
j = xi,t

j . Ci,t ∈

[0, 1] is the crossover rate. After all of the trial vectors ui,t, i ∈ {1, ..., N} have
been generated, each individual xi,t is compared with its corresponding trial
vector ui,t, keeping the better vector in the population, i.e., if f(ui,t) ≤ f(xi,t),
x
i,t+1 = u

i,t for minimization problems. Otherwise, xi,t+1 = x
i,t.
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It is well-known that the performance of EAs is significantly influenced by
control parameter settings [6, 11], and DE is no exception [4]. Since identify-
ing optimal control parameter values a priori is impractical, adaptive DE algo-
rithms, which automatically adjust their control parameters online during the
search process, have been studied by many researchers. Most of the well-known
adaptive DEs [3, 10, 13, 18, 20] automatically adjust the F and C parameters.
However, while many adaptive DEs have been proposed, their parameter adap-
tation methods are poorly understood. Previous work such as [3, 10, 13, 18, 20]
only proposed a novel adaptive DE variant and evaluated its performance on
some benchmark functions, but analysis of their adaptation methods have been
minimal. The situation is not unique to the DE community – Karafotias et al [11]
have pointed out the lack of the analysis of adaptation mechanisms in EA. There
are several previous work that try to analyze the parameter adaptation method
in adaptive DE [3,5,13,16,20]. However, almost all merely visualized how F and
C values change during a typical run on functions, and the analysis is limited to
qualitative descriptions such as “a meta-parameter of C in adaptive DE quickly
drops down to [0, 0.2] after several generations on the Rastrigin function”.

In this paper, we consider how an (almost) optimal parameter adaptation
process might behave, and compare the behavior and performance of this ap-
proximately optimal process to that of existing, adaptive mechanisms for DE.
We first define what we mean by an optimal parameter adaptation process, and
propose a simulation process which can be used in order to greedily approximate
the behavior of such an optimal process. We propose GAODE, which applies this
methodology to DE and simulates an approximately optimal parameter adap-
tation process for a specific adaptive DE framework. We compare the behavior
of GAODE to typical adaptive DE algorithms on six benchmark functions and
the BBOB benchmarks [8], and discuss (1) the performance of current adaptive
DE algorithms compared to GAODE, and (2) the implications of these results
for developing more effective parameter adaptation method for adaptive DEs.

2 The proposed GAO framework for adaptive DEs

First, note that this paper focuses on parameter adaptation methods for F and C
in adaptive DEs such as jDE [3], EPSDE [13], JADE [20], MDE [10], SHADE [18].
In general, the term “adaptive DE” denotes a complex algorithm composed
of multiple algorithm components. For example, “JADE” consists of three key
components: (a) current-to-pbest/1 mutation strategy, (b) binomial crossover,
(c) JADE’s parameter adaptation method of F and C. In this paper we want
to focus on analyzing (c) only, rather than “JADE”, the complex DE algorithm
composed of (a), (b) and (c). Therefore, we extracted only (c) from each adaptive
DE variant, and generalized it so that it can be combined with arbitrarymutation
and crossover methods. This approach is taken in recent work [5, 16].

Due to space limitations, the parameter adaptation methods in jDE, EPSDE,
JADE, MDE, and SHADE cannot be described here (see Section A in the sup-
plemental materials [1]), but the general framework can be described as follows:



(i) At the beginning of each generation t, the Fi,t and Ci,t values are assigned
to each individual xi,t. (ii) For each x

i,t, a trial vector ui,t is generated using a
mutation strategy with Fi,t and crossover method with Ci,t. (iii) At the end of
each generation t, the F and C values used by successful individuals influence
the parameter adaptation on the next generation t + 1, where we say that an
individual i is successful if f(ui,t) ≤ f(xi,t).

2.1 Optimal parameter adaptation process θ
∗

We define the notion of an optimal parameter adaptation process in an adaptive
DE. Below, DE-(a,m) denotes an adaptive DE algorithm using a and m, where
a is a parameter adaptation method, and m is a DE mutation operator. Let L
be the number of function evaluations (FEvals) until the search finds an optimal
solution. An adaptation process θa

m = ({F1, C1}, ..., {FL, CL})
T is defined as the

series of the F and C parameters generated when DE-(a,m) is executed with
some adaptation mechanism a and some DE mutation operator m.

For some fixed m, an optimal parameter adaptation process θ∗m = ({F ∗1 , C
∗
1},

..., {F ∗L, C
∗
L})

T is defined as an adaptation process which minimizes the expected

value of L, i.e., there exists no a′ such that E[|θa′

m|] < E[|θ∗m|]. In the rest of the
paper, we abbreviate this as θ∗. An optimal parameter adaptation method a∗ is
an adaptation method such that θa∗

m = θ
∗.

a∗ and θ
∗ are useful notions for analyzing the parameter adaptation methods

in adaptive DE. If θ∗ is known for some problem instance I, this by definition
is a lower bound on the performance of DE-(a,m) (no other adaptation process
can have a shorter expected length). This allows quantitative discussions regard-
ing the performance of DE-(a,m) relative to the lower bound, e.g., “DE-(jDE,
best/1) is 12.34 times slower than DE-(a∗, best/1)”. We can also use such bounds
in order to assess whether further improvements to a certain class of methods
are worthwhile, e.g., “DE-(JADE, rand/2) performs worse than CMA-ES [9],
but the performance of DE-(a∗, rand/2) is better than CMA-ES. Therefore, fur-
ther improvements to the adaptation method a may result in a version of DE-(a,
rand/2) which could outperform CMA-ES.”

Besides providing a bound on the performance of DE-(a,m), θ∗ might be use-
ful in guiding the development of more efficient parameter adaptation methods.
For example, if for some problem instance I, the F values in θ

∗ are relatively
high at the beginning of the search while they are low at the end of the search,
then this suggests that we might be able to improve the performance of DE-
(a,m) on problems similar to I by designing a so that the adaptation process of
DE-(a,m) more closely resembles of θ∗ for I.

However, in practice, it is generally not possible to know θ
∗. It is well-known

that the appropriate parameter settings depend on the current search situation,
and are not fixed values such as F = 0.5 and C = 0.9, i.e., there are dif-
ferent optimal parameter values as ({F ∗1 , C

∗
1}, {F

∗
2 , C

∗
2}, {F

∗
3 , C

∗
3}, ...) for each

FEvals (1, 2, 3, ...). {F ∗l , C
∗
l } are also context-dependent, so we can not compute

{F ∗l , C
∗
l } for some time step l in isolation – the search state at l depends on the

control parameter settings used in steps 1, ..., l− 1.



Algorithm 1: GAODE (the DE with GAO)

1 t← 1, initialize P
t = {x1,t, ...,xN,t}, l← 1, θGAO ← ∅;

2 while The termination criteria are not met do

3 for i = 1 to N do

4 U
l ← ∅;

5 for j = 1 to λ do

6 Fl,j = rand(Fmin, Fmax], Cl,j = rand[Cmin, Cmax];

7 The (virtual) trial vector u
l,j is generated using an arbitrary mutation

strategy with Fl,j and crossover method with Cl,j , then u
l,j → U

l;

8 Evaluates the (virtual) trial vectors in U
l by f , and select u

l,best;

9 u
i,t = u

l,best, θGAO ← {Fl,best, Cl,best}, l← l + 1;

10 If f(ui,t) ≤ f(xi,t), xi,t+1 = u
i,t. Otherwise, xi,t+1 = x

i,t;

11 t← t + 1;

2.2 Approximating an optimal adaptation process θ
∗

As discussed above, θ∗ would be very useful for analyzing the parameter adapta-
tion methods, but it cannot be obtained in practice. Thus, we propose a Greedy

Approximate Oracle method (GAO) in order to approximate θ
∗, and apply the

proposed GAO method to DE.
The basic idea is as follows: suppose that in step (i) of the adaptive DE

framework described in the beginning of Section 2, we could enumerate all pos-
sible parameter settings {F,C}, and then retroactively select the {F,C} pair
which results in the best child – this would give us the optimal, 1-step adapta-
tion process. Similarly, the optimal k-step adaptation process can be obtained by
recursively simulating the execution of the DE for all possible k-step adaptation
processes and then selecting the best k-step process. Of course, the number of
possible adaptation processes grows exponentially in the number of steps, so in
general, the k-step process can not be obtained, and in fact, fully enumerating all
possible 1-step processes is impractical. We therefore obtain an approximation
to the 1-step optimal process by randomly sampling {F,C} values.

This is implemented as GAODE, shown in Algorithm 1. For each current
FEvals l, let us consider that the individual xl (= x

i,t) generates the trial vector
u
l (= u

i,t) using parameter settings θ
l = {Fl, Cl} (= θ

i,t). The optimal 1-

step greedy parameter settings for step l is θg∗,l = {F g∗

l , Cg∗

l }, and GAO seeks

θ
GAO,l, which approximates values of θg∗,l, by random sampling of {F,C} values.
For each x

l, λ trial vectors U l = {ul,1, ...,ul,λ} are generated (Algorithm 1,
lines 4 ∼ 7). Parameter values θ

l,j = {Fl,j , Cl,j}, j ∈ {1, ..., λ} used for gener-
ating u

l,j are uniformly randomly selected from (Fmin, Fmax] and [Cmin, Cmax]
respectively (Algorithm 1, line 6). In DE, pseudo-random numbers are used for
(a) parent selection in the mutation operator, and (b) the crossover operator. If
two different virtual DE configurations which have different {F,C} parameter
values also use different random numbers for (a) and (b), it complicates the anal-
ysis because we cannot determine whether the configuration which generates the
better trial vector did so because of its {F,C} values or because of the random
numbers used in (a) and (b). Therefore, in our experiments, we synchronized the



pseudorandom generators for all of the virtual DE configurations so that they
all used the same random numbers at both (a) and (b) for generating all trial
vectors in U

l – this eliminates the possibility that a virtual DE configuration
outperforms another due to fortunate random numbers used for (a) and (b).

The trial vectors in U
l are evaluated according to the function f , and the

u
l,best with the best (lowest) function value in U

l is selected (Algorithm 1, line
8). The selected u

l,best is treated as ul (= u
i,t) of xl (= x

i,t). Note that, λ times
evaluations according to f which are used to select u

l,best in U
l (Algorithm

1, line 8), are not counted as the FEvals used in the search – this simulates a
powerful oracle which “guesses” u

l,best in one try. θl,best = {Fl,best, Cl,best} used

for generating u
l,best can be considered a approximation to θ

g∗,l = {F g∗

l , Cg∗

l },

and is stored in θ
GAO (Algorithm 1, line 9).

Previous work has investigated optimal parameter values in adaptive EAs,
especially in Evolution Strategies (ES) community [2,6,7]. For example, the opti-
mal step size σ∗ in (1+1)-ES on the Sphere function is σ∗ = 1.224‖x∗−x‖/D [7],
where ‖x∗ − x‖ is the Euclidean distance between the optimal solution x

∗ and
the current search point x. The optimal mutation rate pm schedule of (1 + 1)-
GA on the one-max problem is also studied by Bäck [2]. While theoretically
well-founded, these results are limited to a specific algorithm running on a spe-
cific problem, and have also been limited to one parameter value, e.g., σ and
pm. In contrast, the proposed GAO framework is more general. While we fo-
cus on applying GAO to DE for black-box optimization benchmarks in this
paper, we believe the GAO approach can be straightforwardly generalized and
applied to combinations of various problem domains (e.g., combinatorial prob-
lems, single/multi-objective problems, etc.), algorithms (e.g., GA, ES, MOEA,
etc.), and parameters (e.g., crossover and mutation rate, crossover method, etc.).

3 Evaluating the proposed GAO framework

We compare GAODE, the DE with GAO, to the parameter adaptation methods
used by representative adaptive DEs on six benchmark functions. We show that
GAO can be used to (1) explore how much room for improvement there is in
the performance of the adaptive DEs (Section 3.1), and (2) obtain hints for
developing future, effective parameter adaptation methods (Section 3.2).

We used six benchmark functions: Sphere, Ellipsoid, Rotated-Ellipsoid, Rosen-
brock, Ackley, Rastrigin functions. The first three are unimodal, and the last
three are multimodal (the Rosenbrock function is unimodal for D ≤ 3). The
Rotated-Ellipsoid and Rosenbrock functions are nonseparable, and the (Rotated-
) Ellipsoid functions are ill-conditioned functions. For details, see Table A.1 in [1].

The dimensionality D of each function was set to 2, 3, 5, 10, and 20. The
number of runs per problem was 51. Random number seeds for parts of the DE
are synchronized as explained in Section 2.2. Each run continues until either (i)
|f(xbsf) − f(x∗)| ≤ 10−8, in which case we treat the run as a “success”, or (ii)
the number of fitness evaluations (FEvals) exceeds D×105, in which case the run
is treated as a “failure”. xbsf is the best-so-far solution found during the search
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Fig. 1: Comparison of GAODE with the parameter adaptation methods in the adaptive
DEs on each function. The horizontal axis represents the dimensionality D, and the
vertical axis represents the SP1 values. Data with success rate = 0 is not shown.

process, and x
∗ is the optimal solution of the target problem. Following [9], we

used the Success Performance 1 (SP1) metric, which is the average FEvals in
successful runs divided by the number of successes, as a performance metric of
the DE algorithms. SP1 represents the expected FEvals to reach the optimal
solution, i.e., a small SP1 value indicates a fast and stable search.

We used five parameter adaptation methods in the representative adaptive
DE variants: jDE [3], EPSDE [13], JADE [20], MDE [10], and SHADE [18]. For
details, see Section A in [1]. The most basic rand/1/bin operator [17], described
in Section 1, was used for all DEs. Following [14], the population size N was set
to 5×D for D > 5, and N = 20 for D = 2 and 3. For each algorithm, we used the
control parameter values that were suggested in the original papers as follows:
τF = 0.1 and τC = 0.1 for jDE, F -pool= {0.4, ..., 0.9} and C-pool= {0.1, ..., 0.9}
for EPSDE, c = 0.1 for JADE, and H = 10 for SHADE.

In the GAO framework, the parameter generation ranges (Fmin, Fmax] and
[Cmin, Cmax] have to be set. In preliminary experiments, GAODE failed on some
nonseparable functions when these ranges were set to (0, 1] and [0, 1] respectively.
We believe this failure is due to small F values, so we also evaluated GAODE
with Fmin = 0.4, where 0.4 is a lowest F value suggested by Rönkkönen et al [15].
Unless explicitly noted, we denote GAODE with the former and later settings
as GAODE00 and GAODE04 respectively, and a virtual DE algorithm that is
a composition of GAODE00 and GAODE04 as GAODE (GAODE returns the
best result obtained by running both GAODE00 and GAODE04). λ, the number
of configurations sampled by GAODE at each individual, was set to 200.

3.1 Experiment 1: How much room is there for improvement with
adaptive DE algorithms with the rand/1/bin operator?

Figure 1 shows the results of GAODE, jDE, EPSDE, JADE, MDE, and SHADE
on the six functions. For GAODE, instead of SP1, we show the lowest FE-



vals for reaching the optimal solution in the composed results of GAODE00 and
GAODE04. The data of GAODE indicates an approximate bound on the perfor-
mance that can be obtained by an adaptive DE using the rand/1/bin operator.

As shown in Figure 1, all runs of EPSDE fail on the Rotated-Ellipsoid func-
tion for D = 20. JADE also fails on all runs on the Rosenbrock function when
D ≥ 10. MDE can reach the optimal solution on the both functions, but its SP1
values are significantly worse than other methods. Consistent with the results
in [16, 20], adaptation methods tend to perform poorly when used with opera-
tors that are different from the operators used in the original papers where the
adaptation methods were proposed. Although the performance rank among the
methods depends on the functions and the dimensionality D, jDE and SHADE
perform better than other compared methods in almost all cases. However, as
shown in Figure 1, jDE and SHADE converge to the optimal solution 4 ∼ 20
times slower than GAODE. This shows that even the best current adaptive meth-
ods perform poorly compared to an approximation of a 1-step greedy optimal
process (and are therefore even worse compared to a k-step optimal process).
Thus, it appears that despite significant progress in recent years, there is still

significant room for improvement in parameter adaptation methods for DE.

3.2 Experiment 2: How should we adapt the control parameters?

Let us consider how the behavior of GAODE differs from existing adaptation
methods. Figure 2 shows the frequency of appearance of {F,C} value pairs dur-
ing the search process for SHADE and GAODE on the 10-dimensional Rosen-
brock and Rastrigin functions. Data from the best run out of 51 runs is shown.
The results of jDE, EPSDE, JADE, and MDE can be seen in Figure A.1 in [1].

As shown in Figure 2, SHADE frequently generates F and C values in
the range [0.5, 0.7] and [0.9, 1.0] on the Rosenbrock function, and [0.9, 1.0] and
[0.1, 0.4] on the Rastrigin function respectively. These results are consistent with
previous studies for DE [3, 4] and adaptive DEs [3, 20]. On the other hand,
GAODE mainly generates F values in the range [0.0, 0.1] on both functions.
The C values frequently appear in [0.0, 0.2] and [0.8, 1.0] on the Rastrigin func-
tion, and GAODE mainly generates C values in both [0.9, 1.0], and [0.0, 0.1] on
the Rosenbrock function, i.e., the C values are bimodal. Interestingly, for the
both functions, GAODE occasionally generates F and C values in the extreme
regions [0.9, 1.0] and [0.0, 0.1] respectively (see bottom right in the figures).

In summary, GAODE frequently generates small F values, and C values
in the range [0, 0.2] and [0.8, 1]. Although CoBiDE [19], a recently proposed
non-adaptive DE, generates the Fi,t and Ci,t values for each x

i,t according to a
bimodal (two Cauchy) distribution, we are not aware of such a bimodal sampling
approach in any previously proposed adaptive method. An adaptive DE algo-
rithm using such sampling method may also perform better than the existing
methods [3, 10, 13, 18, 20]. Thus, analysis of the approximate optimal parameter
adaptation process obtained by GAO suggests that instead of unimodal sampling
procedures implemented in previous adaptation methods, adaptive mechanisms
using multimodal sampling may be a promising direction for future work.
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Fig. 2: Frequency of appearance of {F, C} value pairs during the search process for
SHADE and GAODE on the 10-dimensional (a) Rosenbrock and (b) Rastrigin func-
tions. Darker colors indicate more frequent generation of the corresponding values by
the parameter adaptation method.

4 Comparing GAODE with state-of-the-art EAs

GAODE, which is an approximate simulation of an optimal, 1-step adaptation
process, significantly performs better than the current state-of-the-art parame-
ter adaptation methods for DE using the rand/1/bin operator, as described in
Section 3.1 (again, we reemphasize that GAODE is not a practical algorithm

and is for analysis only – the “performance” of GAODE ignores the λ − 1
samples which are discarded by GAODE at each iteration). It is interesting
to compare GAODE with other state-of-the-art EAs. Here, we compare the
adaptive DE variants including GAODE3 with HCMA [12] and best-2009 on
the BBOB benchmarks, consisting of 24 various functions [8]. HCMA, an effi-
cient surrogate-assisted algorithm portfolio, represents the state-of-the-art on the
BBOB benchmarks. Best-2009 is a virtual algorithm portfolio that is retrospec-
tively constructed from the performance data of 31 algorithms participating in
the GECCO BBOB 2009 workshop. Is it possible for an adaptive DE algorithm
using the classical rand/1/bin operator to be competitive with these methods?

Figure 3 shows the Empirical Cumulative Distribution Function (ECDF)
for each algorithm for 24 BBOB benchmark problems (D = 5, 10, 20) when
maximum FEvals = D×104. The results for each function class and for D = 2, 3
can be found in Figures A.2 – A.6 in [1]. As shown in Figure 3, GAODE clearly
outperforms jDE, EPSDE, JADE, MDE, and SHADE for all dimensions, in
terms of both the quality of the best-so-far solution obtained during the search
process and the anytime performance. GAODE also performs significantly better
than HCMA and best-2009 for D ≤ 5. This result suggests that if we can find a
parameter adaptation method which performs similarly to the GAODE model,
then an adaptive DE algorithm using the classical rand/1/bin could possibly
outperform state-of-the-art algorithm portfolios such as HCMA for D ≤ 5.

3 The BBOB benchmarks provide 15 instances for each function, i.e., there are 24 ×
15 = 360 function instances. In this study, we applied GAODE00 and GAODE04
three times for each instance, and only the best result among them is used for
GAODE.
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Fig. 3: Comparisons of GAODE with the adaptive DE variants, HCMA, and best-2009
on BBOB benchmarks (D ∈ {5, 10, 20}). These figures show the bootstrapped Empiri-
cal Cumulative Distribution Function (ECDF) of the FEvals divided by dimension for
50 targets in 10[−8..2] for 5, 10, 20 dimensional all functions (higher is better). For de-
tails of the ECDF, see a manual of COCO software (http://coco.gforge.inria.fr/).

On the other hand, when the dimensionality increases, the performance of
GAODE degrades compared to HCMA and best-2009. For D = 20, GAODE
is outperformed by HCMA and best-2009. This may indicate that for high-
dimensionality problems, it may not be possible to develop an adaptive DE us-
ing the rand/1/bin operator which is competitive with methods such as HCMA.
However, this result may be due to the fact that GAODE only simulates an ap-
proximately optimal 1-step adaptation process – increasing the number of steps
(i.e., a k-step optimal process) may result in better results, and is a direction for
future work. In addition, different mutation operators (e.g., best/2, current-to-
pbest/1, etc.) may enable significantly better performance for adaptive DEs.

5 Conclusion

We proposed a Greedy Approximate Oracle method (GAO) which approximates
an optimal parameter adaptation process θ∗. In GAO, λ parameter sets are ran-
domly generated for each individual in the population, and the best parameter
set with respect to the objective function value is used as a greedily approximated
optimal parameter set (the other λ− 1 sets are discarded and are not counted).
We evaluated GAODE, a DE algorithm with GAO, on 6 standard benchmark
functions and the BBOB benchmarks [8], and compared it with the parame-
ter adaptation methods in 5 adaptive DE variants. We showed that (1) current
adaptive DEs are significantly worse than even an approximate, 1-step optimal
adaptation, suggesting that there is still much work to be done in the develop-
ment of adaptive mechanisms (Section 3.1), and (2) GAO can be used to identify
promising directions for developing an efficient parameter adaptation method in
adaptive DE (Section 3.2). We also compared GAODE with HCMA [12] and
best-2009 on the BBOB benchmarks [8] in Section 4, and showed that a better
adaptive mechanism may enable a DE using the classical rand/1/bin operator
to achieve state-of-the-art performance.

The proposed GAO framework is a first attempt to approximate the opti-
mal parameter adaptation process, and there is much room for improvement,

http://coco.gforge.inria.fr/


as discussed in Section 2. In this paper, we applied GAO to the DE with the
rand/1/bin operator, and evaluated its performance on single-objective contin-
uous optimization problems. Future work will explore GAO as a general frame-
work that can be applied to analyze the behavior of any adaptive EA (indepen-
dent of specific operators and problem domains).
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