
adfa, p. 1, 2016.

© Springer-Verlag Berlin Heidelberg 2016

An Evolutionary Hyper-heuristic for the

Software Project Scheduling Problem

Xiuli Wu
1
 Pietro Consoli

2
 Leandro Minku

3
 Gabriela Ochoa

4
 Xin Yao

2

1Department of logistics engineering, School of Mechanical Engineering, University of Science

and Technology Beijing, Beijing, China. wuxiuli@ustb.edu.cn
2 CERCIA, School of Computer Science, University of Birmingham, Birmingham, UK.

(P.A.Consoli, X.Yao)@cs.bham.ac.uk
3Department of Computer Science, University of Leicester, Leicester, UK.

leandro.minku@leicester.ac.uk
4Computing Science and Mathematics, University of Stirling, Stirling, UK

gabriela.ochoa@cs.stir.ac.uk

ABSTRACT. Software project scheduling plays an important role in reduc-

ing the cost and duration of software projects. It is an NP-hard combinatorial

optimization problem that has been addressed based on single and multi-

objective algorithms. However, such algorithms have always used fixed genetic

operators, and it is unclear which operators would be more appropriate across

the search process. In this paper, we propose an evolutionary hyper-heuristic to

solve the software project scheduling problem. Our novelties include the fol-

lowing: (1) this is the first work to adopt an evolutionary hyper-heuristic for the

software project scheduling problem; (2) this is the first work for adaptive se-

lection of both crossover and mutation operators; (3) we design different credit

assignment methods for mutation and crossover; and (4) we use a sliding multi-

armed bandit strategy to adaptively choose both crossover and mutation opera-

tors. The experimental results show that the proposed algorithm can solve the

software project scheduling problem effectively.

Keywords: software project scheduling; hyper-heuristics; adaptive operator se-

lection; sliding multi-armed bandit.

1 Introduction

The Software Project Scheduling Problem (SPSP) relates to the decision of who does

what task during a software project lifetime [1]. It plays an important role in reducing

the duration and the cost of a software project [1],[15]. In China alone, it was reported

that more than 40% of unsuccessful software projects failed because of the inefficient

planning of project tasks and human resources [8]. The SPSP, hence, is an important

issue for IT companies.

However, the SPSP is particularly challenging when the project is large. The space

of possible allocations of employees to tasks is enormous, and providing an optimal

allocation of employees to tasks becomes a very difficult task [14]. It is impractical to

mailto:wuxiuli@ustb.edu.cn
http://mail.ustb.edu.cn/coremail/XT3/pab/view.jsp?sid=BACGVFkkCgICvfHOsVkkLHwxGGIHvguU&totalCount=8&view_no=5&puid=30&gid=VIP&pabType=
mailto:gabriela.ochoa@cs.stir.ac.uk

use exact methods to solve medium or large SPSP instances. Evolutionary algorithms

have been employed to solve the SPSP [1],[5],[12],[14],[16],[17]. Other metaheuris-

tics have also been used, such as ant colony optimization and its variants [4], [6], [15].

A column generation approach was presented in [12], embedded within a branch-and-

price procedure.

In those algorithms, different search operators (e.g., different types of crossover

and mutation) may be good for different problem instances. However, little is known

about which operators are most adequate for which types of instances. This motivates

us to design an evolutionary algorithm capable of choosing the most effective opera-

tor automatically. Moreover, given a single problem instance, different search opera-

tors may be good at different stages of the search. As a result, it is very difficult to

choose/design the operators to be used beforehand. Ideally, we would like an algo-

rithm that can automatically choose which operators to use during the evolutionary

process, and thus liberate practitioners from this difficult task [7]. This motivates our

study of adaptive operator selection for the SPSP.

As a recent trend in optimization, hyper-heuristics search the space of heuristics ra-

ther than the space of solutions of the given problem, and use limited problem specific

information to control the search process [9]. A hyper-heuristic is an automated meth-

odology for selecting or generating heuristics to solve computational search problems

[2]. We propose an evolutionary hyper-heuristic to solve the SPSP. Different from

previous work on hyper-heuristics, our approach can be used to select both mutation

and crossover operators, rather than being used to select only crossover or only muta-

tion. We design different credit assignment methods for these two types of operators

because mutation is typically used to exploit the solution space while crossover is

typically used to explore it.

In summary, our novelty lies in the following: (1) this is the first work to adopt an

evolutionary hyper-heuristic for SPSP; (2) this is the first work for adaptive selection

of both crossover and mutation operators; (3) we design different credit assignment

methods for the two types of operators: mutation and crossover; and (4) we use a

sliding multi-armed bandit strategy to adaptively choose both crossover and mutation

operators. We use a 3-sized crossover pool and a 3-sized mutation pool. Our experi-

ments show that our approach is effective in selecting crossover and mutation opera-

tors for the SPSP.

The rest of this paper is organized as follows. Section 2 formulates the problem.

Section 3 proposes an evolutionary hyper-heuristic for the SPSP. Section 4 reports the

experimental results. Section 5 concludes the paper.

2 Formulation of SPSP

In this section, we explain the formulation of the SPSP [1],[11]. The notations

adopted in the definitions are summarized in Table 1. A software project is composed

of N tasks. A Task Precedence Graph (TPG) describes the precedence relations

among tasks. It is used together with the decision variable and the task required ef-

forts in order to determine the start and finishing time of each task (𝑠𝑡𝑗 and 𝑒𝑑𝑗). This

is done by creating a Gantt chart based on Algorithm 1 described in [11], which is

omitted here due to space constraints. Each task 𝑡𝑗 requires a set of skills 𝑟𝑒𝑞𝑗 and has

an estimated effort 𝑒𝑓𝑓𝑗. There are M employees involved in the project. Each em-

ployee 𝑒𝑖 can be described as a three-tuple array (𝑒𝑖
𝑠𝑘𝑖𝑙𝑙 , 𝑒𝑖

𝑚𝑎𝑥 , 𝑒𝑖
𝑛𝑜𝑟𝑚_𝑠𝑎𝑙). A project

requires a total of s skills. Each 𝑠𝑘𝑖𝑙𝑙𝑘 (k=1, 2,…, s) represents a kind of software

development skill in the project, such as system analysis, designing, coding, algo-

rithm, database, quality check, testing, etc.

Employees can work on several tasks simultaneously, as indicated by their dedica-

tion to certain tasks. The dedication 𝑥𝑖𝑗 ∈ {0/𝑘, 1/𝑘, … , 𝑘/𝑘} of employee 𝑒𝑖 to task

𝑡𝑗 is the fraction of the employee’s time devoted to that particular task. 𝑘 ∈ ℕ repre-

sents the granularity of the problem. A dedication of 𝑥𝑖𝑗 = 1 indicates that the em-

ployee 𝑒𝑖 spends all his or her working time on task 𝑡𝑗. 𝑥𝑖𝑗 = 0 indicates that 𝑒𝑖 does

not spend any time on 𝑡𝑗. 0 < 𝑥𝑖𝑗 < 1 indicates that 𝑒𝑖 spends part of his or her work-

ing time on 𝑡𝑗. The matrix 𝑿 = (𝑥𝑖𝑗) of 𝑀 × 𝑁, where 𝑥𝑖𝑗 ≥ 0, is the decision varia-

ble and represents a solution to the problem. This problem formulation [1],[11] as-

sumes a static environment where employees will always be available during the life-

time of a project, i.e., they will not leave or be absent from work, and the task effort is

fixed. As in [1],[11], we will also assume that 𝑒𝑖
𝑚𝑎𝑥 = 1 for all employees.

Table 1. SPSP Notations

The SPSP is the problem of assigning employees to tasks in a software project so as

to minimize the completing time (i.e., duration of the project as defined by Eq. (2)),

and the cost (i.e., the total amount of salaries paid as defined by Eq. (3)). Eq. (1) is the

mixed objective, where 𝑤1 and 𝑤2 are the weights for the completing time and the

 Description

M The number of the employees involved in the project.

𝑒𝑖 The i-th employee.

𝑒𝑖
𝑠𝑘𝑖𝑙𝑙 𝑒𝑖

𝑠𝑘𝑖𝑙𝑙 = {𝑝𝑟𝑜𝑖
1, 𝑝𝑟𝑜𝑖

2, … , 𝑝𝑟𝑜𝑖
𝑠} , 𝑝𝑟𝑜𝑖

𝑘 (k=1,2,…,s) is a binary variable indicating whether the

employee ei possesses the skill 𝑠𝑘𝑖𝑙𝑙𝑘 .

𝑒𝑖
𝑚𝑎𝑥

𝑒𝑖
𝑚𝑎𝑥 {

< 1 𝑒𝑖 is part − time worker for the project.
= 1 𝑒𝑖 dedicates all the normal working hours for the project.
> 1 𝑒𝑖 is over − time worker for the project.

The max dedication of ei to the project indicating the percentage of a full time employee ei is

able to dedicate to the project.

𝑒𝑖
𝑛𝑜𝑟𝑚_𝑠𝑎𝑙 The monthly salary for an employee ei for his or her full normal working time.

N The software project is composed of N tasks.

𝑡𝑗 The j-th task.

𝑒𝑓𝑓𝑗 The estimated effort for the task tj.

𝑟𝑒𝑞𝑗 The required skills for the task tj.

TPG The task precedence graph is an acyclic directed graph with tasks as nodes and task prece-

dence as edges.

𝑥𝑖𝑗

𝑠𝑡𝑗

𝑒𝑑𝑗

The decision variable to determine the degree of dedication of employee 𝑒𝑖 to task 𝑡𝑗 .

The starting time of task 𝑡𝑗 .

The finishing time of task 𝑡𝑗 .

cost, respectively. The assignment of employees to tasks is to determine the decision

variable x.

The problem is subject to the aforementioned assumptions and the following two

constraints: employees can only work on a task 𝑡𝑗 if all employees working together

have all the skills to perform the task (Eq. (4)); and employees should not exceed their

maximum dedication to the tasks that are active at any given time moment t (Eq. (5)).

Minimizex 𝑓(𝑥) = 𝑤1𝑓1(𝑥) + 𝑤2𝑓2(𝑥) (1)

𝑓1(𝑥) = max𝑗(𝑒𝑑𝑗), where 𝑒𝑑𝑗, ∀𝑗, is obtained with Algorithm 1 from [11]. (2)

𝑓2(𝑥) = ∑ ∑ (
𝑒𝑓𝑓𝑗

∑ 𝑥𝑘𝑗
𝑀
𝑘=1

⁄) 𝑥𝑖𝑗 𝑒𝑖
𝑛𝑜𝑟𝑚_𝑠𝑎𝑙𝑁

𝑗=1 , 𝑀
𝑖=1 (3)

s.t.

req𝑗 ⊆ ⋃ {𝑠𝑘𝑖𝑙𝑙𝑖|𝑥𝑖𝑗 > 0}𝑛
𝑖=1 (4)

∑ 𝑥𝑖𝑗𝑗 ∈ active_tasks(𝜏) ≤ 𝑒𝑖
𝑚𝑎𝑥, ∀𝑖, 𝜏, where active_tasks(𝜏) are all tasks active at time 𝜏

according to the Gantt chart generated using Algorithm 1 from [11] (5)

𝑥𝑖𝑗 ∈ [0,1] (6)

It is worth noting that the SPSP is related to the Resource-Constrained Project Sched-

uling problem (RCPS), but there are some key differences [1]: (1) the SPSP has a

cost associated to each employee; (2) SPSP has only one type of resource (employee);

and (3) each activity in RCPS requires different quantities of different resources,

whereas the SPSP requires different skills, which are not quantifiable entities.

3 The Evolutionary Hyper-Heuristic

3.1 Hyper-heuristic framework

The evolutionary hyper-heuristic (Fig. 1) chooses an operator to apply at each search

stage. The high level algorithm is based on a (μ+λ)-EA, i.e. it maintains a population

of μ candidate solutions and λ parents are selected at each generation. Before each

evolutionary cycle, the adaptive operator selection function is called twice (lines 3

and 4) to choose the crossover and the mutation operator, respectively. At the end of

each iteration, the two credit assignment functions: diversity-credit and improvement-

credit, are called (lines 12 and 13) to assign a credit to the currently chosen crossover

and mutation operator, respectively.

1: initialize a population pop with 𝜇 candidate solutions

2: repeat

3: crossover= Operators-selection(crosscredit)

4: mutation= Operators-selection(mutationcredit)

5: for i=1:2: λ

6: select 2 parents 𝑥(1) and 𝑥(2) from pop at random

7: apply crossover to 𝑥(1) and 𝑥(2) to generate 𝑥′(1) and 𝑥′(2) with

probability Pc

8: apply mutation to 𝑥′(1) and 𝑥′(2) with probability Pm

9: pop=pop∪ (𝑥′(1), 𝑥′(2))

10: end for

11: Select the best 𝜇 solutions from pop to survive to the next gener-

ation

12: Update crosscredit= diversity-credit(pop)

13: Update mutationcredit= improvement-credit(pop)

14: until termination criteria are met

15: output the best candidate solution in pop.

Fig. 1. The evolutionary hyper-heuristic for SPSP

3.2 Adaptive Operator Selection

Adaptive operator selection (AOS) performs on-line selection of evolutionary opera-

tors to produce each new offspring, based on the recent known performance of each

of the available operators. An adaptive operator selection is typically composed of a

credit assignment and an operator selection rule. The former assigns a reward to an

operator and the latter determines the operator to be chosen at each step. In the AOS

framework, the performance of an operator in a very early stage may be irrelevant to

its current performance [10]. More attention should be paid on the recent perfor-

mance. We propose a sliding multi-armed bandit (SMAB) following the approach in

[10]. The credit assignment and the operator selection rules adopted are as follows.

Credit Assignment of SMAB. To determine the credit assignment, one needs to

make a decision on how to measure the impact in the search process caused by the

application of an operator. We propose two credit assignment methods according to

the main role each operator plays during the search process.

Considering that the main role of crossover is to explore the solution space, we

employ the population diversity to evaluate the performance of one on-duty crossover

operator. The diversity of the population is measured by the “population diversity”,

inspired by the entropy concept. It is calculated in Equation (7) by computing the

standard deviation of the same amount of dedication among solutions in the popula-

tion.

𝑒𝑛𝑡 = ∑ ∑ √
1

𝜇
∑ (𝑥𝑖𝑗

(𝑘)
−

1

𝜇
∑ 𝑥𝑖𝑗

(𝑘)𝜇
𝑘=1)2𝜇

𝑘=1
𝑁
𝑗=1

𝑀
𝑖=1 (7)

Considering that one mutation operator plays the role to guide a local search, we use

the fitness improvements caused by the recent application of the operator under as-

sessment. The fitness improvement is defined in Equation (8).

𝑟 = (𝑓𝑜𝑙𝑑 − 𝑓𝑛𝑒𝑤) 𝑓𝑜𝑙𝑑⁄ (8)

Where 𝑓𝑜𝑙𝑑 and 𝑓𝑛𝑒𝑤 is the fitness of the individual before and after the application

of the operator respectively.

A sliding window with a fixed size W is used to store the fitness improvement val-

ues of the recently used operators. The sliding window is a two-dimensional list of 2

rows and W columns. The first row records the operator index number and the second

row records the corresponding fitness improvement. It is organized as a first-in-first-

out (FIFO) queue.

Selection Rule of SMAB. Based on the received credit values, the operator selection

scheme selects one operator for generating new solutions. This paper uses a bandit-

based operator selection scheme. Our scheme is similar to that in [10]. The major

difference is that we use the entropy 𝑒𝑛𝑡 for the crossover operator and the fitness

improvement value r as the quality 𝑞̂𝑖,𝑡−1 instead of the average of all the rewards

received so far for an operator. The operator that maximizes Equation (9) will be cho-

sen as the on-duty operator.

𝑎𝑟𝑔𝑚𝑎𝑥𝑖=1,…𝑘 (𝑞̂𝑖,𝑡−1 + 𝐶√
2 log ∑ 𝑛𝑘,𝑡𝑘

𝑛𝑖,𝑡
) (9)

where 𝑞̂𝑖,𝑡−1 is the empirical reward (the best result achieved by the operator in last

W iterations) of the i-th arm (operator), C is a scale parameter, 𝑛𝑖,𝑡 is the times that

the i-th arm has been tried till the t-th iteration during the recent W applications.

3.3 The Low-Level Heuristics Pool

Crossover operator pool. There are 3 operators in the crossover operator pool.

Crossover 1: Swap-Row Crossover. For each employee, select its corresponding dedi-

cations to tasks from one randomly chosen parent to generate an offspring. This can

be seen as changing some employees’ dedication to tasks [11].

Crossover 2: Swap-Column Crossover. For each task, select its corresponding em-

ployees’ dedications from one randomly chosen parent to compose an offspring. This

can be seen as exchanging some tasks’ resource assignment [11].

Crossover 3: Swap-Block Crossover. The Swap-Block Crossover [1] is a 2-D single

point crossover applied to matrices. It randomly selects a row and a column (the same

in the two parents) and then swaps the elements in the upper left quadrant and the

lower right quadrant in both solutions.

Mutation operator pool. There are 3 operators in the mutation operator pool.

 Mutation 1: Swap mutation[11]. An individual is mutated by changing each entry
xij of the dedication matrix to a random times of 1/7 with mutation probability,
independently from other entries.

 Mutation 2: Swap dedications in each row. An individual is mutated by swapping

randomly dedications in each row. The selected positions to swap must be the non-

zero dedication to keep the balance.

 Mutation 3: Swap dedications in each column. An individual is mutated by swapping

randomly dedications in each column.

4 Experimental Study

We run a number of experiments to determine whether the use of the proposed AOS

technique is beneficial with respect to the adoption of a simple random selection of

the crossover and mutation operators. We also compare the results of these algorithms

with those achieved by a state-of-the-art approach [11]. We label the three algorithms

for convenience GA-SMAB, GA-randAOS and GA.

We performed our experiments on a benchmark dataset of 48 instances used in [1].

For each instance, we provide the average results from 30 independent runs of the

algorithms. In order to reduce the impact of different parameter settings on the results,

we adopt the same parameter settings as those used in literature [1], [11] (Table 2)

except for the mutation probability, which was set to a value that guaranteed the ap-

plication of the mutation operator, necessary to observe its performance.

Table 2. Parameters setting

Parameter Value Description

μ 64 The size of the population

λ 64 The size of the offspring

Pc 0.75 The crossover probability

Pm 0.1 The mutation probability

maxg 200 The number of generations

w1 10-1 The weight of the duration

w2 10-6 The weight of the cost

winsize 7 The sliding window size

ScalingC 60 The scaling factor for crossover operators

ScalingM 110 The scaling factor for mutation operators

Table 3 reports the average results achieved by the GA-SMAB, GA-randAOS and

GA algorithms on the 48 instances of the benchmark set. For every algorithm we

report the average fitness, its standard deviation, the best result, the average cost and

the average completion time. The results indicate how the fitness achieved by GA-

SMAB is the lowest of the three. In particular, the average fitness of GA-SMAB is

slightly lower than the best of GA. Similarly, GA-randAOS also shows a comparable

improvement with respect to the GA. It is also worth noting that the cost has in-

creased, while the average completing time has improved considerably. This is likely

to be a result of the weights w1 and w2 used in the fitness function.

Table 4 summarizes the results of the Wilcoxon Rank-Sum (significance level of

0.05) test performed for each instance to determine the number of instances for which

each algorithm yields statistically better (column W) results, comparable results (col-

umn T) and statistically worse results (column L). We also provide the p-values rela-

tive to the Wilcoxon Signed-Rank (significance=0.05) test performed on the average

fitness achieved by the three algorithms across the 48 instances of the benchmark set

where instances with comparable results (according to the Wilcoxon Rank-Sum test)

are treated as ties.

Table 3. Average results achieved by GA-SMAB, GA-randAOS and GA algorithms

GA-SMAB GA-RANDAOS GA

Average fitness 4.5351 4.5552 4.6369

Standard dev of fitness 0.0856 0.1009 0.0509

Best fitness 4.3617 4.3709 4.5534

Average cost 1,830,377.1444 1,830,223.0918 1,830,037.0659

Average completing time 27.0460 27.2475 28.0686

Table 4. Win/tie/losses obtained based on Wilcoxon Rank-Sum tests for each instance, p-

values of the Wilcoxon Signed-Rank test across instances and average Cohen's d effect size

GA-SMAB GA-randAOS GA

w t l w t l w t l

GA-SMAB 25 23 0 44 4 0

 1.23E-05 7.62E-09

 0.6368 1.5688

GA-randAOS 0 23 25 37 11 0

 1.23E-05 1.14E-07

 0.6368 0.9814

GA 0 4 44 0 11 37

 7.62E-09 1.14E-07

 1.5688 0.9814

The three algorithms produce statistically significantly different results across

problem instances, as shown by the Wilcoxon Sign-Rank tests. The average Cohen’s

d effect sizes vary from 0.6368 (medium) to 1.5688 (large). Together with the win-

tie-losses, this shows that it is beneficial to adopt GA-SMAB instead of GA-randAOS

or GA. GA-SMAB achieved similar or better fitness than GA-randAOS and GA on

all problem instances. In particular, GA-SMAB achieved statistically better fitness on

25 instances when compared to GA-randAOS, and similar fitness on 23 instances.

This suggests that there are instances which do not require an AOS strategy, where

GA-SMAB performs similarly to GA-randAOS. The improvement obtained through

the use of GA-SMAB is also confirmed by the Cohen's d Effect size included in table

4. However, an AOS strategy is needed for other problem instances. When compared

to the results achieved by GA, GA-SMAB outperforms its results on 44 instances.

This difference can be explained by the interaction between the random parent selec-

tion and the SMAB strategy, as the increased exploration ability of the algorithm

created more favorable conditions for the GA-SMAB.

In order to show the behavior of the algorithm, we provide the selection rates of the

crossover and mutation operators for the instance inst-employees20 respectively in

Fig.2. It is possible to notice trends in the search as one operator is preferred to the

others during different periods of the search. This is particularly clear in the selection

rates of the mutation operator, where operator Mutate-Column has a higher selection

rate for most of the search, with the exception of some periods where the other two

operators are preferred. In the plot relative to the crossover operator, on the other

hand, it is possible to notice shorter trends over the course of the search, although

Operator Swap-Block seems to be the one selected most of the times. This might be

explained by the fact that the algorithm favors a frequent alternation of the crossover

operators, as the repeated use of a single operator might cause a decrease of the popu-

lation diversity.

Fig. 2. Selection rates of the crossover (left) and selection rates of the mutation (right)

5 Conclusions

This paper proposes an evolutionary hyper-heuristic to address the SPSP. The hyper-

heuristic uses an EA as a high level strategy and adapt automatically both mutation

and crossover operators during evolution. A sliding window MAB strategy is used to

adaptively select both operators during the search. The experiments performed on a

set of 48 benchmark instances showed that the proposed algorithm can solve the SPSP

effectively and outperform a strategy based on a simple random selection of the oper-

ators as well as a state-of-the-art approach from the literature. Future work includes a

detailed analysis of the behavior of the proposed algorithm and the reasons for its

ability to generate better solutions; an extension of the proposed algorithm in order to

deal with the dynamic SPSP [13]; the use of alternative AOS strategies; and the inclu-

sion of more aspects that could affect software projects into the problem formulation.

Acknowledgements

This paper was partly supported by the National Natural Science Foundation of

China under Grant (Grants.51305024 and 61329302) and EPSRC (Grant No.

EP/J017515/1). Xin Yao was supported by a Royal Society Wolfson Research Merit

Award.

References
1. Alba E., Francisco C.. Software project management with GAs. Inform Sciences. 177,

2380–2401 (2007).

2. Burke E., Hyde M., Kendall G., Ochoa G., Ozcan E., Woodward J.. A Classification of

Hyper-heuristic Approaches. Handbook of Metaheuristics, International Series in Oper Res

Manag Sci, M. Gendreau and J-Y Potvin (Eds.), Springer, pp.449-468 (2010).

3. Blazewicz J., Lenstra J., Rinnooy K.. Scheduling subject to resource constraints: Classifi-

cation and complexity. Discret Appl Math, 5, 11–24 (1983).

4. Crawford B., Soto R., Johnson F., Monfroy E., Paredes F.. A Max-Min Ant System algo-

rithm to solve the Software Project Scheduling Problem. Expert Syst Appl 41, 6634–6645

(2014)

5. Chang C., Jiang H., Di Y., Zhu D., Ge Y.. Time-line based model for software project

scheduling with genetic algorithms. Inform Software Tech 50, 1142–1154 (2008)

6. Chen W., Zhang J.. Ant Colony Optimization for Software Project Scheduling and Staffing

with an Event-Based Scheduler. IEEE T SOFTWARE ENG,39(1),1-17 (2013)

7. Consoli P., Minku L. and Yao X., Dynamic Selection of Evolutionary Algorithm Opera-

tors Based on Online Learning and Fitness Landscape Metrics, In: Proc. of the 10th Inter-

national Conference on Simulated Evolution And Learning, Lecture Notes in Computer

Science,Vol 8886, pp.359-370, Springer-Verlag, Berlin. (2014)

8. Ding R. and Jing X., Five Principles of Project Management in Software Companies, Pro-

ject Manag Tech (in Chinese), vol. 1, (2003).

9. Jorge A., Alcaraz S., Ochoa G., Swan J., Carpio M., Puga H., Burke E.. Effective learning

hyper-heuristics for the course timetabling problem. Eur J Oper Res 238, 77–86 (2014)

10. Li K., Fialho A., Kwong S., Zhang Q.. Adaptive Operator Selection With Bandits for a

Multiobjective Evolutionary Algorithm Based on Decomposition. IEEE T Evolut Comput,

18(1):114-130 (2014)
11. Minku L., Sudholt D., and Yao X., Improved Evolutionary Algorithm Design for the Pro-

ject Scheduling Problem Based on Runtime Analysis. IEEE T Software Eng. 40(1),83-102

(2014)

12. Montoya C., Bellenguez-Morineau O., Pinson E., Rivreau D.. Branch-and-price approach

for the multi-skill project scheduling problem. Optim Lett. 8,1721–1734 (2014)

13. Shen X., Minku L., Bahsoon R. and Yao X.. Dynamic Software Project Scheduling

through a Proactive-rescheduling Method, IEEE T Software Eng, DOI: 10.1109/ TSE.

2015.2512266, 24 December 2015.

14. Penta M., Harman M. and Antoniol G.. The use of search-based optimization techniques to

schedule and staff software projects: an approach and an empirical study. Softw. Pract.

Exper.; 41, 495–519 (2011)

15. Xiao J., Ao X., Tang Y.. Solving software project scheduling problems with ant colony op-

timization. Comput Oper Res 40, 33–46 (2013)
16. Xiao J., Osterweil L., Wang Q., and Li M..Dynamic Resource Scheduling in Disruption-

Prone Software Development Environments. FASE 2010, pp. 107–122 (2010).

17. Yannibelli V. and Amandi A., A Knowledge-Based Evolutionary Assistant to Software

Development Project Scheduling, Expert Sys Appl, 38, 8403-8413 (2011)

http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/J017515/1
http://dx.doi.org/10.1007/978-3-319-13563-2_31
http://dx.doi.org/10.1007/978-3-319-13563-2_31
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=32
http://dx.doi.org/10.1109/TSE.2015.2512266
http://dx.doi.org/10.1109/TSE.2015.2512266

