Skip to main content

Fast and Effective Multi-objective Optimisation of Submerged Wave Energy Converters

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9921))

Abstract

Despite its considerable potential, wave energy has not yet reached full commercial development. Currently, dozens of wave energy projects are exploring a variety of techniques to produce wave energy efficiently. A common design for a wave energy converter is called a buoy. A buoy typically floats on the surface or just below the surface of the water, and captures energy from the movement of the waves.

In this article, we tackle the multi-objective variant of this problem: we are taking into account the highly complex interactions of the buoys, while optimising the energy yield, the necessary area, and the cable length needed to connect all buoys. We employ caching-techniques and problem-specific variation operators to make this problem computationally feasible. This is the first time the interactions between wave energy resource and array configuration are studied in a multi-objective way.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: multiobjective selection based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007)

    Article  MATH  Google Scholar 

  2. de Andrés, A., Guanche, R., Meneses, L., Vidal, C., Losada, I.: Factors that influence array layout on wave energy farms. Ocean Eng. 82, 32–41 (2014)

    Article  Google Scholar 

  3. Drew, B., Plummer, A., Sahinkaya, M.N.: A review of wave energy converter technology. Proc. Inst. Mech. Eng. Part A: J. Power Energ. 223(8), 887–902 (2009)

    Article  Google Scholar 

  4. Falnes, J.: Ocean Waves, Oscillating Systems: Linear Interactions Including Wave-Energy Extraction. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  5. GNU Scientific Library: Version 1.16 (2013). http://www.gnu.org/software/gsl/. Accessed 7 Apr 2016

  6. Hansen, N.: CMA-ES Source Code: Practical Hints. https://www.lri.fr/~hansen/cmaes_inmatlab.html. Accessed 7 Apr 2016

  7. Igel, C., Hansen, N., Roth, S.: Covariance matrix adaptation for multi-objective optimization. Evol. Comput. 15(1), 1–28 (2007)

    Article  Google Scholar 

  8. Igel, C., Heidrich-Meisner, V., Glasmachers, T.: Shark. J. Mach. Learn. Res. 9, 993–996 (2008)

    MATH  Google Scholar 

  9. Lagoun, M., Benalia, A., Benbouzid, M.: Ocean wave converters: state of the art and current status. In: IEEE International Energy Conference, pp. 636–641 (2010)

    Google Scholar 

  10. López, I., Andreu, J., Ceballos, S., de Alegría, I.M., Kortabarria, I.: Review of wave energy technologies and the necessary power-equipment. Renew. Sustain. Energ. Rev. 27, 413–434 (2013)

    Article  Google Scholar 

  11. Lynn, P.A.: Electricity from Wave and Tide: An Introduction to Marine Energy. Wiley, Hoboken (2013)

    Book  Google Scholar 

  12. MATLAB: Version 8.6.0 (R2015b). The MathWorks Inc., Natick (2015)

    Google Scholar 

  13. OpenMP Architecture Review Board: OpenMP Application Program Interface, Version 3.0, May 2008

    Google Scholar 

  14. Scruggs, J.T., Lattanzio, S.M., Taflanidis, A.A., Cassidy, I.L.: Optimal causal control of a wave energy converter in a random sea. Appl. Ocean Res. 42(2013), 1–15 (2013)

    Article  Google Scholar 

  15. Sergiienko, N.Y., Cazzolato, B.S., Ding, B., Arjomandi, M.: Frequency Domain Model of the Three-Tether WECs Array (2016). https://www.researchgate.net/publication/291972368_Frequency_domain_model_of_the_three-tether_WECs_array. Accessed 7 Apr 2016

  16. Srokosz, M.A.: The submerged sphere as an absorber of wave power. Fluid Mech. 95(4), 717–741 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  17. Tran, R., Wu, J., Denison, C., Ackling, T., Wagner, M., Neumann, F.: Fast and effective multi-objective optimisation of wind turbine placement. In: Genetic and Evolutionary Computation, pp. 1381–1388. ACM (2013)

    Google Scholar 

  18. Wu, J., Shekh, S., Sergiienko, N., Cazzolato, B., Ding, B., Neumann, F., Wagner, M.: Fast and effective optimisation of arrays of submerged wave energy converters. In: Genetic and Evolutionary Computation Conference (2016). Accepted for publication

    Google Scholar 

Download references

Acknowledgments

This work has been supported by the ARC Discovery Early Career Researcher Award DE160100850.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Wagner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Arbonès, D.R., Ding, B., Sergiienko, N.Y., Wagner, M. (2016). Fast and Effective Multi-objective Optimisation of Submerged Wave Energy Converters. In: Handl, J., Hart, E., Lewis, P., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds) Parallel Problem Solving from Nature – PPSN XIV. PPSN 2016. Lecture Notes in Computer Science(), vol 9921. Springer, Cham. https://doi.org/10.1007/978-3-319-45823-6_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45823-6_63

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45822-9

  • Online ISBN: 978-3-319-45823-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics