Skip to main content

Example Landscapes to Support Analysis of Multimodal Optimisation

  • Conference paper
  • First Online:
Book cover Parallel Problem Solving from Nature – PPSN XIV (PPSN 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9921))

Included in the following conference series:

Abstract

Theoretical analysis of all kinds of randomised search heuristics has been and keeps being supported and facilitated by the use of simple example functions. Such functions help us understand the working principles of complicated heuristics. If the function represents some properties of practical problem landscapes these results become practically relevant. While this has been very successful in the past for optimisation in unimodal landscapes there is a need for generally accepted useful simple example functions for situations where unimodal objective functions are insufficient: multimodal optimisation and investigation of diversity preserving mechanisms are examples. A family of example landscapes is defined that comes with a limited number of parameters that allow to control important features of the landscape while all being still simple in some sense. Different expressions of these landscapes are presented and fundamental properties are explored.

The authors want to thank the organisers of the Dagstuhl Seminar 15211 ‘Theory of Evolutionary Algorithms’ for encouraging discussions that motivated this work. This article is based upon work from COST Action CA15140 ‘Improving Applicability of Nature-Inspired Optimisation by Joining Theory and Practice (ImAppNIO)’ supported by COST (European Cooperation in Science and Technology).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    see, e.g., www.epitropakis.co.uk/cec16-niching/competition and coco.gforge.inria.fr.

  2. 2.

    see, e.g., www.epitropakis.co.uk/ppsn2016-niching.

References

  1. Branke, J.: Memory enhanced evolutionary algorithms for changing optimization problems. In: Proceedings of CEC, pp. 1875–1882. IEEE Press (1999)

    Google Scholar 

  2. Doerr, B., Hansen, N., Igel, C., Thiele, L.: Theory of evolutionary algorithms (Dagstuhl seminar 15211). Dagstuhl Rep. 5(5), 57–91 (2016)

    Google Scholar 

  3. Doerr, B., Winzen, C.: Ranking-based black-box complexity. Algorithmica 68(3), 571–609 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Droste, S., Jansen, T., Wegener, I.: A rigorous complexity analysis of the (1 + 1) evolutionary algorithm for linear functions with Boolean inputs. In: Proceedings of ICEC, pp. 499–504. IEEE Press (1998)

    Google Scholar 

  5. Fischer, S., Wegener, I.: The one-dimensional Ising model: mutation versus recombination. Theor. Comput. Sci. 344(2–3), 208–225 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Friedrich, T., Oliveto, P.S., Sudholt, D., Witt, C.: Analysis of diversity-preserving mechanisms for global exploration. Evol. Comput. 17(4), 455–476 (2009)

    Article  Google Scholar 

  7. He, J., Yao, X.: Drift analysis and average time complexity of evolutionary algorithms. Artif. Intell. 127, 57–85 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Jansen, T.: Analyzing Evolutionary Algorithms. The Computer Science Perspective. Springer, Heidelberg (2013)

    Book  MATH  Google Scholar 

  9. Jansen, T., Zarges, C.: Performance analysis of randomised search heuristics operating with a fixed budget. Theor. Comput. Sci. 545, 39–58 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jong, K.D., Spears, W.M.: An analysis of the interacting roles of population size and crossover in genetic algorithms. In: Schwefel, H.-P., Manner, R. (eds.) Proceedings of PPSN, pp. 38–47. Springer, Heidelberg (1990)

    Google Scholar 

  11. Kennedy, J., Spears, W.M.: Matching algorithms to problems: an experimental test of the particle swarm and some genetic algorithms on the multimodal problem generator. In: Proceedings of WCCI, pp. 78–83. IEEE Press (1998)

    Google Scholar 

  12. Kötzing, T., Lissovoi, A., Witt, C.: (1+1) EA on generalized dynamic onemax. In: Proceedings of FOGA, pp. 40–51. ACM Press (2015)

    Google Scholar 

  13. Moraglio, A., Johnson, C.G.: Geometric generalization of the Nelder-Mead algorithm. In: Cowling, P., Merz, P. (eds.) EvoCOP 2010. LNCS, vol. 6022, pp. 190–201. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  14. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  15. Mühlenbein, H.: How genetic algorithms really work: mutation and hillclimbing. In: Proceedings of PPSN, pp. 15–26. Elsevier (1992)

    Google Scholar 

  16. Oliveto, P.S., Sudholt, D., Zarges, C.: On the runtime analysis of fitness sharing mechanisms. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 932–941. Springer, Heidelberg (2014)

    Google Scholar 

  17. Preuss, M.: Multimodal Optimization by Means of Evolutionary Algorithms. Springer, Heidelberg (2015)

    Book  MATH  Google Scholar 

  18. Prügel-Bennett, A., Tayarani-Najaran, M.: Maximum satisfiability: anatomy of the fitness landscape for a hard combinatorial optimization problem. IEEE Trans. Evol. Comput. 16(3), 319–338 (2012)

    Article  Google Scholar 

  19. Shir, O.M.: Niching in evolutionary algorithms. In: Rozenberg, G., Bäck, T., Kok, J.N. (eds.) Handbook of Natural Computing, pp. 1035–1070. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  20. Stadler, P.: Fitness landscapes. Biol. Evol. Stat. Phys. 585, 183–204 (2002)

    Article  Google Scholar 

  21. Sudholt, D.: Crossover is provably essential for the Ising model on trees. In: Proceedings of GECCO, pp. 1161–1167. ACM Press (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Zarges .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Jansen, T., Zarges, C. (2016). Example Landscapes to Support Analysis of Multimodal Optimisation. In: Handl, J., Hart, E., Lewis, P., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds) Parallel Problem Solving from Nature – PPSN XIV. PPSN 2016. Lecture Notes in Computer Science(), vol 9921. Springer, Cham. https://doi.org/10.1007/978-3-319-45823-6_74

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45823-6_74

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45822-9

  • Online ISBN: 978-3-319-45823-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics