Skip to main content

Scene Classification in High Resolution Remotely Sensed Images Based on PCANet

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9865))

Abstract

Rich information provided by high resolution remotely sensed images allow us to classify scenes by understanding their spatial and structural patterns. The key of scene classification task with remotely sensed images lies in feature learning efficiency and invariant image representations. While deep neutral network-based approaches achieved good classification accuracy for remotely sensed images, they often have to train millions of parameters and involve heavily iterative computation. In this paper, we propose a new framework for scene classification based on a simple PCANet which is introduced into high remotely sensed image classification for the first time. First, we verify the eligibility of PCANet on classifying large scale scenes from high resolution remotely sensed images. Then we explore the impact of PCANet parameters including filter size, number of filters, and block overlap ratio on classification accuracy. Lastly, we do comprehensive experiments with the public UC-Merced dataset to exemplify the effectiveness of the approach. Experimental results show that the proposed framework achieved on par with the state-of-the-art deep neutral network-based classification accuracy without training a huge amount of parameters. We demonstrate that the proposed classification framework can be highly effective in developing a classification system that can be used to automatically scan large-scale high resolution satellite imagery for classifying scenes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Romero, A., Gatta, C., Camps-Valls, G.: Unsupervised deep feature extraction for remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 54(3), 1349–1362 (2016)

    Article  Google Scholar 

  2. Tucker, C.: Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 8, 127–150 (1979)

    Article  Google Scholar 

  3. Huete, A., Justice, C., Liu, H.: Development of vegetation and soil indices for MODIS-EOS. Remote Sens. Environ. 49, 224–234 (1994)

    Article  Google Scholar 

  4. Gao, B.: NDWI a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 58, 257–266 (1996)

    Article  Google Scholar 

  5. Davis, S., Landgrebe, D., Phillips, T., Swain, P., et al.: Remote Sensing: The Quantitative Approach, p. 405. McGraw-Hill International Book Co., New York (1978). 1

    Google Scholar 

  6. Ouma, Y.O., Tetuko, J., Tateishi, R.: Analysis of co-occurrence and discrete wavelet transform textures for differentiation of forest and non-forest vegetation in very-high-resolution optical-sensor imagery. Int. J. Remote Sens. 29, 3417–3456 (2008)

    Article  Google Scholar 

  7. Reis, S., Taşdemir, K.: Identification of hazelnut fields using spectral and Gabor textural features. ISPRS J. Photogram. Remote Sens. 66, 652–661 (2011)

    Article  Google Scholar 

  8. Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  9. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE International Conference on Computer Vision and Pattern Recognition, pp. 886–893 (2005)

    Google Scholar 

  10. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 13(5786), 504–507 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chan, T.-H., Jia, K., Gao, S.H., et al.: PCANet: a simple deep learning baseline for image classification? (2014). arXiv preprint arXiv:1404.3606

  12. Deng, J., Dong, W., Socher, R., et al.: Imagenet: a large-scale hierarchical image database. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, pp. 248–255 (2009)

    Google Scholar 

  13. Le, Q., Ranzato, M., Monga, R., et al.: Building high level features using large scale unsupervised learning. In: International Conference on Machine Learning (2012)

    Google Scholar 

  14. Castelluccio, M., Poggi, G., Sansone, C., Verdoliva, L.: Land Use Classification in Remote Sensing Images by Convolutional Neural Networks. http://arXiv.org/abs/1508.00092. Accessed 12 Apr 2016

  15. Bruzzone, L., Carlin, L.: A multilevel context-based system for classification of very high spatial resolution images. IEEE Trans. Geosci. Remote Sens. 44(9), 2587–2600 (2006)

    Article  Google Scholar 

  16. Shackelford, A.K., Davis, C.H.: A combined fuzzy pixel-based and object-based approach for classification of high-resolution multispectral data over urban areas. IEEE Trans. Geosci. Remote Sens. 41(10), 2354–2363 (2003)

    Article  Google Scholar 

  17. Bellens, R., Gautama, S., Martinez-Fonte, L., et al.: Improved classification of VHR images of urban areas using directional morphological profiles. IEEE Trans. Geosci. Remote Sens. 46(10), 2803–2813 (2008)

    Article  Google Scholar 

  18. Ojala, T., Pietikainen, M., Maenp, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  Google Scholar 

  19. Yang, Y., Newsam, S.: Bag-of-visual-words and spatial extensions for land-use classification. In: International Conference on Advances in Geographic Information Systems, pp. 270–279 (2010)

    Google Scholar 

  20. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: IEEE International Conference on Computer Vision and Pattern Recognition, pp. 2169–2178 (2006)

    Google Scholar 

  21. Jiang, Y., Yuan, J., Yu, G.: Randomized spatial partition for scene recognition. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573, pp. 730–743. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  22. Chen, S., Tian, Y.: Pyramid of spatial relations for scene-level land use classification. IEEE Trans. Geosci. Remote Sens. 53, 1947–1957 (2015)

    Article  MathSciNet  Google Scholar 

  23. Yang, Y., Newsam, S.: Spatial pyramid co-occurrence for image classification. In: IEEE International Conference on Computer Vision, pp. 1465–1472 (2011)

    Google Scholar 

  24. Coates, A., Ng, A.Y., Lee, H.: An analysis of single-layer networks in unsupervised feature learning. In: Proceedings of the International Conference on Artificial Intelligence and Statistics, Ft. Lauderdale, FL, USA, pp. 215–223 (2011)

    Google Scholar 

  25. Zhang, F., Du, B., Zhang, L.: Saliency-guided unsupervised feature learning for scene classification. IEEE Trans. Geosci. Remote Sens. 53, 2175–2184 (2015)

    Article  Google Scholar 

  26. Hu, F., Xia, G., Wang, Z., et al.: Unsupervised feature learning via spectral clustering of multidimensional patches for remotely sensed scene classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8, 2015–2030 (2015)

    Article  Google Scholar 

  27. Li, H., Lin, Z., Shen, X., et al.: A convolutional neural network cascade for face detection. In: CVPR (2015)

    Google Scholar 

  28. Razavian, A.S., Azizpour, H., Sullivan, J., Carlsson, S.: CNN features off-the-shelf: an astounding baseline for recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Columbus, OH, USA, pp. 512–519 (2014)

    Google Scholar 

  29. Gong, Y., Wang, L., Guo, R., Lazebnik, S.: Multi-scale orderless pooling of deep convolutional activation features. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part VII. LNCS, vol. 8695, pp. 392–407. Springer, Heidelberg (2014)

    Google Scholar 

  30. Penatti, O.A., Nogueira, K., dos Santos, J.A.: Do deep features generalize from everyday objects to remote sensing and aerial scenes domains? In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Boston, MA, USA, pp. 44–51 (2015)

    Google Scholar 

Download references

Acknowledgments

This work is supported by National Basic Research Program of China (973 Program) Grant 2012CB316206, the National Natural Science Foundation of China (NSFC) Grant 61272098, and the Capacity Development for Local College Project Grant 15590501900.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Huang, D., Du, Y., He, Q., Song, W., Liu, K. (2016). Scene Classification in High Resolution Remotely Sensed Images Based on PCANet. In: Morishima, A., et al. Web Technologies and Applications. APWeb 2016. Lecture Notes in Computer Science(), vol 9865. Springer, Cham. https://doi.org/10.1007/978-3-319-45835-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45835-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45834-2

  • Online ISBN: 978-3-319-45835-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics