Skip to main content

Coupling Convolutional Neural Networks and Hough Voting for Robust Segmentation of Ultrasound Volumes

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9796))

Abstract

This paper analyses the applicability and performance of Convolutional Neural Networks (CNN) to localise and segment anatomical structures in medical volumes under clinically realistic constraints: small amount of available training data, the need of a short processing time and limited computational resources. Our segmentation approach employs CNNs for simultaneous classification and feature extraction. A Hough voting strategy has been developed in order to automatically localise and segment the anatomy of interest. Our results show (i) improved robustness, due to the inclusion of prior shape knowledge, (ii) highly accurate segmentation even when only small datasets are available during training, (iii) speed and computational requirements that match those that are usually present in clinical settings.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ahmadi, S.A., Baust, M., Karamalis, A., Plate, A., Bötzel, K., Klein, T., Navab, N.: Midbrain segmentation in transcranial 3D ultrasound for Parkinson diagnosis. Med. Image Comput. Comput. Assist. Interv. 14(Pt 3), 362–369 (2011)

    Google Scholar 

  2. Berg, D., Seppi, K., Behnke, S., Liepelt, I., Schweitzer, K., Stockner, H., Wollenweber, F., Gaenslen, A., Mahlknecht, P., Spiegel, J., Godau, J., Huber, H., Srulijes, K., Kiechl, S., Bentele, M., Gasperi, A., Schubert, T., Hiry, T., Probst, M., Schneider, V., Klenk, J., Sawires, M., Willeit, J., Maetzler, W., Fassbender, K., Gasser, T., Poewe, W.: Enlarged substantia nigra hyperechogenicity and risk for Parkinson disease: a 37-month 3-center study of 1847 older persons. Arch. Neurol. 68(7), 932–937 (2011)

    Article  Google Scholar 

  3. Cernazanu-Glavan, C., Holban, S.: Segmentation of bone structure in X-ray images using convolutional neural network. Adv. Electr. Comput. Eng. 13(1), 87–94 (2013)

    Article  Google Scholar 

  4. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic image segmentation with deep convolutional nets and fully connected CRFs. arXiv preprint arXiv:1412.7062 (2014)

  5. Ciresan, D., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Deep neural networks segment neuronal membranes in electron microscopy images. In: Advances in Neural Information Processing Systems, pp. 2843–2851 (2012)

    Google Scholar 

  6. Engel, K., Toennies, K.D.: Segmentation of the midbrain in transcranial sonographies using a two-component deformable model. In: 12th Annual Conference on Medical Image Understanding and Analysis, pp. 3–7. Citeseer (2009)

    Google Scholar 

  7. Farfade, S.S., Saberian, M.J., Li, L.J.: Multi-view face detection using deep convolutional neural networks. In: Proceedings of the 5th ACM on International Conference on Multimedia Retrieval, pp. 643–650. ACM (2015)

    Google Scholar 

  8. Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., Pal, C., Jodoin, P.M., Larochelle, H.: Brain tumor segmentation with deep neural networks. arXiv preprint arXiv:1505.03540 (2015)

  9. Kim, M., Wu, G., Shen, D.: Unsupervised deep learning for hippocampus segmentation in 7.0 Tesla MR images. In: Wu, G., Zhang, D., Shen, D., Yan, P., Suzuki, K., Wang, F. (eds.) MLMI 2013. LNCS, vol. 8184, pp. 1–8. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  10. Lee, N., Laine, A.F., Klein, A.: Towards a deep learning approach to brain parcellation. In: 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 321–324. IEEE (2011)

    Google Scholar 

  11. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  12. Melinščak, M., Prentašić, P., Lončarić, S.: Retinal vessel segmentation using deep neural networks. In: VISAPP 2015 (10th International Conference on Computer Vision Theory and Applications) (2015)

    Google Scholar 

  13. Middleton, I., Damper, R.I.: Segmentation of magnetic resonance images using a combination of neural networks and active contour models. Med. Eng. Phys. 26(1), 71–86 (2004)

    Article  Google Scholar 

  14. Milletari, F., Ahmadi, S.A., Kroll, C., Hennersperger, C., Tombari, F., Shah, A., Plate, A., Bötzel, K., Navab, N.: Robust Segmentation of Various Anatomies in 3D Ultrasound Using Hough Forests and Learned Data Representations. Medical Image Computing and Computer Assisted Interventions (2015, to appear)

    Google Scholar 

  15. Milletari, F., Ahmadi, S.A., Kroll, C., Plate, A., Rozanski, V., Maiostre, J., Levin, J., Dietrich, O., Ertl-Wagner, B., Bötzel, K., et al.: Hough-CNN: deep learning for segmentation of deep brain regions in MRI and ultrasound. arXiv preprint arXiv:1601.07014 (2016)

  16. Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. arXiv preprint arXiv:1606.04797 (2016)

  17. Muja, M., Lowe, D.G.: Scalable nearest neighbor algorithms for high dimensional data. IEEE Trans. Pattern Anal. Mach. Intell. 36, 2227–2240 (2014)

    Article  Google Scholar 

  18. Plate, A., Ahmadi, S.A., Pauly, O., Klein, T., Navab, N., Bötzel, K.: Three-dimensional sonographic examination of the midbrain for computer-aided diagnosis of movement disorders. Ultrasound Med. Biol. 38(12), 2041–2050 (2012)

    Article  Google Scholar 

  19. Prasoon, A., Petersen, K., Igel, C., Lauze, F., Dam, E., Nielsen, M.: Deep feature learning for knee cartilage segmentation using a triplanar convolutional neural network. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part II. LNCS, vol. 8150, pp. 246–253. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  20. Riegler, G., Ferstl, D., Rüther, M., Bischof, H.: Hough networks for head pose estimation and facial feature localization. J. Comput. Vis. 101(3), 437–458 (2013)

    Article  Google Scholar 

  21. Ronneberger, O., Philipp, F., Thomas, B.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  22. Roth, H.R., Lu, L., Seff, A., Cherry, K.M., Hoffman, J., Wang, S., Liu, J., Turkbey, E., Summers, R.M.: A new 2.5D representation for Lymph node detection using random sets of deep convolutional neural network observations. In: Hata, N., Barillot, C., Hornegger, J., Howe, R., Golland, P. (eds.) MICCAI 2014, Part I. LNCS, vol. 8673, pp. 520–527. Springer, Heidelberg (2014)

    Google Scholar 

  23. Sakalauskas, A., Lukoševičius, A., Laučkaitė, K., Jegelevičius, D., Rutkauskas, S.: Automated segmentation of transcranial sonographic images in the diagnostics of Parkinsons disease. Ultrasonics 53(1), 111–121 (2013)

    Article  Google Scholar 

  24. Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: Overfeat: integrated recognition, localization and detection using convolutional networks. arXiv preprint arXiv:1312.6229 (2013)

  25. Song, Y., Zhang, L., Chen, S., Ni, D., Lei, B., Wang, T.: Accurate segmentation of cervical cytoplasm and nuclei based on multiscale convolutional network and graph partitioning. IEEE Trans. Biomed. Eng. 62(10), 2421–2433 (2015)

    Article  Google Scholar 

  26. Turaga, S.C., Murray, J.F., Jain, V., Roth, F., Helmstaedter, M., Briggman, K., Denk, W., Seung, H.S.: Convolutional networks can learn to generate affinity graphs for image segmentation. Neural Comput. 22(2), 511–538 (2010)

    Article  MATH  Google Scholar 

  27. Urban, G., Bendszus, M., Hamprecht, F., Kleesiek, J.: Multi-modal brain tumor segmentation using deep convolutional neural networks. In: MICCAI BraTS (Brain Tumor Segmentation) Challenge. Proceedings, Winning Contribution, pp. 31–35 (2014)

    Google Scholar 

  28. Walter, U., Dressler, D., Probst, T., Wolters, A., Abu-Mugheisib, M., Wittstock, M., Benecke, R.: Transcranial brain sonography findings in discriminating between parkinsonism and idiopathic Parkinson disease. Arch. Neurol. 64(11), 1635–1640 (2007)

    Article  Google Scholar 

  29. Wang, S., Yin, Y., Cao, G., Wei, B., Zheng, Y., Yang, G.: Hierarchical retinal blood vessel segmentation based on feature and ensemble learning. Neurocomputing 149, 708–717 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the Lüneburg Heritage and Deutsche Forschungsgesellschaft (DFG) Grant BO 1895/4-1. We gratefully acknowledge the support of NVIDIA Corporation in donating a Tesla K40 GPU for this study.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Kroll, C., Milletari, F., Navab, N., Ahmadi, SA. (2016). Coupling Convolutional Neural Networks and Hough Voting for Robust Segmentation of Ultrasound Volumes. In: Rosenhahn, B., Andres, B. (eds) Pattern Recognition. GCPR 2016. Lecture Notes in Computer Science(), vol 9796. Springer, Cham. https://doi.org/10.1007/978-3-319-45886-1_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45886-1_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45885-4

  • Online ISBN: 978-3-319-45886-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics