N
N

N

HAL

open science

Analysis of a Code-Based Countermeasure Against
Side-Channel and Fault Attacks
Guillaume Barbu, Alberto Battistello

» To cite this version:

Guillaume Barbu, Alberto Battistello. Analysis of a Code-Based Countermeasure Against Side-
Channel and Fault Attacks. 10th IFIP International Conference on Information Security Theory
and Practice (WISTP), Sep 2016, Heraklion, Greece. pp.153-168, 10.1007/978-3-319-45931-8 10 .

hal-01639620

HAL Id: hal-01639620
https://inria.hal.science/hal-01639620
Submitted on 20 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://inria.hal.science/hal-01639620
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Analysis of a Code-based Countermeasure
against Side-Channel and Fault Attacks

Guillaume Barbu! and Alberto Battistello®

Oberthur Technologies, Security Group
Cité Photonique, Batiment ELNATH, ler étage
1, allée des Lumieres, 33 600 Pessac, France
{g.barbu,a.battistello}@oberthur.com

Abstract. The design of robust countermeasures against Side-Channel
Analysis or Fault Attacks is always a challenging task. At WISTP’14, a
single countermeasure designed to thwart in the same effort both kinds
of attacks was presented. This countermeasure is based on coding theory
and consists in a specific encoding of the manipulated data acting in the
same time as a random masking and an error detector. In this paper, we
prove that this countermeasure does not meet the ambitious objectives
claimed by its authors. Indeed, we exhibit a bias in the distribution of
the masked values that can be exploited to retrieve the sensitive data
from the observed side-channel leakage. Going further, we show that this
bias is inherent to the nature of the encoding and that randomizing the
code itself can be useful to reduce the bias but cannot completely fix the
scheme.

Keywords: Side-Channel Analysis, Fault Attacks, Coding Theory,
Countermeasure, AES.

1 Introduction

Since the introduction of side-channel analysis and fault attacks against cryp-
tographic implementations in the late 90s, the scientific community, both aca-
demic and industrial, has engaged a great effort in designing robust and efficient
countermeasures to counteract these attacks. Usually, each countermeasure is
designed to tackle only one of these two kinds of attacks. For instance, boolean
masking [1] of key-dependent data is meant to avoid information leakage through
a side-channel medium. On the other hand, time-redundant or data-redundant
computations are implemented to detect fault injections during the execution of
the algorithm.

Following the idea first introduced in [2] the authors of [3] proposed at
WISTP’14 a new countermeasure named ODSM (for Orthogonal Direct Sum
Masking) based on coding theory and showed how it could be applied to protect
an AES implementation. Besides the application of code-based techniques, one
of the novelty of ODSM is that the same countermeasure aims at defeating both
side-channel analysis (SCA) and fault attacks (FA) at once.

By introducing a random mask in the encoding of a sensitive data, ODSM
aims at decorrelating the side-channel leakage from the value of the sensitive
variable. At the same time, by taking advantage of the error detection capability
of the code, the scheme also allows to control the integrity of the manipulated
data and eventually to detect induced faults.

Although the proposed countermeasure is pretty elegant from a theoretic
point of view and that a proof of security is presented in the original article,
we demonstrate in the following that such a proposal fails at ensuring resistance
against SCA.

This article is organized as follows. Section 2 recalls some basic concepts of
coding theory and defines some notions regarding side-channel attacks. Section 3
introduces the ODSM countermeasure described in [3] and its application to the
AES. Section 4 gives the result of our analysis of the masking scheme with
regard to SCA. In Section 5 we provide further evidence of the insecurity of the
scheme by mounting a template attack against a real device. Section 6 proposes
some improvements of the countermeasure to achieve a better resistance against
SCA while preserving the FA resistance. Finally Section 7 presents concluding
remarks and future works.

2 Preliminaries

This section gives the elementary notions required to both apprehend the po-
tential of an attacker and follow the masking scheme design of [3].

2.1 Passive Side-Channel Analysis

Previously used by several intelligence agencies, but formally introduced to the
academic community by Kocher et al. only in 1996, Side-Channel Attacks have
revolutionized the world of cryptography [4,5]. In particular it is now common
knowledge that the observation of physical interactions between a hardware ex-
ecuting a cryptographic algorithm and the surrounding environment may al-
low retrieving values of internally manipulated sensitive variables. Simple Power
Analysis, consists in retrieving a secret value by simple observation of the power
consumption of the device during a process depending on this secret value. As
an example, on naive RSA implementations, the execution time may leak critical
information on the value of secret key bits.

More complex attacks like Differential Power Analysis (DPA) make use of
the statistical dependency between the observed interactions and the sensitive
values. Concretely, in order to retrieve the secret key of an embedded AES, an at-
tacker asks the ciphering of several known messages and observes the power con-
sumption of the processor during the execution of the algorithm. After collecting
enough observations, by correlating the messages and the power consumptions
the attacker can retrieve the secret AES key on unprotected implementations.

Finally, Higher-Order Side-Channel Analysis (HO-SCA) consists in the
higher order statistics analysis of several leakages in order to retrieve the cor-
responding key. SPA, DPA and all their variants have been used to break the

security of many algorithms [6, 7], the obvious effect was the design of efficient
and effective countermeasures. While many ideas have been found [1,8,9], it re-
mains hard and very costly to provide efficient countermeasures that guarantee
security versus high-order attacks.

In the following we present the countermeasure of [3] which aims at thwarting
both faults and side-channel analysis at once. The countermeasure makes use of
results from coding theory which we recall in the next section.

2.2 Notions of Coding Theory

The following gives the few definitions and notations necessary to ease the read-
ing and understanding of the masking scheme presented in Section 3.

Definition 1 (Binary Linear Code). A binary linear code C of length n and
dimension k is a linear subspace of dimension k of the vector space F.

A word of the code C is then a vector w such that w € C.

Definition 2 (Supplement of vector space). The supplement of the vector
space C in F5 is the set of vectors D such that C D = F5, where & denotes the
direct sum of two vector spaces.

An element z in F3 can thus be decomposed uniquely as the sum of two elements
c and d, respectively in C and D:

z=c®d (1)

Definition 3 (Generating matrix). The vectors of the basis of a linear code
C forms the generating matriz of C.

In the following we will denote respectively by G and H the generating matrices
of C and D. Then every element of C (resp. D) can be written uniquely as G
(resp. yH) for some x (resp. y) in F™) (resp. F4™P)) and (1) can be rewritten
as:

z=a2G®dyH (2)

Definition 4 (Dual code). The dual code of C is the linear code C+ = {w €
F3\VeeC, ¢c-w=0}.

Definition 5 (Parity matrix). The parity matriz of C is the generating matriz

of Ct.

In the case where Ct = D, it comes straightforwardly that the dimension of
D is n — k if the dimension of C is k. Also the parity matrix of C is H.

Finally, we recall the proposition from [3] stating a necessary and sufficient
condition to have C and C* supplementary in F%:

Proposition 1. Without loss of generality (a permutation of coordinates might
be mecessary), we can assume that the generating matriz of C is systematic,
and thus takes the form [Iy||M], where Ij is the k x k identity matriz. The
supplementary D of C is equal to C* iff the matriz I, ® MMT is invertible.

This proposition is necessary for the construction of the masking scheme, as will
be explained in the following section.

3 Orthogonal Direct Sum Masking and its Application to
AES

In this section, we introduce the Orthogonal Direct Sum Masking (ODSM) coun-
termeasure as it was defined in [3]. Then we detail how the authors apply it in
the case of an AES implementation.

3.1 Related Works

In [2], Bringer et al. introduced a masking scheme based on a specific encoding of
the sensitive data and the corresponding mask. Following this scheme, the mask-
ing of sensitive data x with the random quantity m is obtained by computing
z = aF & mG, where:

— @ is a generator matrix of the binary linear code C of length n, dimension &
and minimum distance d

— Fis a k X n matrix with k rows in {0,1}" all linearly independent of each
other and not belonging to the binary linear code C.

Recovering x from the encoded word z can be achieved by multiplying z by
the parity matrix of C: zHT = 2FH” ® mGH” = xFHT. The authors then
describe an application of this scheme to the AES.

However, as pointed out by Moradi in [10] certain limitations exist when
choosing the matrix F in order to retrieve the sensitive value x from xFHT.
Namely, one should ensure that the application = — zKH7T is bijective, ie.
(KHT)~! shall exist.

In addition, the author stresses that the application of the scheme to the
AES requires a mask correction at each round of the cipher algorithm.

Finally, the work of Azzi et al. in [11] adapts the ODSM scheme to enhance
the fault detection capability through non-linear functions. However this comes
at the cost of additional computations with regards to the side-channel resistance

property.

3.2 Orthogonal Direct Sum Masking

As previously stated, the construction of the ODSM lies on the fact that for the
considered code C, we have C* @ C = F}. Indeed, in this case we have G- HT =0
and H is the parity matrix of C. Consequently, in (2) we can recover x and y
from z:

r=2GT(GGT)™! (3)
y = 2HT(HHT) ()

The principle of the masking scheme consists in representing a sensitive k-bit
data z by a n-bit data z according to (2), where y is an (n— k)-bit random mask.

The sensitive value x can be easily recovered from z by using (3). In addition,
the integrity of the manipulated data z can be verified as often as required by
checking the integrity of the mask y thanks to (4), which provides the security
against fault injection.

Based on this principle, the authors suggest to perform computation within
the encoded/masked representation. Actually they show how applying opera-
tions on the sensitive value x can be achieved by applying associated operations
on the encoded value z. To reach this goal, they split the different operations
required into three categories and show how to proceed in each one:

2-operand operations. In this case, they focus their attention on the xor oper-
ation. Actually this case is quite straightforward since it is only necessary to
encode the operand and perform the xor. For instance, supposing we need to xor
a round key k; to z, we would have to compute 2z’ = z @ k;G. And we can check
that = @ k; is computed within the masking scheme:

Y =z20kG=(xDk)GDyH (5)

Binary linear operations. Let L be the matrix corresponding to the desired
binary linear operation, then they suggest to construct a so-called masked binary
linear operation whose corresponding matrix L’ is constructed as follows:

L' =G"GG" 'LGe H'(HH")'H (6)

And we can check again that xL is correctly computed within the masking
scheme when 2L’ is computed.

Nonlinear transformations. In this case, a masked version S’ of the transforma-
tion S can be computed:

Vz e Fy, S§'(2) = S(:GT(GGTy " YG @ :H'(HHT)'H (7)

S(x) is correctly obtained within the masking scheme when computing S’(z).

Following these guidelines, the authors claim that various computations can
be carried out within the coset C®d of the linear code C, with d a mask randomly
chosen in D = C*.

3.3 ODSM in Practice: Application to the AES

The ODSM can be applied, in particular, to an implementation of the AES.
For that purpose, the authors consider the 128-bit version of the cipher and
propose to use the binary linear code of parameters [16,8,5] (meaning n = 16
and k = 8) which has a supplementary dual in F1°.1Indeed, once the initial state
has been encoded, the different operations of the AES can be straightforwardly
constructed as previously described.

AddRoundKey. The round key bytes only need to be encoded before being added
to the encoded state: z = z @ kG.

ShiftRows. The ShiftRows operation remains unchanged. It only processes 16-bit
words instead of 8-bit.

MizColumns. MixColumns can be computed by using the linear application
generated from the matrix of the XTIME application by (6).

SubBytes. For the SubBytes operation, two approaches were proposed in [3].
The first one is a look-up table approach which requires to precompute the 16-
bit output S’(z) for all z as per (7). We note that this method implies a quite
heavy memory overhead as a 128kB-table needs to be stored (216 16-bit values).
The second approach actually performs the SubBytes outside of the code and
thus involves the recomputation of a new masked S’ transformation for each
encryption to ensure a proper masking. It is then necessary to compute for all
z in F%:

S, () =S(x®a)®a”, with ' and 2 randomly chosen in Fs (8)

recomp

The SubBytes is then performed as described in Algorithm 1. Our analysis is

Algorithm 1: Masked SubBytes transformation on z = G ® yH

2=2z02'G;
z=2GT(GGT)™Y;
T = S:“ecomp(x);

2 =x2GoyH,
7 =2 @G,
return z’;

actually independent on the choice of either of the two approaches.

! For the generating and parity matrices G and H and for L and L’ corresponding to
the standard and masked versions of the XTIME linear application of this code, we
refer the reader to [3].

4 Side-Channel Analysis of the Masking Scheme

In this section we provide a deep analysis of the side-channel resistance of the
masking scheme suggested in [3]. We demonstrate that it is possible to mount a
first-order side-channel attack versus the countermeasure meant to be resistant

to high-order attacks.

4.1 Striking Differences

The authors of [3] proved the security of the ODSM scheme versus d-th order
side-channel analysis, where d + 1 is the distance of the dual code C*. Thus,
with respect to the parameters of [3], the code is proved to be secure versus
4-th order attacks, 5 being the minimal distance of the dual code. The proof
of security relies on the observation that the expected value of the leakage is
independent on the sensitive value z (up to the 4" order statistical moments),
after the encoding G @ yH with mask y.

035 T T T T T T T 025 T T T T T T T
———x=0
x=46

015]

005F A

(a) Boolean masking pdf. (b) ODSM masking pdf.

Fig. 1: pdf of the Hamming weights of the Boolean masking scheme vs ODSM
masking scheme.

Figure 7 shows the expected probability density functions (pdf) of the Ham-
ming weight (HW) of masked values for both boolean masking and the ODSM
scheme. The results are obtained by collecting the distribution of the HW of
z = x @y for Boolean masking (Figure 1a), and z = G & yH for ODSM, where
x is fixed, and y takes all values in F§ (Figure 1b).

As expected, in the boolean masking scheme the distributions are indepen-
dent on the sensitive values, such that all distributions are superposed and only
one curve is visible. On the other hand, in the ODSM scheme the distributions
depend on the sensitive values and we can distinguish 22 different distributions,

each one related to a particular set of sensitive values. In particular the distri-
butions of the sensitive value z = 0 and x = 46 show striking differences. We
remark that an encoded value with HW of 0 can only be produced by encoding
the sensitive value x = 0 with a mask y = 0. Similarly a HW of 16 can only be
obtained when the encoded sensitive value equals 46. From Figure 1b we thus
observe that the extremum HW value 0 (resp. 16) is only present on the distri-
bution of x = 0 (resp. z = 46). We further remark that for a sensitive encoded
value equal to x = 0 (resp. © = 46), the HW of the encoded value can never be
4,3,2 or 1 (resp. 12,13,14,15).

We show in the following that it is possible to exploit such striking differences
by using 1%t-order statistics in order to retrieve the sensitive values.

4.2 Means-only Attack on the ODSM Distribution

We have noticed that the difference between the leakage distributions of the
ODSM masking scheme and that of classical boolean masking scheme may lead
to weaknesses that have not been taken into account in [3]. In this section we
exhibit an actual attack that exploits these very differences to retrieve the key
value by using only 1%%-order statistics on carefully selected leakages.

The basic idea of our attack comes by observing the distributions of Fig-
ure 1b. The distributions present a left skewness (i.e.: asymmetry about the
mean) for z = 0, and a right skewness when x = 46. While such skewness do not
bias the average of all values, it does when the average is computed only on the
leakages below a given Hamming weight. In practice we exploit the fact that the
skewness preserves the mean only when computed on all values, but produces
detectable biases on subsets of them.

Observing Figure 1b one notice that the mean of all leakage values below 9
and those above 9 are not equals for all the 22 classes, in particular z = 0G ®yH
and z = 46G @ yH should present remarkable differences due to the skewness.
We thus argue that it provides a distinguisher for the values 0 and 46.

A more careful partitioning leads to even better and more accurate results.
We divide the curves into two sets:

— a first set containing leakages with Hamming weight between 4 and 11,
— a second set for the remaining leakages.

The absolute difference of the two sets on theoretical distributions is depicted
in Figure 2, for each message, for all masks.

We further remark that this choice for the two sets allows to retrieve only
the value corresponding to 46, as the skewness on 0 is not captured by such
partitioning.

4.3 Simulations

In this section we show the results of the application of our attack described
in Section 4.2 to simulated leakages of the ODSM scheme. For our simulations

Pattial Means

088
0.86

50 100 150 200 250 300

Fig. 2: Difference of the number of leakages between 4 and 11 and the rest.

we computed the value z = Sbox(m @ k;)G @ yH, where y is in Fyx freshly
regenerated at each execution. For each value z we computed the corresponding
leakage £ = HW (z) + B, where B is a Gaussian noise with standard deviation
o. In order to evaluate the success rate of our attack with different noise levels,
we have performed different campaigns where o varies from 0 to 2. For each
campaign we have simulated the leakage of 10,000 computations for each byte
value.

We start our attack by computing the minimum and the maximum values
among all leakages. Then define the range s of all leakages as the difference
between the maximum and minimum values, divided by 16. We then use this
value to split the leakages into the two sets, the first containing those leakages
whose value falls between s x4 and s % 11 and the second with the remaining
leakages. We finally analyze the absolute difference of the two sets for each
message. As observed in Figure 2, only the message m which gives Sbox(m®k;) =
46 should produce a peak on the difference of means. Thus the peak found for
a particular message m reveals Sbox(m @ k;) = 46, so the attacker can retrieve
the secret key byte k; = Sbox(46)~1 @ m.

The key byte value used for our simulations is 43, thus we expect to obtain
peaks for the message of value 233 = Sbox(46) ! ®43. Figure 3 to Figure 5 show
the results obtained by using 10,000 noisy executions for each message m. The
left part corresponds to the value of the absolute differences for each message
(thus for each of the 256 values we depict the value of the difference of means).
The right part depicts the maximum value of the absolute difference for each
key, sampled after each 100 curves. For right-side figures, the correct message
hypothesis (233) is depicted in red.

We present the pseudocode of our attack in Algorithm 2.

We notice that our attack needs a huge number of curves to retrieve the
key value even for relatively low noise simulations. For example, for ¢ = 1,
we need about 384,000 curves (1500 x 256) in order to retrieve the correct key
hypothesis. The need for a considerable number of curves can be interpreted as
a consequence of the masked values living in F§167 and thus far more samples

i abs of 1st byte - noise: 0.00 - cues: 10000 Canvergence of 15t byte - noise: 0.00 - curves: 10000

Fig. 3: Result of the attack with ¢ = 0 for 10,000 leakages.

i abs of 1st byte - noise: 1.00 - cuves: 10000 Canvergence of 15t byte - noise: 1.00 - curves: 10000

Fig. 4: Result of the attack with ¢ = 1 for 10,000 leakages.

i abs of 15t byte - noise: 2.00 - curves: 10000 Canvergence of 15t byte - noise: 2.00 - curves: 10000

0875

0845

084

Fig. 5: Result of the attack with o = 2 for 10, 000 leakages.

Algorithm 2: MEANS ATTACK ON AES-128 ODSM SCHEME.

// Find min and max values
Lmax = max,, cpk o<icpourves (leakage(m,i));
lLmin = minmng’Ogidcu,,,ws(leakage(m,i));
// Derive HW boundaries
leakage_size=(l_max - 1_min) / 16;
setl_limit = leakage_size X 4;
set2_limit = leakage_size x 11;
// Separate curves
for m from 0 to 255 do
for i from 0 to 10,000 do
if setl_limit < leakage(m, i) < set2_limit then
| set2(m)+= leakage(m, i);
else
| setl(m)+= leakage(m, 7);
end

end

end

// Select best candidate based on difference of means
best_message = maxp, (abs(set2(m) — set1(m))/10,000);
return k = Shox(46) '@ best_message

are required to obtain a representative sample of the underlying distribution.
However, we remark that as soon as there is no noise, very few hundred traces
are necessary to retrieve the correct key.

We want to stress the fact that despite the security proof given in [3], our
attack shows that it is possible to retrieve the secret values protected with the
ODSM scheme by using a first-order statistic on carefully selected leakages.

We finally insist on the fact that despite our attack applies here to the ODSM
scheme with the parameters of [3], most choices of the code would succumb to
such an attack.

5 Maximum Likelihood Attack

In this section we present a further attack to the countermeasure. As we have
remarked in Section 4, the leakage corresponding to an HW of 0 can only be
produced if both the sensitive value x and the mask y equal to 0. We thus suggest
that it is possible to use a maximum likelihood (template) attack to distinguish
the curves manipulating a variable z whose HW equals 0 from the others.

Template attacks are generally divided into two phases. In the first phase
(profiling) the sensitive data is known to the attacker, for example she may
employ an open sample, while in the second phase (attack) she tries to recover
some unknown sensitive data by using new observations and the information
collected during the profiling phase.

More formally, let us assume that the attacker retrieves a set of observations
of the random variable z, where each observation has the form £ = ¢(z) + B,
where ¢ is an unknown function and B a Gaussian noise with standard deviation
0. She can estimate the expectation pg and covariance Xy of £ when z = 0 and
1,21 when z # 0.

For a Gaussian distribution of expectation p and covariance matrix X' the
probability density function (pdf) of £ € R is defined as:

1 1 , _
) = s e (-5te-wste-w) .o

So by evaluating f;.—o and f;,»o she obtains the likelihood that z = 0 was the
manipulated value.

Experiments We have tested the template attack against a real device and we
provide in this section the results of our experiments.

The target of our experiment is an ATMega328P device. We have by-passed
the decoupling capacitors of the device which may filter out useful signals. We
have then connected the oscilloscope to the device and measured the difference
of potential at the ends of a resistor placed between the ground pin of the
ATMega328P and the ground of the device. We have finally pre-filtered the input
of the oscilloscope at 20Mhz and sampled the data at 100Mhz. Our settings allow
to obtain small curves while keeping as much information as possible.

We have then collected 250,000 leakages where we controlled the value of
the mask. A random bit was used to select if z = 0 or z # 0 was used by
the implementation. Knowledge of the random bit allowed us to split the set of
acquisition between those with z = 0 and those with z # 0 to build templates. We
also used this knowledge to verify the confidence of the likelihood distinguisher.

We show in Figure 6 the differences between the expectation of the two sets.
It is possible to distinguish important differences between them, in particular
around points 250 and 300.

L L L L L L L L L
[t} &0 100 150 200 260 300 350 400 450 GO0

Fig. 6: Expectation and variance of real leakages when z = 0 and z # 0.

During attack phase we have acquired 250,000 more curves and tried to
separate them into two sets. The knowledge of the value of the random bit
allowed us to verify the success rate of the distinguisher. We have used 80 points
to estimate the pdfs of Equation 9. These points were chosen as those providing
the highest variance between the expectations of the two sets. In this settings
we obtained 99.84% of correct detection rate.

Our attack thus demonstrates that even for real devices it is possible to break
the countermeasure by using only first and second order statistical attacks.

6 Possible Fix-Ups and Residual Issues

As shown in Section 4 and Section 5 the differences between the distributions of
the Hamming weight of masked values for different inputs can be exploited by
an attacker to recover manipulated secrets. In this section we propose a method
to improve the resistance of the scheme to the attacks that we have presented
in this work while preserving the fault detection capability.

6.1 Conservative Shuffling

In this section we suggest how to add algorithmic noise to the ODSM scheme
in order to defeat the attack introduced previously. We show that our counter-
measure preserves the fault detection capability and the possibility to perform
computation within the masking scheme.

Our method relies on shuffling the generating matrices G and H of the code C
and D, losing the systematic form of C’s generating matrix. Successively applying
permutations on the columns of these matrices allows to randomize the mappings
between elements of F§ and C (resp. F3~* and D) by randomizing the codewords
of C (resp. D) itself. We can note that the properties of the associated codes
remain unchanged as we only reorder the columns of the generating matrices.
In particular the duality between C and D is preserved since we apply the same
permutation on both matrices G and H. This can be seen by recalling that any
permutation of n columns of a k£ X n matrix can be realized by multiplying from
the right this matrix by a permutation matrix P. Further recalling that P is
orthogonal (PPT =T), it comes straightforwardly that :

GP(HP)T =GP(PTHT) = G(PPTYHT =GH" =0 (10)

Such a process can be easily achieved at the cost of up to 12 bits of random
used to select two columns to permute and an amount of circular shift. For
the XOR operation, the permutation can be straightforwardly applied to the
encoding of the operand: 2’ = 2®k;GP. For the linear operation, the permutation
needs to be reflected on the L’ matrix of (6):

L' = (GP)'(GP(GP)") 'LGP o (HP)"(HP(HP)")'HP (11)
— PT(GT(GGT) ' LG)P & PT(HT (HHT) ™ H)P (12)
=PH(GT(GG") ' LG HY' (HHT)'H)P (13)
=PTL'P (14)

For the non-linear operation, only the table recomputation approach seems to
be achievable with reasonable overhead as the look-up table approach would
require to recompute the S’ table for all z. Algorithm 1 should then be adapted

as exposed in Algorithm 3.

Algorithm 3: Masked SubBytes transformation on z = tGP & yH P

z2=2@2'GP;

z = 2(GP)T(GGT)™;
T = ST{‘ECOmp("E);

2 =2GP ®yHP;

7 =72 ®2"GP;
return z’;

Using such shuffled matrices for each encryption, we obtain the distribution
depicted in Figure 7b. Figure 7a is recalled for comparison purpose.

025
)
x=46

02

02

015 / J 015

!
01 ! 4 01
/ 3

(b) Shuffled ODSM pdf.

(a) Original ODSM pdf.
Fig. 7: Hamming weights’ pdf of encoded values for ODSM Vs Shuffled ODSM.

We can see that the distribution gives a much less explicit hint on the manipu-
lated value compared to the original one. However we can still observe differences
in the distributions for each value, supporting a residual weakness. Nevertheless,
the attack described in Section 4 now fails even with a low noise level as can be

seen in Figure 8.

6.2 Residual Issue: Encoding 0

From the observation of Figure 7a and Figure 7b we can see that one potential
weakness of the original scheme is not taken care of by our method. Indeed, we
observe that the value G @ yH = 0x0000 can only be obtained when x = 0x00.

55 55
0 0 2 3 4 s 6 70 80 @ 10 0 0 2 3 4 5 6 70 8 o0 10

Fig. 8: Result of the attack with ¢ = 0 and o =1 for 10, 000 leakages.

By assuming that the attacker can detect the manipulation of the value
0x0000 then she directly knows the corresponding value 0x00 of the internal AES
state. Such a weakness is not present in traditional boolean masking, where all
masked values can be produced by all secret values.

Such an attack may not be merely theoretical since the hypothesis of retriev-
ing the Hamming weight of internal values of more than one byte by SPA has
been exploited in recent publications [12,13] in order to retrieve the operands of
a 128-bit scalar multiplication.

We further remark that a similar SPA weakness would affect the ODSM
scheme for any choice of code. Indeed, since the codes C and D are complemen-
tary duals and from the definition of C and D we know that:

Vz e Fy, 3 (z,y) € F5 x F7F such that 2 = 2G @ yH

This holds in particular when z = 0, which is thus equivalent to G = yH and to
x =y = 0. Consequently even when randomizing G and H, we can only observe
a value of null Hamming weight when the sensitive value = and the mask y
are null. Unfortunately, as we have shown in Section 5 such weakness may be
exploited by using template attacks. We can nevertheless stress that in case the
attacker cannot control the value of the mask she may not be able to build the
templates and consequently the attack should not work.

7 Conclusion

The definition of new countermeasures tackling in the same effort side-channel
analysis and fault attacks is definitely a challenging task. The ODSM scheme
succeeds in providing both a way to detect errors and ensuring the independency
of the mean and the variance of the Hamming weight of masked data. However
in this work we demonstrate that the distributions of Hamming weights of the
ODSM encoded data are actually dependent on the sensitive values being ma-
nipulated, which renders the scheme helpless against a side-channel attack con-
sidering only 1%t-order statistical moment of the observed leakage. Furthermore
we have shown that some measures can be taken in order to reduce the leakage

exposed when observing the Hamming weight distributions for a given sensi-
tive value, although it turns out that the scheme cannot be made totally SCA-
resistant. Still, countermeasures based on coding theory appear as promising
candidates to improve the resistance of cryptographic implementations against
both side-channel and fault attacks. In particular, the definition of methods al-
lowing to perform the complete execution of an algorithm under the protection
of the code is an interesting line of research for future works.

References

1.

10.

11.

12.

13.

Coron, J.S., Goubin, L.: On Boolean and Arithmetic Masking against Differential
Power Analysis. In Kog, C., Paar, C., eds.: Cryptographic Hardware and Embedded
Systems — CHES 2000. Volume 1965 of LNCS., Springer (2000) 231-237

Bringer, J., Chabanne, H., Le, T.H.: Protecting aes against side-channel analysis
using wire-tap codes. Journal of Cryptographic Engineering 2 (2012) 129-141
Bringer, J., Carlet, C., Chabanne, H., Guilley, S., Maghrebi, H.: Orthogonal
Direct Sum Masking: A Smartcard Friendly Computation Paradigm in a Code,
with Builtin Protection against Side-Channel and Fault Attacks. In Naccache,
D., Sauveron, D., eds.: Information Security Theory and Practice International
Workshop — WISTP 2014. Volume 8501 of LNCS., Springer (2014) 40-56
Kocher, P.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In Koblitz, N.,; ed.: Advances in Cryptology — CRYPTO ’96.
Volume 1109 of LNCS., Springer (1996) 104-113

Kocher, P., Jaffe, J., Jun, B.: Introduction to Differential Power Analysis and
Related Attacks. Technical report, Cryptography Research Inc. (1998)

Messerges, T.: Power Analysis Attacks and Countermeasures for Cryptographic
Algorithms. PhD thesis, University of Illinois (2000)

Messerges, T., Dabbish, E., Sloan, R.: Power Analysis Attacks of Modular Expo-
nentiation in Smartcard. In Kog, C., Paar, C., eds.: Cryptographic Hardware and
Embedded Systems — CHES ’99. Volume 1717 of LNCS., Springer (1999) 144-157
Coron, J.S.: Resistance against Differential Power Analysis for Elliptic Curve Cryp-
tosystems. In Kog, C., Paar, C., eds.: Cryptographic Hardware and Embedded
Systems — CHES ’99. Volume 1717 of LNCS., Springer (1999) 292-302

. Rivain, M., Prouff, E.: Provably secure higher-order masking of aes. In Mangard,

S., Standaert, F.X., eds.: Cryptographic Hardware and Embedded Systems — CHES
2010. Volume 6225 of LNCS., Springer (2010)

Moradi, A.: Wire-Tap Codes as Side-Channel Countermeasure - an FPGA-based
experiment. In Meier, W., Mukhopadhyay, D., eds.: Progress in Cryptology —
INDOCRYPT 2014. Volume 8885 of LNCS., Springer (2014) 341-359

Sabine Azzi and Bruno Barras and Maria Christofi and David Vigilant: Using
Linear Codes as a Fault Countermeasure for Nonlinear Operations: Application
to AES and Formal Verification. In: PROOFS: Security Proofs for Embedded
Systems. (2015)

Belaid, S., Fouque, P., Gérard, B.: Side-channel analysis of multiplications in
GF(2'?®) - application to AES-GCM. Volume 8874 of LNCS., Springer (2014)
306-325

Belad, S., Coron, J.S., Fouque, P.A., Grard, B., Kammerer, J.G., Prouff, E.:
Improved side-channel analysis of finite-field multiplication. Cryptology ePrint
Archive, Report 2015/542 (2015) http://eprint.iacr.org/.

