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Abstract. Skyline queries are an important type of multi-criteria anal-
ysis with diverse applications in practice (e.g., personalized services and
intelligent transport systems). In this paper, we study how to answer
skyline queries efficiently and in a privacy-preserving way when the data
are sensitive and distributedly owned by multiple parties. We adopt the
classical honest-but-curious attack model, and design a suite of efficient
protocols for skyline queries over horizontally partitioned data. We ana-
lyze in detail the efficiency of each of the proposed protocols as well as
their privacy guarantees.

1 Introduction

Given a set of multi-dimensional vectors, a skyline query [8] is to find all the vec-
tors that are not dominated by any other vector. Skyline queries are widely used
in multi-criteria decision making applications, for example, personalized services,
intelligent transport systems, location-based services and urban planning.

In this paper, we study how to answer skyline queries over sensitive data
distributedly owned by multiple parties who do not fully trust each other. Sim-
ilar to many past efforts on other data analysis tasks [1, 25, 28, 29], by adopting
a secure multi-party computation setting, our goal is to design efficient and
privacy-preserving distributed protocols to enable multiple data owners to col-
laboratively compute skyline queries without revealing their private inputs. Due
to space limit, we focus on horizontally partitioned data where similar informa-
tion about different individuals is collected in different organizations.

Our approach for privacy-preserving skyline queries over horizontally parti-
tioned data utilizes some existing secure protocols for basic operations, such as
secure comparison protocols [10,30], secure vector dominance protocols [3,19,20],
secure permutation protocols [12], secure equality-testing protocols [13,26], and
secure multi-to-sum protocols [26, 27]. To securely compute skyline queries, the
secure protocol needs to address two problems: (1) how to securely determine
whether a vector in one party dominates a vector in the other party? (2) how to
securely apply the protocol of (1) to the set of vector pairs formed by pairing a
vector V1 in one party A with each vector in the other party B, with the goal
of determining whether V1 is dominated by any vector in party B or not. To
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address these two problems, straightforward compositions of such basic building
blocks would not offer viable solutions. For example, existing techniques propose
secure protocols to perform vector dominance checking, but they cannot be ap-
plied directly to address the first problem. The reason is that vector dominance
requires each dimensional value in a vector V1 to be strictly better than the cor-
responding dimensional value in another vector V2, while the dominance used in
skyline queries (referred to as skyline dominance) allows some dimensional val-
ues but not all values in V1 to be equal to the corresponding dimensional values
in V2. Further, to address the second problem, simply invoking the protocol for
the first problem for each pair of vectors when answering skyline queries would
unnecessarily reveal sensitive intermediate results, i.e., V1 is dominated or not
dominated by certain vector in the other party.

To address these challenges, we propose three secure protocols. The ma-
jor novelty of our protocols lies in the following aspects. First, to address the
first problem, we propose a novel protocol, enhanced vector dominance protocol
(EVDP). Our insight is that for two d-dimensional vectors V1 and V2 that are
not equal in every dimension, we can obtain the same dominance results for
vector dominance and skyline dominance if we improve every value in V1 by a
fixed value. Therefore, EVDP improves every value in V1 by a fixed value to
obtain V ′

1 , and applies a vector dominance protocol over V ′

1 and V2 to securely
obtain the skyline dominance results of V1 and V2. Second, built upon EVDP,
we propose three 1-to-N skyline dominance protocols (HP.1,HP.2, and HP.3) to
address the second problem. These protocols determine whether a vector in one
party is dominated by any of the N vectors in the other party. By applying
these protocols on every vector in each party, we can securely compute the final
skyline results without disclosing non-skyline results.

These three proposed protocols provide different levels of protection of the
intermediate computation results with different communication and computa-
tion costs. HP.1 applies EVDP to determine whether a vector Va in party A is
dominated by any of the n vectors Vb1 , . . . , Vbn in party B, and terminates when-
ever a dominance is found or when all vectors in party B are compared with.
To prevent the disclosure of which vector in party B dominates Va, HP.1 also
employs the secure permutation protocol to permute the order of the vectors in
party B. However, such protocol still discloses the intermediate results about at
least how many vectors in B do not dominate Va. To prevent such disclosure,
HP.2 and HP.3 improve over HP.1 with different additional costs. HP.2 requires
O(d · 2n) invocations of the multi-to-sum protocol, while HP.3 requires O(d · n)
invocations of the multi-to-sum protocol for d-dimensional vectors and O(n) in-
vocations of the secure comparison protocol. When n is relatively small, HP.2
and HP.3 have comparable costs, and HP.3 is preferred when n becomes larger.

2 Skyline Queries

Skyline queries are an important class of preference queries supporting multi-
criteria decision making. A skyline query over a d-dimensional data set S returns



a subset of S containing d-dimensional vectors that are not dominated by any
other vector in S. We assume the existence of a total order relationship on each
dimension, and refer to the dominance relationship in skyline queries as skyline
dominance:

Definition 1 (Skyline Dominance). Given two vectors V1 = (a1, . . . , ad) and
V2 = (b1, . . . , bd), if for i = 1, . . . , d, ai � bi and ∃j, aj ≻ bj, we say that

V1 ≻s V2, where ≻s denotes skyline dominance, � denotes better than or equal

to, and ≻ denotes better than.

Consider the following example of skyline queries. Assume that a user wants
to book a hotel for a conference with the goals of inexpensive price and short

distance to the conference venue. Consider four hotels A ($200, 5 miles), B ($150,
2 miles), C ($120, 3 miles), and D ($150, 1 mile). Hotel C is clearly a better
candidate than A because C is cheaper and closer to the venue. Therefore, we
say that C dominates A. Also, D dominates B since D is as expensive as B but
is closer to the venue. However, C does not dominate B since B is closer than
C to the venue. Therefore, the skyline results are {C,D}.

In a straightforward approach for skyline queries, such as Block-Nested-
Loops [8], a skyline vector needs to be compared against all other vectors to
ensure that no other vectors dominate it. Without loss of generality, we assume
that the domain of each dimension is I (the integer domain) and the larger the
better, i.e., a bigger value dominates a smaller value. Each dimension can be
encoded with l bits, and its value ranges from 0 to 2l − 1.

2.1 Horizontally Partitioned Data

We formally define skyline queries over the vectors distributed in two parties,
i.e., horizontally partitioned data (HPD):

Definition 2 (Skyline Queries over HPD). Party A has m vectors Va =
(Va,1, . . . , Va,m) and party B has n vectors Vb = (Vb,1, . . . , Vb,n). Vectors in both

parties have the same d skyline attributes. A skyline query over HPD returns a

set of vectors {Vi|Vi ∈ Va ∪ Vb, ∄Vj ∈ Va ∪ Vb, s.t. Vj ≻s Vi}.

To compute skyline queries over HPD, a straightforward approach is to create
a list of all the vectors from two parties and compute skyline vectors over the
list of the vectors. A more efficient approach is to compute skyline vectors first
in each party (referred to as local skyline vectors) and then compute global
skyline vectors from the local skyline vectors, since local non-skyline vectors are
guaranteed not to be global skyline vectors.

Application Scenario. A state fellowship is looking for high school student
candidates that have high GPA, high SAT score and high ACT score. Since
the candidates are distributed over different high schools within a state, secure
skyline queries over the data across different schools are required. The scores of
those students that are not selected for the fellowship should not be revealed.
To securely select the candidates, high schools can perform privacy-preserving
skyline queries with GPA, SAT and ACT scores as the skyline attributes.



2.2 Threat Model

We consider the semi-honest adversarial model, where both parties are honest
but curious. Each party knows only its own vectors. The final skyline results are
known to both parties. Given a secure protocol that computes the final skyline
results, both parties strictly follow the protocol specifications but are willing to
learn any information leaked during execution in order to compromise privacy.

3 Secure Multi-Party Computation Building Blocks

Secure multi-party computation (SMC) [14,30] is a framework that allows mul-
tiple parties to perform rich data analytics over their private data without re-
vealing any information other than the output [2,3,20,21]. We next present some
basic SMC protocols that we use in our proposed protocols.

Secure Comparison Protocol. Secure comparison is an important prob-
lem in cryptography and its solution serves as a primitive operation in many
SMC problems. The goal of this problem is to solve the inequality between two
numbers a and b, i.e., whether a ≥ b, without revealing the actual values of a
and b. Cachin [10] proposed a scheme where a semi-trusted third party provides
a means for two bidders to determine whose bid is higher in zero knowledge.
This scheme assumes that two bidders do not collude with each other. The com-
munication complexity of Cachin’s scheme is linear.

Secure Permutation Protocol. A secure permutation protocol is to per-
mute the values in a vector without revealing the values of the vector and the
permutation. A typical scenario is that party A has a vector VA = (a1, . . . , ad)
and party B has a private permutation π and a random vector R = (r1, . . . , rd).
A secure two-party permutation protocol enables party A to obtain π(VA + R)
without party A learning π or R; Party B also should not learn about VA.
Existing research [12] introduces a representative secure protocol based on a
homomorphic public key system. The working mechanism is as follows: firstly,
party A generates a key pair for a homomorphic public key system and sends the
public key to party B. Using the public key, party A then encrypts VA and sends
the result E(VA) to party B. Party B computes E(VA) · E(R) = E(VA + R),
permutes E(VA+R) using π, and then sends the result π(E(VA+R)) to party A.
Party A decrypts π(E(VA+R)) by the private key and gets D(π(E(VA+R))) =
π(D(E(VA +R))) = π(VA +R).

Secure Equality-Testing Protocol. An equality-testing protocol is to de-
termine the equality between two numbers without revealing the values of two
numbers. A typical solution is to apply a commutative encryption scheme to
achieve secure equality testing [13, 26].

Secure Vector Dominance Protocol. Suppose party A has a vector VA =
(a1, . . . , ad) and party B has a vector VB = (b1, . . . , bd). One existing protocol [3,
19,20] is as follows: first, partyA and party B use an input disguise method to get
a randomized input: V ′

A = (a′1, . . . , a
′

4d) and V ′

B = (b′1, . . . , b
′

4d). Such a disguise
makes sure that for values in V ′

A and V ′

B , there will be the same number of a′i > b′i



situations as that of a′i < b′i situations. Let Z = (1, . . . , 1, 0, . . . , 0), where the
first 2d values are all 1 (indicating a′i > b′i) and the remaining 2d values are
all 0. Second, party B generates a random permutation π and a random vector
R. Party A computes V ′′

A = π(V ′

A + R) using the secure permutation protocol
while party B computes V ′′

B = π(V ′

B + R) and Z ′ = π(Z). Third, party A and
party B use a secure comparison protocol, such as Yao’s Millionaire protocol,
to compare V ′′

Ai
and V ′′

Bi
where i = 1, . . . , 4d. Party A holds all the comparison

results, U = (u1, . . . , u4d). If V
′′

Ai
> V ′′

Bi
, where i = 1, . . . , 4d, ui = 1, otherwise,

ui = 0. Fourth, party A and party B use a secure equality-testing protocol to
compare U with Z ′. If U = Z ′, indicating a′i > b′i for i = 1, . . . , 2d, then VA

dominates VB . Otherwise, VA does not dominate VB.
Secure Multi-to-Sum Protocol. The multi-to-sum protocol [26, 27] is to

convert the multiplicative sharing of a secret s to the additive sharing of s.
Assume there is a secret s over a ring R and s = a · b = x + y. Pair(a, b) is
called the multiplicative sharing of s. Pair(x, y) is called the additive sharing
of s. Initially, party A holds a while party B holds b such that a · b = s. After
executing the multi-to-sum protocol, party A holds x and party B holds y such
that x + y = s, with no information leaked to any of them about s or the
multiplicative sharing a and b.

4 Privacy-preserving Skyline Queries

4.1 Enhanced Vector Dominance Protocol (EVDP)

Existing work proposes a secure vector dominance protocol (VDP) that securely
computes the vector dominance of two d-dimensional vectors, but the definition
of vector dominance is more strict than skyline dominance.

Definition 3 (Vector Dominance). Given two vectors V1 = (a1, . . . , ad) and
V2 = (b1, . . . , bd), if for all i = 1, . . . , d, ai ≻ bi, then we say that V1 ≻v V2,

where ≻v denotes vector dominance and ≻ denotes better than.

Table 1 illustrates the differences between vector dominance and skyline
dominance using 2-dimensional vectors. As we can see from the second column
((2, 1) ≻ (1, 1)), vector dominance and skyline dominance return different values
when (1) every value in Va is not worse than the corresponding value in Vb and
at least one value in Va is better than the corresponding value in Vb and (2) at
least one and at most d−1 values in Va are the same as the corresponding values
in Vb. Due to such differences, we cannot directly apply secure vector dominance
protocols to answer skyline queries.

To address this problem, we propose an enhanced vector dominance protocol
(EVDP), which adapts VDP to support skyline dominance. EVDP accepts as
input two vectors Va = (a1, . . . , ad) and Vbi = (bi,1, . . . , bi,d), and improves Vbi

in every dimension to obtain V ′

bi
: V ′

bi
= Vbi + (1, . . . , 1) = (bi,1 + 1, . . . , bi,d + 1).

By performing VDP on V ′

bi
instead of Vbi , EVDP obtains the same dominance

results as skyline dominance except when Vai
and Vbi are exactly the same, as

shown in the first column in Table 1. In other words, if we assume that Vbi and



Table 1: Differences between Vector Dominance and Skyline Dominance
Input: Va, Vb (1, 1) ≻ (1, 1) (2, 1) ≻ (1, 1) (2, 2) ≻ (1, 1) (2, 0) ≻ (1, 1)

Vector Dominance F F T F

Skyline Dominance F T T F

Enhanced Vector Dominance T T T F

Va are not the same in every attribute (referred to as the inequality assumption),
then the results of EVDP is the same as skyline dominance’s.

Checking the inequality assumption allows both parties to know that they
have a set of common vectors. We next analyze how such disclosure can be used
to infer side information about the other party. First, if a vector V1 in party
A and a vector V2 in party B are equal, there exists no vector in either party
dominating V1 or V2, and V1 and V2 must belong to the final skyline results,
which are known to both parties. Such disclosure cannot help a party infer the
values of the remaining vectors in another party. Second, ideally, even if party
A sees a vector of its local skyline results V1 is in the final results, it should not
know whether party B has the same vector. Thus, knowing the existence of V2

can be used by A to infer that the local skyline results of party B do not contain
the vectors that can be dominated by V2. However, such disclosure cannot be
directly used by A to infer the complete data distribution of B’s vectors.

To securely test the inequality assumption, we adopt equality-testing pro-
tocol, which leverages homomorphic encryption to securely identify from two
parities all the vectors that have the same attribute values. For these identified
vectors, we can safely output them as the final skyline results. Also, since these
vectors do not dominate any other vector V ′ in the local skyline results (oth-
erwise V ′ would not appear in the local skyline results), we can safely exclude
them from the skyline dominance testing against the remaining vectors.

For computing the final skyline results from the remaining vectors, we pro-
pose three secure protocols based on EVDP.

4.2 1-to-N Skyline Dominance

As discussed earlier, a straightforward protocol that applies EVDP on each pair
of vectors in both parties discloses significant intermediate results. To prevent
such disclosure, we define 1-to-N skyline dominance as the primitive operation
in privacy-preserving skyline queries over HPD.

Definition 4 (1-to-N Skyline Dominance). Party A has one vector Va =
(a1, . . . , ad) and party B has n vectors Vb1 = (b1,1, . . . , b1,d),. . . ,Vbn =
(bn,1, . . . , bn,d). 1-to-N skyline dominance returns false if ∄Vbi s.t. Vbi ≻s Va;

otherwise, returns true.

Based on this definition, we propose three secure horizontal 1-to-N skyline
dominance protocols, referred to as HP.1, HP.2, and HP.3, which securely compute
skyline dominance between a vector Va in Party A and n vectors in party B. To



obtain the final skyline results, these protocols are applied m+ n times on each
vector in parties A and B. One party can easily learn the number of vectors in
the local skyline results in the other party (i.e., m or n) during the computation.
To prevent the disclosure of m and n, both parties can generate random number
of dummy vectors that are guaranteed to be pruned in the computation of final
skyline results. The dummy vectors can be generated by randomly selecting out-
of-domain values. For example, when each element in a vector is in the range
[0, 1000), the dummy vectors can be generated within the range (−∞, 0). We
next present the details of the three protocols.

4.3 Secure Horizontal 1-to-N Skyline Dominance Protocol (HP.1)

To determine whether Va is dominated by any of the n vectors from party B

(1-to-N Skyline Dominance), HP.1 first pairs Va with each of the vectors in party
B and gets pairs of vectors (Va, Vb1), . . . , (Va, Vbn). The steps of HP.1 are shown
in Algorithm 1. To securely compute skyline queries over HPD, HP.1 prevents
two types of disclosure: (1) for each pair (Va, Vbi), which values and how many
values in Vbi dominate the corresponding values in Va (Steps 1-4); (2) which
vector in {Vb1 , . . . , Vbn} dominates Va (Steps 5-6).

In Step 1, party B prepares each of its vectors for EVDP by increasing the
values in the vectors.

Steps 2-4 include input disguise, secure permutation and secure comparison,
which are adapted from VDP. In Step 2, both parties A and B disguise their
vectors to prevent the disclosure of how many values in Va are better than the
values in Vbi . We adopt the disguise algorithm based on [3]: given party A’s
vector Va = (a1, . . . , ad), it generates a 4d-dimension vector V ′

a = (a′1, . . . , a
′

4d),
such that

a′1 = 2a1, . . ., a′d = 2ad, (1)

a′d+1 = 2a1 + 1, . . ., a′2d = 2ad + 1, (2)

a′2d+1 = −2a1, . . ., a′3d = −2ad, (3)

a′3d+1 = −(2a1 + 1), . . ., a′4d = −(2ad + 1). (4)

Given party B’s vector Vbi = (bi,1, . . . , bi,d), it generates a 4d-dimension vector
V ′

bi
= (b′i,1, b

′

i,2, . . . , b
′

i,4d), such that

b′i,1 = 2bi,1 + 1, . . ., b′i,d = 2bi,d + 1, (5)

b′i,d+1 = 2bi,1, . . ., b′i,2d = 2bi,d, (6)

b′i,2d+1 = −(2bi,1 + 1), . . ., b′i,3d = −(2bi,d + 1), (7)

b′i,3d+1 = −2bi,1, . . ., b′i,4d = −2bi,d. (8)

This disguise scheme has the following interesting property: for a pair
(V ′

a, V
′

bi
), there will be the same number of a′j > b′i,j situations as that of a

′

j < b′i,j
situations when aj = bi,j or aj > bi,j or aj < bi,j . Thus, we cannot infer how
many values in V1 are greater than the values in V2 by simply counting the



number of “1”s in the comparison vector [3]. Also, we can see that when the
d-dimensional vector V ′

a dominates V ′

bi
, the comparison vector must be a 4d-

dimensional vector where the first 2d attribute values are all “1” and the remain-
ing 2d attribute values are all “0”. Thus, we construct Z = (1, . . . , 1

︸ ︷︷ ︸

2d

, 0, . . . , 0
︸ ︷︷ ︸

2d

) in

Step 2, which is used to determine whether Va is dominated by Vbi by comparing
the permuted Z with the comparison vector noted as U in HP.1 (Step 6).

In Step 3, HP.1 uses the secure permutation protocol to prevent B from
learning the order of the vectors used to perform skyline dominance checking
with Va. PartyA generates n random permutations and n random vectors. These
permutations and random vectors are used to permute the disguised vectors V ′

a,
V ′

bi
and Z. We use n random permutations instead of one to prevent adversaries

from guessing the data distribution of the skyline attribute values.

In Step 4, for the ith pair (V ′′

a,i,V
′′

bi
), party B applies a secure comparison

protocol to obtain comparison results Ui, where Ui = (ui,1, . . . , ui,4d), ui,j = 1 if
b′′i,j > a′′i,j , and ui,j = 0 if b′′i,j ≤ a′′i,j for j = 1, . . . , 4d. If we simply run a secure
equality testing protocol for each pair of Z ′

i in Z and Ui in U, we will disclose
the intermediate results about whether Va is dominated by Vbi or not.

To prevent disclosure of the intermediate results, HP.1 applies a secure per-
mutation protocol on Z and U (Step 5). Party A generates a new random per-
mutation πn+1 to obtains Z′, and party B obtains U′ by using πn+1. Then Z′

is compared with U′ by using a secure equality testing protocol: the testing
terminates if there is any U ′

i = Z ′′

i or none can be found.

Example. Assume that Party A has Va = (1, 1), and Party B has three
vectors: Vb1 = (3, 1), Vb2 = (2, 2), and Vb3 = (4, 0). After Step 1, we have
Vb1 = (4, 2), Vb2 = (3, 3), and Vb3 = (5, 1). We then perform input disguise
(Step 2): Party A has V ′

a = (2, 2, 3, 3,−2,−2,−3,−3) and Z, and Party B has
V ′

b2
= (7, 7, 6, 6,−7,−7,−6,−6).We omit the detailed transformations of V ′

b1
and

V ′

b3
due to space limitations. In Step 3, assume that R2 = (1, 1, 1, 1, 1, 1, 1, 1)

and π2 simply switches the first 4d values with the last 4d values: Party A

has V ′′

a,2 = (−1,−1,−2,−2, 3, 3, 4, 4) and Z ′

2 = (0, 0, 0, 0, 1, 1, 1, 1), and Party
B has V ′′

b2
= (−6,−6,−5,−5, 8, 8, 7, 7). In Step 4, by applying secure compar-

ison on V ′′

a,2 and V ′′

b2
, Party B obtains U2 = (0, 0, 0, 0, 1, 1, 1, 1). In Step 5, as-

sume that R′

2 = (2, 2, 2, 2, 2, 2, 2, 2) and π4 permutes (1, 2, 3) to (2, 1, 3): Party
A obtains Z ′′

2 = (2, 2, 2, 2, 3, 3, 3, 3) and Z′ = (Z ′′

2 , Z
′′

1 , Z
′′

3 ), and Party B has
U ′

2 = (2, 2, 2, 2, 3, 3, 3, 3) and U′ = (U ′

2, U
′

1, U
′

3) (note that Party B does not
know the order of items in U′). In Step 6, Z ′′

2 and U ′

2 are first compared and
since they are equal, we know that Va is at least dominated by Vb2 .

Communication and Computation Cost. HP.1’s communication cost in-
cludes the costs for applying the secure permutation protocol, the secure com-
parison protocol, and the secure equality testing protocol.

For a vector in party A(B), HP.1 needs to apply n + 1 (m + 1) times of
the secure permutation protocol. We assume each dimension in a vector is an
integer that can be encoded with l bits, and its value ranges from 0 to 2l−1. The
communication cost of applying one secure permutation protocol is O(d · l) as it



uses the homomorphic public key system. As HP.1 is applied m times for vectors
in party A and n times for vectors in party B, the cost of the secure permutation
protocol is O(n ·m · d · l). The computation cost of secure permutation depends
on the adopted protocol. A representative protocol (see Section 3) requires O(1)
encryption/decryption, O(1) modular multiplication to obtain E(VA)·E(R), and
O(1) application of the permutation π, whose cost is O(d) for permuting values
in a vector.

Algorithm 1 Secure 1-to-N Skyline Dominance Protocol (HP.1)

Input: Party A has one vector Va = (a1, . . . , ad) and party B has n vectors Vb1 =
(b1,1, . . . , b1,d),. . . ,Vbn = (bn,1, . . . , bn,d).

Output: Whether Va is dominated by any of the n vectors in party B or not.

1: EVDP preparation:
Party B : for i = 1 to n do

Vbi = Improve(Vbi)
2: Input disguise:

Party A : V ′

a = Disguise(Va), Z = (1, . . . , 1
︸ ︷︷ ︸

2d

, 0, . . . , 0
︸ ︷︷ ︸

2d

)

Party B : for i = 1 to n do

V ′

bi
= Disguise(Vbi)

3: Secure permutation:
Party A : for i = 1 to n do

Generate πi and Ri, V
′′

a,i = πi(V
′

a +Ri), Z
′

i = πi(Z)
Z = (Z′

1, . . . , Z
′

n)
Party B : for i = 1 to n do

V ′′

bi
= SecurePermutation(πi,V

′

bi
,Ri)

∗

4: Secure comparison:
Party B : for i = 1 to n do

Ui = SecureComparison(V ′′

a,i,V
′′

bi
)

U = (U1, . . . , Un)
5: Secure permutation:

Party A : Generate πn+1

for i = 1 to n do

Generate R′

i, Z
′′

i = Z′

i +R′

i

Z′ = πn+1(Z
′′

1 , . . . , Z
′′

n), R = (R′

1, . . . , R
′

n)
Party B : U′ = SecurePermutation(πn+1,U,R)

6: Secure equality testing:
for i = 1 to n do

if SecureEqualityTest(U ′

i , Z
′′

i ) then return true

return false

The secure comparison protocol is applied to compare corresponding at-
tribute values in two vectors, and thus we need to apply at most n·4d times of the

∗ Using the secure permutation protocol, party B gets V ′′

bi
= πi(V

′

bi
+Ri).



secure comparison protocol. According to Cachin [10], the communication cost
of Cachin’s protocol to compare input numbers is O(l). By applying n+m times
of HP.1, the communication cost of the secure comparisons is O((n+m) · d · l).
The computation cost of one secure comparison includes the costs of one genera-
tion of the garbled circuits and one evaluation of the garbled circuits, which also
includes the adopted oblivious transfer protocols and encryption/decryption of
the values for the gates in the circuits [10,18,30]. Latest works on garbled circuits
show that 16K-bit integer comparison can be computed within 0.5s [17, 22].

The secure equality testing protocol uses the homomorphic public key sys-
tem. Thus, the communication cost of the adapted equality testing protocol for
evaluating the inequality assumption and the equality testing for determining the
skyline dominance are both O((n+m) · d · l). The computation cost is O(n+m)
invocations of encryption and O(n ·m · d) of comparisons to identify the equal
encrypted vectors.

Security Analysis. In HP.1, Steps 1-4 protect the comparison results of
a pair (Va,Vbi). In Step 1, the result is computed locally in party B and no
information is disclosed. The input disguise in Step 2 makes sure that if aj > bi,j ,
we will have a′j > b′i,j , a

′

d+j > b′i,d+j, a
′

2d+j < b′i,2d+j , and a′3d+j < b′i,3d+j ,
preventing the disclosure of the comparison results in Step 4. In Step 3, party A

generates the permutations and the random vectors, and thus after permutation
party B loses track of the order of the values in the vectors. Party A does not
know the values of Ui and is not aware of the comparison results.

Steps 5-6 protect the comparison results of the pairs (Va,Vbi), . . . , (Va,Vbn).
In Step 5, party A generates the permutation πn+1 and the random vector R,
and thus after permutation party B loses track of the order of the vectors in U.
On the other hand, party A knows the order of the vectors V ′′

a,i, (i = 1, . . . , n)
after the permutation. However, since all the V ′′

a,i come from Va, party A cannot
infer more information from the order other than what party A originally knows.

However, step 6 could disclose the intermediate results of at least how many
vectors in party B do not dominate Va. In Step 6, parties A and B runs secure
equality testing until a pair (Va, Vbi) is found to be equal. If such a pair is not
found, then Va is not dominated by any vector in party B and no intermediate
information is disclosed. But if such a pair is found in the ith secure equality
testing, then both parties know that at least i-1 vectors in party B do not
dominate Va in party A.

4.4 Enhanced Secure Horizontal 1-to-N Skyline Dominance
Protocol (HP.2)

To prevent the disclosure in HP.1, i.e., Va in party A is not dominated by at
least i − 1 vectors in party B, we propose an enhanced secure horizontal 1-to-
N skyline dominance protocol (referred to as HP.2), which replaces the secure
equality testing (Step 6 in Algorithm 1) with a secure protocol to compute a

product of the polynomials:

n∏

i=1

(Z ′′

i − U ′

i). If there exists i such that Z ′′

i = U ′

i ,



the product is 0, i.e., Va in party A is dominated by at least one vector in party
B and Va is not a vector in the final skyline results.

Algorithm 2 Enhanced Secure 1-to-N Skyline Dominance Protocol (HP.2)

Input: Party A has one vector Va = (a1,1, . . . , a1,d) and party B has n vectors Vb1 =
(b1,1, . . . , b1,d),. . . ,Vbn = (bn,1, . . . , bn,d).

Output: Whether Va is dominated by any of the n vectors in party B or not.

1: Steps 1 - 5 from HP.1.

2: Secure compute
n∏

i=1

(Z′′

i − U
′

i):

n∏

i=1

(Z′′

i − U
′

i) =
n∏

i=1

(Z′′

i ) +
n−1∏

i=1

(Z′′

i ) · (−U
′

n) + . . .+ Z
′′

1 ·

n∏

i=2

(−U
′

i)

︸ ︷︷ ︸

2n−2 multiplicative sharings:MS1,...,MS2n−2

+
∏n

i=1
(−U ′

i)

Party A : for i = 1 to 2n − 2 do

Xai
= MultitoSum(MSi)

Az =
n∏

i=1

(Z′′

i ) +
2n−2∑

i=1

Xai

Party B : for i = 1 to 2n − 2 do

Xbi = MultitoSum(MSi)

Bz =

n∏

i=1

(−U
′

i) +

2n−2∑

i=1

Xbi

3: Equality testing:
if Az + Bz = 0 then return true

else return false

Secure evaluation of the product of polynomials can be achieved by leveraging
the existing secure multi-to-sum protocol. The steps of the algorithm is shown
in Algorithm 2. We first perform the polynomial expansion and obtain a sum
of 2n products. Each product can be converted from the multiplicative sharing
to the additive sharing by the secure multi-to-sum protocol. Each party sums
all the additive sharing together. Then each party shares the sum and securely

computes the final product value of
n∏

i=1

(Z ′′

i − U ′

i). If it is equal to 0, there must

be at least one factor, i.e., (Z ′′

i − U ′

i), being 0, indicating that Va in party A is
dominated.

Let us walk through the process of polynomial expansion by an example
where n = 2. Party A holds Z′ = (Z ′′

1 , Z
′′

2 ) while party B holds U′ = (U ′

1, U
′

2).

By polynomial expansion,

2∏

i=1

(Z ′′

i − U ′

i) = Z ′′

1 · Z ′′

2 −Z ′′

1 · U ′

2 −U ′

1 · Z
′′

2 +U ′

1 · U
′

2.

Party A holds the multiplicative value of Z ′′

1 ·Z
′′

2 while party B holds the value of
U ′

1 · U
′

2. We use the secure multi-to-sum protocol to obtain the additive sharing
Xa and Xb such that Xa+Xb = Z ′′

1 ·U ′

2, where Xa is held by party A and Xb is
held by party B. We do the same for U ′

1 · Z
′′

2 with Ya is held by party A and Yb



is held by party B. Therefore, party A holds the sum
∑

A = Z ′′

1 · Z ′′

2 +Xa + Ya

and party B holds the sum
∑

B = U ′

1 · U
′

2 +Xb + Yb. Then we adopt the secure
sum protocol to obtain

∑
=

∑

A +
∑

B. If
∑

= 0, Va is dominated.
Communication and Computation Cost. HP.2 includes the private per-

mutation protocol, the secure comparison protocol, and the secure equality test-
ing protocol. The analyses of these three protocols are the same as those in HP.1

except that HP.2 replaces Step 6 of HP.1 with the secure evaluation of the prod-

uct

n∏

i=1

(Z ′′

i − U ′

i). After the polynomial expansion, this product of polynomials

is expanded into 2n items. Among them, there are d · (2n − 2) items requiring
the multi-to-sum protocol to securely convert the multiplicative sharing to the
additive sharing.

To compute the final skyline results, HP.2 is applied m+ n times. For party
A, it requires m · d · (2n − 2) invocations of the multi-to-sum protocol. For party
B, it requires n·d·(2m−2) invocations of the multi-to-sum protocol. In total, the
complexity is O(m · d · (2n − 2)+n · d · (2m− 2)) invocations of the multi-to-sum
protocol. Even though the cost of the multi-to-sum protocol is O(l) invocations
of OT 1

2 oblivious transfer of strings whose cost is O(l) [26, 27], the exponential
invocations of the multi-to-sum protocol are expensive.

Security Analysis. HP.2 provides strong security guarantee. Compared with

HP.1, in Step 6 of HP.2, the evaluation of
∑

=

n∏

i=1

(Z ′′

i − U ′

i) is protected by the

secure multi-to-sum protocol. If
∑

is 0, both parties know that Va is dominated
by at least one vector of B. But they cannot infer which vectors in B dominate
Va. If

∑
is not 0, both parties know that Va is not dominated by any vector of

B, and thus Va becomes a vector in the final skyline results.

4.5 Alternative Enhanced Secure Horizontal 1-to-N Skyline
Dominance Protocol (HP.3)

As discussed above, the use of polynomial expansion in HP.2 incurs exponential
communication and computation costs. To reduce the cost, we further propose
a more efficient protocol HP.3. The insight of HP.3 is to replace the secure eval-

uation of the product

n∏

i=1

(Z ′′

i − U ′

i) in HP.2 with the secure computation of

(Z ′′

i −U ′

i)
2. Since (Z ′′

i −U ′

i)
2 are all greater than or equal to 0, if the min value

of (Z ′′

i − U ′

i)
2 is 0, Va in party A is dominated; otherwise, Va is not dominated.

We next discuss the three new steps of HP.3 in Algorithm 3.

In Step 2, each of (Z ′′

i −U ′

i)
2 is expanded into a polynomial, i.e., (Z ′′

i −U ′

i)
2 =

(Z ′′

i )
2 − 2 · Z ′′

i · U ′

i + (U ′

i)
2, where 2 · Z ′′

i · U ′

i can be converted to the additive
sharing using the multi-to-sum protocol and then party A holds Xai

and party B

holds Xbi . Then each of (Z ′′

i −U ′

i)
2 can be transformed into the additive sharing

where party A holds Ai = (Z ′′

i )
2 + Xai

and party B holds Bi = (U ′

i)
2 + Xbi .

Therefore, party A holds A = (A1, . . . ,An) and party B holds B = (B1, . . . ,Bn).



In Step 3, we securely find the min value of Ai + Bi using n − 1 times of
secure comparisons. For example, we test whether A1 + B1 < A2 + B2, i.e.,
A1 −A2 < B2 −B1. If A1 +B1 < A2 +B2, we keep the pair (A1,B1) to compare
with the next pair (A3,B3). It requires n− 1 times of secure comparisons to find
the min value Az + Bz .

In Step 4, both parties reveal the values of Az and Bz, whose sum is minimum
among all, and compute Az + Bz, and then test whether the min sum value is
equal to 0 or not. If it is 0, Va in party A is dominated. Otherwise, Va is a global
skyline vector.

Algorithm 3 Alternative Enhanced Secure 1-to-N Skyline Dominance Protocol
(HP.3)

Input: Party A has one vector Va = (a1,1, . . . , a1,d) and party B has n vectors Vb1 =
(b1,1, . . . , b1,d),. . . ,Vbn = (bn,1, . . . , bn,d).

Output: Whether Va is dominated by any of the n vectors in party B or not.

1: Steps 1 - 5 from HP.1.
2: (Z′′

i − U ′

i)
2 computation:

Party A : for i = 1 to n do

Xai
= MultitoSum(Z′′

i , U
′

i)
Ai = (Z′′

i )
2 +Xai

Party B : for i = 1 to n do

Xbi = MultitoSum(Z′′

i , U
′

i)
Bi = (U ′

i)
2 +Xbi

3: Min value identification:
Party A : Az = A1

Party B : Bz = B1

for i = 2 to n do

if SecureGreaterThan(Az − Ai, Bi − Bz) then

Party A : Az = Ai

Party B : Bz = Bi

4: Equality testing:
if Az + Bz = 0 then return true

else return false

Communication and Computation Cost. The analysis of Step 1 in Al-
gorithm 3 is the same as HP.1. For Step 2, it requires O(d · n) invocations of
the multi-to-sum protocol to securely convert the multiplicative sharing Z ′′

i · U ′

i

into the additive sharing. For Step 3, it requires O(n) invocations of the secure
comparisons to securely identify the pair of (Az,Bz). For Step 4, there is no
secure protocol applied and the cost can be ignored. Thus, HP.3 reduces the cost
of HP.2 from the exponential invocations of the multi-to-sum protocol to the
linear invocations of the multi-to-sum protocol plus the linear invocations of the
secure comparison protocol.

Security Analysis. Step 1 of HP.3 is the same as Steps 1-5 of HP.1, and
thus protects the comparison results of the pairs (Va, Vbi). Steps 2-3 protect the
information of how many vectors in party B may dominate Va. The multi-to-sum



protocol in Step 2 makes sure that both parties cannot know the sum values of
each pair (Ai,Bi) while searching for the min sum Az + Bz . Assume that after
Step 3, both parties know that the ith pair produces the min sum (Az,Bz). Party
B does not know the order of vectors as Step 5 in HP.1 (Algorithm 1) permutes
the order. Hence, party B cannot infer which vector produces the value Bz . For
party A, all vectors are derived from Va and thus no more information can be
inferred by party A regarding which vector in party B contributes to the value
Bz .

In Step 4, both parties reveal the values of (Az,Bz) to compute the minimum
sum. If Az +Bz = 0, both parties learn that Va is dominated. Party A can learn
such result from the output as well. Party B can learn what vectors in A are
global skyline vectors from the output and Va is not among the global skyline
vectors. But B does not know the values of Va, and thus cannot know which
vector in A is pruned. In addition, with dummy vectors included in the local
skyline results of both parties, knowing that Va is pruned cannot be used by
each party to learn the exact number of the pruned vectors. If Az + Bz 6= 0,
both parties can learn Va is not dominated and is a vector in the final skyline
results, which can be learned from the output anyway. Since A generates the
permutations, A knows the order of vectors in B and the ith vector of B is
selected for (Az ,Bz). However, A does not know the values of any vector from
B and such information cannot be combined with Bz to infer the value of Vbz .
For B, since the permutation πn+1 is generated by A, B does not know which
vector of B is selected for (Az,Bz), and Az cannot be used by B to infer the
value of Va.

4.6 Extension to N-Parties

All the proposed protocols (HP.1,HP.2, and HP.3) can be extended to support the
secure communication and computation of N parties (N > 2) : (1) for party P1

from N parties, apply the protocols on P1 and every other N − 1 parties, and
only output the results of P1 if the results are not dominated by any vector in the
other N − 1 parties; (2) P2 first selects only the vectors that are not dominated
by the results output by P1, then runs the protocols with every other N − 2
parties, and outputs the results of P2; (3) repeat (2) for the remaining parties.

5 Related Work

Yao [30] first proposed the two-party comparison problem (Yao’s millionaire pro-
tocol) and developed a provably secure solution. Ben-Or et al. [5] and Chaum [11]
then proposed secure protocols for computing addition and multiplication (XOR
and AND). More recently, the advances in the theory of secure multi-party com-
putations [10, 15, 16] proved that any multi-party function can be computed
securely with certain amount of computation cost.

With these primitives, finding an efficient and practical solution for a specific
problem is still not trivial. A line of research has focused on developing efficient



secure multi-party communication protocols for specific functions. There exists
research work on more generic primitives such as set operations [6, 23], top-k
queries [28]. More recent work also focuses on secure protocols for vector domi-
nance [19,20]. These protocols focus on finding more efficient solutions to specific
problems, which can provide building blocks for more complex applications, such
as the problem of skyline queries that our work focuses on.

Another important line of research focuses on creating frameworks and spe-
cialized programming languages to implement and run secure multi-party com-
putation protocols. The early approaches include FairplayMP [4], Sharemind [7],
and SEPIA [9], which implement generic MPC frameworks that support a sim-
ilar set of primitives, such as addition, multiplication, comparisons and equal-
ity testing. These frameworks either provide specialized programming languages
to facilitate the security programming, or allow users to program using stan-
dard programming languages and library calls. With the advances of research
on garbled circuits [18, 24], more efficient framework, ObliVM [22], has been
built to make secure computations easier and faster. This framework provides a
domain-specific language designed for compiling programs into efficient oblivi-
ous representations suitable for secure computations. It also provides MapReduce
abstractions that facilitate the parallelization of the compiled program.

Unlike this line of research work that focuses on building efficient generic
secure computation frameworks, our work focuses on designing efficient secure
protocols that minimize the costs of communication and computation while pre-
serve the privacy of the data in multiple participating parties.

6 Conclusion

Skyline queries are an important type of multi-criteria analysis with diverse ap-
plications in practice. In this paper, we adopt the classical honest-but-curious
attack model and present a suite of efficient protocols for skyline queries to an-
swer skyline queries in a privacy-preserving way when the data is sensitive and
distributedly owned by multiple parties. The secure protocols for horizontally
partitioned data take 1-to-N skyline dominance as the primitive secure opera-
tion to prevent the revelation of intermediate results. We analyze in detail the
efficiency of each protocol and its privacy guarantee.
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