Skip to main content

A Neuro-Fuzzy System for Classifying Fatigue Degree of Wheelchair User

  • Conference paper
  • First Online:
Internet and Distributed Computing Systems (IDCS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9864))

Included in the following conference series:

Abstract

With the increase of disabled people, the functionalities of smart wheelchair as a mobility-assisted equipment are being more and more enriched and extended. However, fatigue detection for wheelchair users is still not explored widely. This paper proposes a complete system and approach to classify fatigue degree for manual wheelchair users. In our system, physiological and kinetic data are collected in terms of sEMG, ECG, and acceleration signals. The necessary features are then extracted from the signals and integrated with self-rating method to train a neuro-fuzzy classifier. Finally, four degrees of this fatigue status can be distinguished by our system; this can provide further fatigue prediction and alertness in case of musculoskeletal disorders (MSD) caused by underlying fatigue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World health statistics 2015: World Health Organization 2015. http://www.who.int/gho/publications/world_health_statistics/2015/en/

  2. Simpson, R.C.: Smart wheelchairs: a literature review. J. Rehabil. Res. Development 42(4), 423 (2005)

    Article  Google Scholar 

  3. Ma, R., Chablat, D., Bennis, F., Ma, L.: Human muscle fatigue model in dynamic motions. In: Lenarcic, J., Husty, M. (eds.) Latest Advances in Robot Kinematics, pp. 349–356. Springer, New York (2012)

    Chapter  Google Scholar 

  4. Manero, R.B., Grewal, J., Michael, B., et al.: Wearable Embroidered Muscle Activity Sensing Device for the Human Upper Leg. arXiv preprint arXiv (2016)

    Google Scholar 

  5. Pilarski, P.M., Qi, L., Ferguson, P.M., et al.: Determining the time until muscle fatigue using temporally extended prediction learning. In: Proceedings of the 18th International Functional Electrical Stimulation Society Conference (IFESS), Donostia-San Sebastian, Spain, 7–8 June 2013

    Google Scholar 

  6. Rechy-Ramirez, E.J., Janet, E., Hu, H.: Stages for developing control systems using EMG and EEG signals: a survey, pp. 1744–8050. School of Computer Science and Electronic Engineering, University of Essex (2011)

    Google Scholar 

  7. Kaiser, M.S., Chowdhury, Z.I., Al Mamun, S., et al.: A neuro-fuzzy control system based on feature extraction of surface electromyogram signal for solar-powered wheelchair. Cogn. Comput. 1–9 (2016)

    Google Scholar 

  8. Nauck, D., Kruse, R.: NEFCLASSmdash; a neuro-fuzzy approach for the classification of data. In: Proceedings of the 1995 ACM Symposium on Applied Computing, pp. 461–465 (1995)

    Google Scholar 

  9. Postolache, O., Freire, J., Girao, P., et al.: Smart sensor architecture for vital signs and motor activity monitoring of wheelchair users. In: Proceedings of the 2012 IEEE 6th International Conference Sensing Technology (ICST), pp. 167–172 (2012)

    Google Scholar 

  10. Dryvendra, D., Ramalingam, M., Chinnavan, E., et al.: A better engineering design: low cost assistance kit for manual wheelchair users with enhanced obstacle detection. J. Eng. Technol. Sci. 47(4), 389–405 (2015)

    Article  Google Scholar 

  11. Wallam, F., Asif, M.: Dynamic finger movement tracking and voicecommands based smart wheelchair. Int. J. Comput. Electr. Eng. 3(4), 497 (2011)

    Article  Google Scholar 

  12. Dzemydienė, D., Bielskis, A.A., Andziulis, A., et al.: Recognition of human emotions in reasoning algorithms of wheelchair type robots. Informatica 21(4), 521–532 (2010)

    Google Scholar 

  13. Gravina, R., Fortino, G.: Automatic methods for the detection of accelerative cardiac defense response. IEEE Trans. Affect. Comput. 1949–3045 (2016)

    Google Scholar 

  14. Ji, Q., Lan, P., Looney, C.: A probabilistic framework for modeling and real-time monitoring human fatigue. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 36(5), 862–875 (2006)

    Article  Google Scholar 

  15. Eskofier, B., Kugler, P., Melzer, D., et al.: Embedded classification of the perceived fatigue state of runners: Towards a body sensor network for assessing the fatigue state during running. In: Proceedings of the 2012 IEEE 9th International Conference Wearable and Implantable Body Sensor Networks (BSN), pp. 113–117 (2012)

    Google Scholar 

  16. Masuda, K., Masuda, T., Sadoyama, T., et al.: Changes in surface EMG parameters during static and dynamic fatiguing contractions. J. Electromyogr. Kinesiol. 9(1), 39–46 (1999)

    Article  Google Scholar 

  17. Nagamine, K., Iwasawa, Y., Matsuo, Y., et al.: An estimation of wheelchair user’s muscle fatigue by accelerometers on smart devices. In: Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2015 ACM International Symposium on Wearable Computers, pp. 57–60. ACM (2015)

    Google Scholar 

  18. Al-Mulla, M.R., Sepulveda, F., Colley, M.: sEMG techniques to detect and predict localised muscle fatigue. INTECH Open Access Publisher, Osaka (2012)

    Google Scholar 

  19. Alexandros, P., Nikolaos, B.: A survey on wearable sensor-based systems for health monitoring and prognosis. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 40(1), 1–12 (2010)

    Google Scholar 

  20. Yang, L., Ge, Y., Li, W., et al.: A home mobile healthcare system for wheelchair users. In: Proceedings of the 2014 IEEE 18th International Conference Computer Supported Cooperative Work in Design (CSCWD), pp. 609–614 (2014)

    Google Scholar 

  21. Hermens, H.J., Freriks, B., Disselhorst-Klug, C., et al.: Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 10(5), 361–374 (2000)

    Article  Google Scholar 

  22. Fortino, G., Giannantonio, R., Gravina, R., Kuryloski, P., Jafari, R.: Enabling effective programming and flexible management of efficient body sensor network applications. IEEE Trans. Hum. Mach. Syst. 43(1), 115–133 (2013)

    Article  Google Scholar 

  23. Fortino, G., Galzarano, S., Gravina, R., Li, W.: A framework for collaborative computing and multi-sensor data fusion in body sensor networks. Inf. Fus. J. 22, 50–70 (2015)

    Article  Google Scholar 

  24. De Luca, C.J., Gilmore, L.D., Kuznetsov, M., et al.: Filtering the surface EMG signal: movement artifact and baseline noise contamination. J. Biomech. 43(8), 1573–1579 (2010)

    Article  Google Scholar 

  25. Andreoli, A., Gravina, R., Giannantonio, R., Pierleoni, P., Fortino, G.: SPINE-HRV: a BSN-based toolkit for heart rate variability analysis in the time-domain. In: Lay-Ekuakille, A., Mukhopadhyay, S.C. (eds.) Wearable and Autonomous Biomedical Devices and Systems for Smart Environment. LNEE, vol. 75, pp. 369–389. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  26. Covello, R., Fortino, G., Gravina, R., et al.: Novel method and real-time system for detecting the Cardiac Defense Response based on the ECG. In: 2013 IEEE International Symposium on Medical Measurements and Applications Proceedings (MeMeA), pp. 53–57 (2013)

    Google Scholar 

  27. González-Izal, M., Malanda, A., Gorostiaga, E., et al.: Electromyographic models to assess muscle fatigue. J. Electromyogr. Kinesiol. 22(4), 501–512 (2012)

    Article  Google Scholar 

  28. Tran, Y., Wijesuriya, N., Tarvainen, M., et al.: The relationship between spectral changes in heart rate variability and fatigue. J. Psychophysiol. 23(3), 143–151 (2009)

    Article  Google Scholar 

  29. Tarvainen, M.P., Niskanen, J.P., Lipponen, J.A., et al.: Kubios HRV–heart rate variability analysis software. Comput. Meth. Program. Biomed. 113(1), 210–220 (2014)

    Article  Google Scholar 

Download references

Acknowledgement

The research is financially supported by China-Italy S&T Cooperation project “Smart Personal Mobility Systems for Human Disabilities in Future Smart Cities” (China-side Project ID: 2015DFG12210, Italy-side Project ID: CN13MO7). And also Wuhan University of Technology Graduate Student Innovation Research Project (Project ID: 2015-JL-016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinyun Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Hu, X., Gravina, R., Li, W., Fortino, G. (2016). A Neuro-Fuzzy System for Classifying Fatigue Degree of Wheelchair User. In: Li, W., et al. Internet and Distributed Computing Systems. IDCS 2016. Lecture Notes in Computer Science(), vol 9864. Springer, Cham. https://doi.org/10.1007/978-3-319-45940-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-45940-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-45939-4

  • Online ISBN: 978-3-319-45940-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics