
Fault-Aware Modeling and Specification
for Efficient Formal Safety Analysis

Axel Habermaier(B), Alexander Knapp, Johannes Leupolz, and Wolfgang Reif

Institute for Software and Systems Engineering,
University of Augsburg, Augsburg, Germany

{habermaier,knapp,leupolz,reif}@isse.de

Abstract. Deductive Cause Consequence Analysis (Dcca) is a model
checking-based safety analysis technique that determines all combina-
tions of faults potentially causing a hazard. This paper introduces a
new fault modeling and specification approach for safety-critical systems
based on the concept of fault activations that decreases explicit-state
model checking and safety analysis times by up to three orders of mag-
nitude. We augment Kripke structures and LTL with fault activations
and show how standard model checkers can be used for analysis. Addi-
tionally, we present conceptual changes to Dcca that improve efficiency
and usability. We evaluate our work using our safety analysis tool S#

(“safety sharp”).

1 Introduction

Safety-critical systems have the potential to cause hazards, i.e., situations result-
ing in economical or environmental damage, injuries, or loss of lives [17]. Deduc-
tive Cause Consequence Analysis (Dcca) is a model-based safety analysis tech-
nique [7,12] that uses model checking to compute how faults such as component
failures or environmental disturbances (the causes) can cause such hazards (the
consequences): From a model of a safety-critical system that describes the sys-
tem’s nominal behavior as well as the relevant faults, Dcca determines all min-
imal critical fault sets, i.e., the smallest possible combinations of faults that can
cause hazards, allowing the evaluation of the system’s overall safety. Dccas are
conducted automatically by tools like S# [13] or Vecs [20]; the Fsap/Compass
toolsets [6,7], AltaRica [4], and BT Analyser [19] perform similar safety analy-
ses. Alternatively, compositional safety analysis approaches and tools such as
HiP-HOPS or Component Fault Trees [10,26] allow for faster analyses at the
expense of requiring explicitly modeled fault propagations between components.
Model checking-based techniques, by contrast, deduce these propagations auto-
matically, albeit requiring additional states and transitions for each fault which
reduce model checking efficiency exponentially [7,12].

This paper’s first contribution is a fault-aware modeling and specification
approach for safety-critical systems that decreases explicit-state analysis times
by up to three orders of magnitude. We augment Kripke structures and Linear

98

Temporal Logic (LTL), making them aware of fault activations [2] within the ana-
lyzed systems: Faults are activated when they can in fact influence the system’s
behavior, preventing model checkers from considering possibly many situations
with irrelevant active faults during analyses. We show how the extended for-
malisms can be mapped back to the classical ones for analysis with standard
model checkers such as LTSmin [18]. We demonstrate the efficiency improve-
ments over the traditional fault modeling approach, showing that explicit-state
model checking becomes feasible for safety-critical systems that incorporate
faults.

The second contribution is a conceptual change of Dcca formalized using
LTL instead of Computation Tree Logic (CTL). It improves the model checking
workflow as witnesses are generated to explain how critical fault sets can cause a
hazard, which is more useful in practice than witnesses showing how non-critical
fault sets cannot do so. We also formalize another Dcca variant that reduces
analysis times in many cases.

2 Model-Based Safety Analysis

Throughout this section, we assume models of safety-critical systems to be given
as Kripke structures K = (P , S, R, L, I) consisting of a set of atomic propositions
P , a set of states S, a left-total transition relation R ⊆ S×S, a labeling function
L : S → 2P , and a non-empty set of initial states I ⊆ S [9]. Kripke structures
are a well-known modeling formalism that established model checkers such as
LTSmin, Spin, or NuSMV [8,14,18] are based on. Consequently, tools built
for formal safety analyses [6,7,13,19,20] either implicitly or explicitly transform
their models to Kripke structures for model checking, while their actual modeling
formalisms are higher-level.

Figure 1 gives a description of the running example used throughout the paper
that is based on the fault tree handbook’s pressure tank case study [28]. The
system is safety-critical because of the hazard of tank ruptures that might injure
nearby people. Ruptures only happen when both suppression faults ¬is full and
¬timeout occur; consequently, there is only one minimal critical fault set for the
hazard that consists of these two faults. For more complex systems with more
faults, however, minimal critical fault sets are not as easily deduced. Instead,
model-based safety analysis techniques such as Dcca are required to compute
these critical sets automatically and rigorously.

2.1 Fault Terminology

Safety analyses consider situations in which faults cause system behavior that
would not have occurred otherwise. In accordance with common terminology [2],
these situations represent fault activations; that is, a fault is activated when it
influences the system, affecting its behavior or state in a concealed or observable
way. Faults are dormant until they are activated and become active, turning
dormant again when they are deactivated. A fault’s persistence constrains the

 99

Fig. 1. A schematic overview of the running example: the fluid contained in the pressure
tank is refilled by the pump that is activated and deactivated by a controller. The
pressure sensor signals the controller when the pressure limit is reached or the tank
is empty, causing the controller to deactivate or activate the pump, respectively; once
the tank is empty, a new refill cycle begins. To tolerate pressure sensor faults, the
controller disables the pump after 60 s of continuous operation as it would risk a tank
rupture otherwise. For time measurements, the controller uses the timer. The pressure
sensor has two suppression faults: It might not report that the pressure limit is reached
(¬is full) or that the tank is empty (¬is empty). The timer might not signal a timeout
(¬timeout) and a fault of the pump (¬pumping) prevents it from filling the tank.

transitions between its active and dormant states. Transient faults, for instance,
are activated and deactivated completely nondeterministically, whereas perma-
nent faults, while also activated nondeterministically, never become dormant
again. Fault activations result in effects that change the internal state of affected
components, thereby causing errors. Errors are deviations of the components’
states from what they should have been. Errors propagate through the compo-
nents, causing other errors. Eventually, errors might result in failures where the
errors manifest themselves in a way that is externally observable. Failures either
provoke faults in other components or they represent system hazards; safety
analyses are conducted for the latter to determine all faults causing them.

2.2 State-Based Fault Modeling

Vecs, Compass, Fsap, and other safety analysis tools [6,7,19,20] share a com-
mon, state-based fault modeling approach: For each modeled fault, the tools’
high-level modeling formalisms require at least one additional Boolean variable
where changes of the variable’s value represent fault activations and deactiva-
tions. These variables increase both the number of reachable states as well as
the number of transitions of the Kripke structures generated from the high-level
models [6,12]. Transient faults represent the worst case as they occur completely
nondeterministically: n additional transient faults increase the generated Kripke
structure’s reachable state space by a factor of 2n and each state has an addi-
tional 2n successor states. Permanent faults, by contrast, have an overall lower
number of possible successor states compared to transient faults, so the amount
of reachable states and transitions might not increase as noticeably; model check-
ing and safety analysis efficiency is reduced significantly with each additional
fault in both cases.

100

The running example’s pressure sensor modeled with S# in Listing 1, for
instance, is a high-level representation that can either be checked using the clas-
sical state-based fault modeling approach or the fault-aware one introduced in
this paper. In the former case, the Kripke structure generated for the model
would be similar to the one shown in Fig. 2(a), whereas fault-aware modeling
would eventually result in a significantly smaller classical Kripke structure sim-
ilar to the one in Fig. 2(b). Figure 2(a) shows a part of the running example’s
Kripke structure shortly before the tank is fully filled and either the pump is shut
off or the tank ruptures. After 56 s of pumping, neither fault has any observable
effect on the system. During the next step, only the activation of ¬is full has an
observable effect, namely that pumping continues even though it should have
stopped. If pumping is not stopped by the sensor, the pump is shut off only if
¬timeout is not activated, otherwise the tank ruptures. The Kripke structure
shown in Fig. 2(b) can be seen as an abstraction of the one in Fig. 2(a). It unifies
states that are equivalent modulo active faults, thereby reducing both the state
and the transition counts significantly; the states where ¬is full is active cannot
be unified due to the cyclic nature of the model. The Kripke structure is mini-
mal in the sense that irrelevant active faults are omitted while all system states
remain reachable, including, in particular, the hazard. The notion of minimality
is based on the observation that the exact points in time in which faults become
active are irrelevant as long as they do so before or when they can affect the
system. Inspired by partial order reduction [3], fault-aware modeling and speci-
fication is a fundamental change of model-based safety analysis that inherently
considers only minimized Kripke structures similar to the one in Fig. 2(b).

Fig. 2. Partial view of the running example’s Kripke structures resulting from state-
based fault modeling (a) or fault-aware modeling (b). States are labeled with P when
the pump is running; the number represents both the tank’s pressure level and the
timer’s counter. The faults ¬is full and ¬timeout are active in states that show their
respective labels f and t. For reasons of brevity, the other two faults are omitted and
¬is full and ¬timeout are assumed to be permanent.

 101

3 Fault-Aware Modeling and Specification

Instead of the commonly used state-based fault modeling approach, we focus
on fault activations, making them central to the models and specifications of
safety-critical systems as well as the safety analysis techniques. Our approach is
event-based where events are fault activations and deactivations; we exclusively
consider the former only, as we have not yet found a use case that requires
the latter. The significant state and transition count reductions demonstrated
by Fig. 2(b) make the potential advantages for model checking efficiency evident.
We augment the classical notion of Kripke structures and LTL to incorporate
fault activations explicitly, allowing us to more conveniently formalize Dcca,
fault injection, and fault removal in the remainder.

3.1 Fault-Aware Kripke Structures

Fault-aware Kripke structures explicitly denote the faults that can affect the
system they represent. They highlight states in which faults can be activated by
labeling their outgoing transitions with sets of activated faults as can be seen
in Fig. 3(a): The transition relation of the running example’s fault-aware Kripke
structure is activation-minimal in the sense that no transitions can be removed
without affecting the Kripke structure’s behavior or losing system states; in
particular, there are no transitions labeled with ¬is full or ¬timeout between the
two shown states as these two faults obviously cannot be activated when the
tank is empty. The Kripke structure in Fig. 2(a), on the other hand, has many
superfluous states and transitions that can safely be removed without losing
any system states or behavior. The actual state and transition count reductions
made possible by activation minimality depend on how often a fault can be
activated: ¬timeout, for instance, is only activatable right before the hazard
occurs, resulting in a significant state space reduction; ¬pumping, by contrast,
is activatable in roughly 50 % of all states and therefore does not profit as much
from fault-aware modeling and specification.

Definition 1 (Fault-Aware Kripke Structures). A fault-aware Kripke
structure K = (P , F, S, R, L, I) consists of a set of atomic propositions P; a
set of faults F ; a set of states S; a transition relation R ⊆ S × 2F × S labeled
with fault activations that is

– left-total, i.e., ∀s ∈ S . ∃s′ ∈ S, Γ ⊆ F . (s, Γ, s′) ∈ R and
– activation-minimal, i.e., (s1, Γ, s2) ∈ R ∧ (s1, Γ ′, s′

2) ∈ R ∧ Γ � Γ ′ → s2 �= s′
2;

a labeling function L : S → 2P indicating the set of atomic propositions holding
in a state; and a non-empty set of initial fault activations and states ∅ �= I ⊆
2F × S that is also activation-minimal, i.e., (Γ1, s1) ∈ I ∧ (Γ2, s2) ∈ I ∧ Γ1 �

Γ2 → s1 �= s2. We also write P(K) for P , F (K) for F , etc. A fault-aware
Kripke structure K is finite if P(K), F (K), and S(K) are finite.

102

Fig. 3. Part of the running example’s fault-aware Kripke structure where the tank
is empty, which the sensor should report to start the pump. Activations of either
¬pumping or ¬is empty prevent the system from doing so. State label P indicates that
the pump is running; the number represents the pressure level. Labels e and p indicate
activations of ¬is empty and ¬pumping, respectively, whereas e? and p? denote potential
activations of these faults when leaving the state.

For a fault-aware Kripke structure K, a path fragment ς = Γ0s0Γ1s1 . . . of
K is an infinite, alternating sequence of fault activations Γi ⊆ F (K) and states
si ∈ S(K) such that (si, Γi+1, si+1) ∈ R(K) for all i ≥ 0. We write ς[i], ςF[i],
and ςS[i] for (Γi, si), Γi, and si, respectively. A path of K is a path fragment ς
of K with ς[0] ∈ I(K); the set of all paths of K is denoted by paths(K). The
reachable states R(K) are given by {ςS[i] | ς ∈ paths(K) ∧ i ≥ 0}. The following
notion of path equivalence modulo faults Γ allows us to compare the paths of
two fault-aware Kripke structures, ignoring activations of faults f ∈ Γ :

Definition 2 (Path Equivalence). Two fault-aware Kripke structures K1 and
K2 are path equivalent modulo faults F , denoted as K1 ≡F K2, if for all ς =
Γ0s0Γ1s1 . . . with si ∈ S(K1) ∪ S(K2), Γi ⊆ F (K1) ∪ F (K2), and Γi ∩ F = ∅ for
all i ≥ 0, ς ∈ paths(K1) if and only if ς ∈ paths(K2). K1 ≡∅ K2 is abbreviated
as K1 ≡ K2.

In order to use standard model checkers such as LTSmin, a fault-aware Kripke
structure K = (P , F, S, R, L, I) can be converted to a classical Kripke struc-
ture K ′ = (P ′, S′, R′, L′, I): We encode actual and potential fault activations
into atomic propositions Γ and Γ ?, respectively; the latter indicates that the
faults Γ are activated by at least one outgoing transition of a state. We have
P ′ = P∪2F ∪{Γ ? | Γ ⊆ F}; S′ = 2F ×S; R′ = {((Γ, s), (Γ ′, s′)) | (s, Γ ′, s′) ∈ R};
and L′(Γ, s) = Γ ∪L(s)∪{Γ ′? | ∃s′ ∈ S . (s, Γ ′, s′) ∈ R}. While S′ is much larger
than S, most additional states are not reachable due to activation minimality and
are thus irrelevant for explicit-state model checkers such as LTSmin; with state-
based fault modeling, even more additional and often superfluous states would be
introduced, most of which would be reachable and thus slow down model checking
unnecessarily. Figure 3(b) shows the classical Kripke structure generated from the
fault-aware one in Fig. 3(a). The additional states are required to support fault-
aware LTL; they are unavoidable without fault-aware model checkers.

 103

3.2 Fault-Aware Linear Temporal Logic

Fault-aware Kripke structures only model fault activations, disregarding any per-
sistence constraints. Instead, we assume the constraints to be encoded into the
checked LTL formulas to filter out paths violating any of them. The following
definition of fault-aware LTL is based on the classical variant with both future-
and past-time operators [3,21]. The past modalities do not increase the expres-
siveness of the logic, but make some formulas exponentially more succinct [21]
while in many practical cases still allowing for efficient model checking [27].
Compared to classical LTL, fault-aware LTL provides two additional operators
related to fault activations: Formula Γ requires that at least the faults in Γ were
activated to reach a state, that is, it checks whether a state was reached because
of the activations of all f ∈ Γ , and potentially more, during the last transition.
Formula Γ therefore allows a glimpse into the immediate past, whereas the other
new operator supported by fault-aware LTL conceptually looks into the immedi-
ate future: Formula Γ ? checks whether exactly the fault set Γ might potentially
be activated when leaving a state, i.e., it allows to check whether precisely the
faults f ∈ Γ can be activated to reach the next state. The Γ ? operator therefore
considers multiple distinct futures that are possible instead of one single future
as is usually the case with LTL; the operator is conceptually similar to EX in
CTL. Fault-aware LTL is unable to directly express that a fault is active or
dormant, which we found of little practical use.

Definition 3 (Fault-Aware LTL). Fault-aware LTL formulas Φ over a set P
of atomic propositions and a set F of faults are formed according to the following
grammar, where ϕ, ϕ1, and ϕ2 are fault-aware LTL formulas over P and F, p ∈
P, and Γ ⊆ F :

Φ ::= true | p | Γ | Γ ? | ¬ϕ | ϕ1 ∧ ϕ2 | Xϕ | ϕ1Uϕ2 | Pϕ | ϕ1 Sϕ2

Propositional connectives are defined as usual; we write Fϕ for trueUϕ, Gϕ for
¬F¬ϕ, Oϕ for trueSϕ, and Hϕ for ¬O¬ϕ. Additionally, ϕ1 U= ϕ2 abbrevi-
ates ϕ1U(ϕ1∧ϕ2). A fault-aware LTL formula ϕ ∈ Φ is valid at a position i ≥ 0
of a path fragment ς of a fault-aware Kripke structure K, written as ς, i |= ϕ, if:

ς, i |= true ς, i |= p iff p ∈ L(K)(ςS[i])
ς, i |= Γ iff Γ ⊆ ςF[i]
ς, i |= Γ ? iff (ςS[i], Γ, s) ∈ R(K) for some s ∈ S(K)
ς, i |= ¬ϕ iff ς, i �|= ϕ ς, i |= ϕ1 ∧ ϕ2 iff ς, i |= ϕ1 and ς, i |= ϕ2

ς, i |= Xϕ iff ς, i + 1 |= ϕ
ς, i |= ϕ1Uϕ2 iff there is a k ≥ i with ς, k |= ϕ2 and ς, j |= ϕ1 for all i ≤ j < k
ς, i |= Pϕ iff i > 0 and ς, i − 1 |= ϕ
ς, i |= ϕ1 Sϕ2 iff there is a k ≤ i with ς, k |= ϕ2 and ς, j |= ϕ1 for all k < j ≤ i

ς |= ϕ abbreviates ς, 0 |= ϕ. ϕ is valid in K, written as K |= ϕ, if ς |= ϕ for all
ς ∈ paths(K).

104

For all faults f ∈ F , we generally require that they do not have to be acti-
vated in an initial state, i.e., K �|= f with f abbreviating {f}. Fault-aware
Kripke structures violating this assumption always start with at least one acti-
vated fault, making their adequacy questionable. Additionally, a transient fault
f ∈ F must be activated completely nondeterministically. The corresponding
persistence constraint is G

∨
Γ ′⊆F\f Γ ′?: There always is a transition where f

is not activated; otherwise, f ’s activation would be deterministically enforced.
Permanent faults Γ ⊆ F behave like transient ones until the first time they are
activated:

∧
Γ ′⊆Γ G((Γ ′? ∧ ∧

f∈Γ ′ O f) → XΓ ′) ensures that all subsets Γ ′ ⊆ Γ
of the faults are indeed activated whenever they are activatable and all faults
f ∈ Γ ′ have already been activated at least once.

To determine whether a formula ϕ ∈ Φ holds for a fault-aware Kripke struc-
ture K with K �|= f for all f ∈ F (K), we check K |= (

∧
ψ∈Ψ ψ) → ϕ for a

set of persistence constraints Ψ ; such formulas are similar to fairness conditions
in that they can only be expressed in LTL but not in CTL [3]. The extended
formula might result in a more complex Büchi automaton; however, constraints
for transient faults are both the common and the general case with a simple
single-state Büchi representation. Therefore, transient faults no longer represent
the worst case as with state-based fault modeling, but the best case instead.
The transformation of fault-aware LTL to classical LTL is straightforward by
making formulas Γ and Γ ? propositions; the Kripke structures generated from
fault-aware ones contain the required state labels for Γ and Γ ?.

3.3 Fault Injection

The intended behavior of a safety-critical system is commonly modeled first
with the faulty behavior injected later in a separate step [6]. State-based fault
modeling requires additional states, labels, and transitions for injected faults
just to distinguish the faults’ active and dormant states. For fault-aware Kripke
structures, however, injecting a fault can only add new transitions when the fault
is actually activated; additional states, labels, and transitions are only required
to model a fault’s effects on the system. Formally:

Definition 4 (Fault Injection). Injecting the faults F ′ into K =
(P , F, S, R, L, I) yields the set of extended fault-aware Kripke structures K �F ′,
where for all K ′ = (P ′, F ∪ F ′, S′, R′, L′, I ′) ∈ K � F ′, P ⊆ P ′, S ⊆ S′,
L(s) ⊆ L′(s) for all s ∈ S, R ⊆ R′ such that for all (s, Γ, s′) ∈ R′ \ R,
s ∈ S → Γ ∩ F ′ �= ∅, and I ⊆ I ′ such that for all (Γ, s) ∈ I ′ \ I, Γ ∩ F ′ �= ∅.

The definition reflects the fact that there are many possible ways of injecting
faults F ′ into a model by yielding a set of extended fault-aware Kripke structures
incorporating F ′. For reasons of adequacy, the model including the faults is
required to be an extension of the model without these faults; that is, fault
injection may add but can never remove behavior. We can formally show that
the original Kripke structure and all possible extensions are path equivalent as
long as the injected faults are never activated:

 105

Proposition 1 (Conservative Extension). For a fault set F and fault-aware
Kripke structures K and KF ∈ K � F , K ≡F KF .

Fault injection is purely additive, as new behavior can only be reached by
activations of injected faults; until then, the system behaves as before. The high-
level models of the safety analysis tools typically guarantee conservative exten-
sion syntactically [6,13].

4 Deductive Cause Consequence Analysis

By model checking a series of formulas, Dcca uncovers cause consequence rela-
tionships between faults (the causes) and hazards (the consequences): For each
hazard, Dcca computes all minimal critical fault sets Γ that can cause the
occurrence of the hazard. We assume a finite fault-aware Kripke structure K
representing the system to be analyzed with a hazard H given as a propositional
logic formula over K not referencing any faults f ∈ F = F (K). A fault set Γ is
critical for a hazard H if and only if there is the possibility that H occurs and
before that, at most the faults in Γ have been activated. The following original
definition [12] of the criticality property uses CTL, which could be extended to
fault-aware Kripke structures similar to fault-aware LTL. The usage of CTL,
however, limits Dcca’s applicability to Kripke structures with a single initial
state, since a CTL formula is only valid on a Kripke structure if it holds in all
initial states.

Definition 5 (Minimal Critical Fault Sets). Let |I(K)| = 1. A fault set Γ ⊆
F is critical for hazard H if K |= (onlyΓ EU= H), where onlyΓ :⇔ ∧

f∈F\Γ ¬f .
A critical fault set Γ is minimal if no proper subset Γ ′

� Γ is critical.

The CTL formula checks whether there is a path ς ∈ paths(K) on which
the hazard H occurs and before that, none of the faults f /∈ Γ are activated;
conversely, at most the faults f ∈ Γ are activated. The use of the EU= operator
guarantees that the transition leading to the state where the hazard occurs
still enables at most the faults f ∈ Γ ; if EU was used instead, there could be
activations of faults f ∈ F \Γ right before the hazard occurs, which is obviously
unintended. Activation is only (implicitly) required for minimal criticality, but
not for criticality: Any superset Γ ′ ⊇ Γ of a critical fault set Γ is also critical
as additional fault activations cannot be expected to fix other faults and thus
to improve safety. In practice, the criticality’s monotonicity with respect to set
inclusion [12] often allows for significant reductions in the number of checks
required to find all minimal critical fault sets; otherwise, all subsets of F would
have to be checked for criticality. Dcca’s worst-case complexity, however, is in
fact exponential.

Dcca determines all minimal critical fault sets for a hazard; it is a complete
safety analysis technique [12] in the sense that the hazard cannot occur as long
as at least one fault of each minimal critical fault set is never activated. For-
mally, K |= (

∧
Γ∈Λ ¬∧

f∈Γ F f) → G¬H always holds where Λ is the set of all

106

minimal critical fault sets for H determined by conducting a Dcca for H over
K. Dcca is always complete, regardless of whether faults were injected into the
Kripke structure in accordance with Definition 4 or added in some other, arbi-
trary way. Adequacy, however, is only guaranteed for fault-aware Kripke struc-
tures with injected faults. Only then is the check for criticality of the empty fault
set equivalent to a check of functional correctness, namely whether the hazard
can already occur even without any fault activations.

4.1 Conceptual Improvement: Safe Fault Sets

Similar to fairness conditions, persistence constraints cannot be enforced while
checking the criticality of a fault set due to the use of CTL [3]. We therefore base
Dcca on the dual of critical fault sets instead, which can indeed be formalized
using fault-aware LTL:

Definition 6 (Safe Fault Sets). A fault set Γ ⊆ F is safe for hazard H if
and only if K |= ¬(onlyΓ U= H) with onlyΓ as in Definition 5.

A fault set Γ is considered safe for a hazard H if it is impossible that at
most the activations of faults f ∈ Γ result in an occurrence of H. Intuitively, a
fault set should be critical if and only if it is not safe. This correlation, however,
does not hold as criticality assumes Kripke structures to have a single initial
state only, whereas for safe fault sets, we do not make this assumption. For
multiple initial states, the original definition would classify critical sets as safe
in certain cases. To establish the correlation, we from now on consider a fault
set Γ ⊆ F to be critical for H if and only if there is some path ς ∈ paths(K)
with ς |= onlyΓ U= H. The monotonicity property and Dcca’s completeness
guarantee continue to hold for the new definition of criticality; the proofs are
similar to the original ones [12]. Additionally, for any safe fault set Γ , any subsets
Γ ′ ⊆ Γ are safe as well: Under no circumstances is it possible that less fault
activations make a system less safe.

Dcca is model checker-independent, whereas other techniques similar to
Dcca are tied to certain model checkers such as NuSMV or BT Analyser [5,7,
19]. In contrast to Dcca, some of these techniques [5,7] are only able to assume
monotonicity or require permanent persistence [19]; with Dcca, monotonicity
is guaranteed regardless of the analyzed model and all kinds of persistence con-
straints are supported. Using safe fault sets to conduct Dccas results in three
notable usability improvements: Firstly, Dcca now supports multiple initial
states, avoiding workarounds that construct a unique pseudo initial state by
changing both the model and the analyzed formula. Ironically, LTSmin only
supports a unique initial state, forcing us to work around this limitation never-
theless. Secondly, both LTL and CTL can be used to conduct Dccas, enabling
broader model checker support; with CTL, a fault set is safe if and only if
K |= ¬(onlyΓ EU= H). Thirdly, the model checker now generates a counter
example when a fault set Γ is not safe, i.e., it constructs a witness that explains
why Γ is critical and how it causes the hazard. Consequently, the model checking

 107

Fig. 4. Illustration of the relation of fault injection and fault removal that enables
fault removal Dcca: starting with a fault-aware Kripke structure K and two disjoint
fault sets F1 and F2, path equivalent fault-aware Kripke structures can be obtained by
either injecting the relevant faults F1 only or by first injecting all faults F1 � F2 and
subsequently removing the irrelevant faults F2.

workflow is improved as witnesses for safe fault sets showing how a hazard is not
caused are typically of no interest in practice.

4.2 Efficiency Improvement: Fault Removal

Formal safety analysis tools can automatically conduct complete Dccas. Instead
of using a series of LTL formulas to check for safe faults sets within a model,
the tools could alternatively change the model to make the checks more efficient:
Faults F \Γ are not allowed to be activated during a check of Γ due to onlyΓ , so
they could just as well be removed from the model entirely as outlined by Fig. 4,
reducing the model’s state space. Thus, instead of checking multiple formulas on
the same model, the same simplified formula can be checked for multiple reduced
models. We formalize a fault removal variant of Dcca based on this idea, which
generalizes an ad hoc approach to conduct Dccas within the Scade tool [11].
We first define the notion of activation independence that is required to show
that Dcca always computes the same minimal critical fault sets, regardless of
whether the multiple formulas or multiple models approach is used. We consider
a fault set to be activation independent if activations are never forced, that is,
there is always an alternative future or initial state in which none of the faults are
activated; trivially, transient and permanent faults are activation independent.

Definition 7 (Activation Independence). A fault set Γ ⊆ F (K) of a fault-
aware Kripke structure K is activation independent in K if K �|= Γ �= ∅∧Γ and
K |= G

∨
Γ ′⊆F (K)\Γ Γ ′?.

In particular, the following set of reduced fault-aware Kripke structures is
non-empty if and only if an activation independent fault set is removed, as acti-
vation independence preserves left-totality for all reachable states R(K) during
fault removal:

Definition 8 (Fault Removal). Removing the fault set F ′ ⊆ F from a fault-
aware Kripke structure K = (P , F, S, R, L, I) yields the set of reduced fault-
aware Kripke structures K � F ′, where for all K ′ = (P ′, F \ F ′, S′, R′, L′, I ′) ∈
K � F ′, P ′ ⊆ P, R(K) ⊆ S′ ⊆ S, R′ = {(s, Γ, s′) ∈ R | s, s′ ∈ S′ ∧ Γ ∩ F ′ = ∅},
L′(s) = L(s) for all s ∈ S′, and I ′ = {(Γ, s) ∈ I | s ∈ S′ ∧ Γ ∩ F ′ = ∅}.

108

In contrast to fault injection which is a creative activity, fault removal is
mechanic and can therefore be done automatically by a tool. All K ′ ∈ K � F
have identical sets of paths as they can only differ in irrelevant details such as
unreachable states or transitions. Similar to fault injection, fault-aware Kripke
structures are path equivalent before and after fault removal as long as the
removed faults are never activated:

Proposition 2. For fault set F ⊆ F (K) and fault-aware Kripke structures K
and K\F ∈ K � F , K ≡F K\F .

In general, we can only infer that K � Γ �= ∅ when removing an activation
independent fault set Γ ⊆ F (K) from a fault-aware Kripke structure K. When
removing previously injected faults, we trivially obtain a fault-aware Kripke
structure that is path equivalent to the original one. Fault-aware LTL can also
be used to effectively remove an activation independent fault set Γ ′ ⊆ F (K)
from a fault-aware Kripke structure K, similar to how persistence constraints
suppress undesirable fault activations or deactivations: For K\Γ ′ ∈ K � Γ ′ and
ϕ ∈ Φ expressible over both K and K\Γ ′ , K |= (G

∧
f∈Γ ′ ¬f) → ϕ if and only

if K\Γ ′ |= ϕ by Proposition 2. In particular, while conducting a Dcca, all faults
whose activations are suppressed by the onlyΓ part of the safe fault sets formula
can be removed from the checked model, thereby replacing checks of multiple
LTL formulas on a model with all faults by a series of reachability checks of
multiple reduced models:

Theorem 1 (Fault Removal DCCA). Let K be a fault-aware Kripke structure
with faults F = F (K), Γ ⊆ F be a fault set, and K\(F\Γ) ∈ K � (F \ Γ). Γ is
safe for hazard H if and only if K\(F\Γ) |= G¬H.

The proof of Theorem 1 generalizes and completes the one given for Scade-
Dcca [11]. Overall potential analysis time reductions depend on the model adap-
tation overhead and the size of the minimal critical fault sets; as the latter are
usually rather small, efficiency can improve significantly. The following propo-
sition establishes the adequacy of the fault removal optimization for injected,
activation-independent faults Γ ′ ⊆ F (K), i.e., the criticality of Γ = F (K) \ Γ ′

can be determined by either removing Γ ′ or by injecting only Γ in the first place.
That is, it is not even necessary to construct the complete fault-aware Kripke
structure containing all analyzed faults and subsequently to remove the faults
that the analyzed Dcca formula would suppress anyway; instead, only the ana-
lyzed faults can be injected into the model, avoiding any potential analysis tool
overhead when carrying out the fault removals. More generally, the following
proposition summarizes the formal justification for the equivalence at the bot-
tom of Fig. 4, allowing only the smaller fault set to be injected in the first place;
a similar result can be obtained for the reverse direction.

 109

Proposition 3. For fault sets F and F ′ ⊆ F and all fault-aware Kripke struc-
tures K, KF ∈ K � F , and (KF)\F ′ ∈ KF � F ′, there is a KF\F ′ ∈ K � (F \ F ′)
such that KF\F ′ ≡ (KF)\F ′ .

5 Tool Support and Evaluation

Fault-aware modeling and specification is implemented in the S# modeling and
analysis framework for safety-critical systems [13]. The following gives a brief
overview of S#’s high-level modeling language, its fault modeling capabilities,
and its integration with the explicit-state model checker LTSmin [18]. S#’s effi-
ciency is contrasted with the explicit-state and symbolic model checkers Spin
and NuSMV [8,14] as well as the safety analysis tools Vecs and Compass
[20,23]. In particular, we highlight S#’s analysis efficiency improvements over
previous versions of S# for three case studies which result from the use of fault
removal Dcca as well as fault-aware Kripke structures. The latest version of
S# as well as documentation about its installation and usage are available at
http://safetysharp.isse.de. Detailed descriptions of the case studies as well as the
S# case study models are also available there, including interactive, S#-based
visualizations that support visual replays of model checking counter examples.

5.1 The S# Modeling and Analysis Framework for Safety-Critical
Systems

The S# modeling and analysis framework conducts Dccas fully automatically
for system models authored in the ISO-standardized C# programming language
and .Net runtime environment [15,16]. Its modeling language and the under-
lying model of computation put particular emphasis on flexible system design
variant modeling and composition capabilities as well as support for fault mod-
eling and automated fault injection which guarantees conservative extension.
While S# models are represented as C# programs, they are still models of the
safety-critical systems to be analyzed; the running example’s tank, for instance,
is part of the model even though it is not software-based in the real world. Even
the software parts of S# models are not intended to be used as the actual imple-
mentations; these are typically done in C or C++ for reasons of efficiency. Thus,
S# is best regarded as an executable, text-based extended subset of SysML [24]
even though no automated transformations between the two exist. The under-
lying model of computation is a series of discrete system steps, where each step
takes a clock tick. As shown by Listing 1, S# components are represented by C#

classes, instances of which correspond to S# component instances. Methods are
considered to be either required or provided ports; inheritance, interfaces, gener-
ics, lambda functions, etc. are fully supported by S#. To instantiate a model,
the appropriate component instances must be created, their initial states and
subcomponents must be set, and their required and provided ports must be
connected.

http://safetysharp.isse.de

110

class PressureSensor : Component { // incomplete due to space restrictions
int Max;
public PressureSensor(int max) { Max = max; }

public extern int GetPhysicalPressure();
public virtual bool MaxReached() { return GetPhysicalPressure() >= Max; }

PermanentFault NotIsFull = new PermanentFault();

[FaultEffect(Fault = nameof(NotIsFull))]
class NotIsFullEffect : PressureSensor {

public override bool MaxReached() { return false; }
}

}

Listing 1. A partial S# model of the running example’s pressure sensor. The provided
port MaxReached checks the required port GetPhysicalPressure against the Max
value set via the constructor to determine whether the maximum pressure level is
reached. The permanent fault ¬is full is represented by NotIsFull; its effect is
modeled by the nested class NotIsFullEffect marked with the FaultEffect
attribute that links the effect to the fault. The effect overrides the original behavior of
MaxReached such that it always returns false when the fault is activated, regardless
of the actual pressure level; the port’s original implementation is invoked only when
the fault is dormant.

S#’s unified model execution approach [13] integrates the explicit-state model
checker LTSmin [18]: Instead of model transformations typically employed by
safety analysis tools such as Vecs, Compass, and AltaRica [4,20,23], S# uni-
fies simulations, visualizations, and fully exhaustive model checking by executing
the models with consistent semantics regardless of whether a simulation is run
or some formula is model checked. During model checking, all combinations of
nondeterministic choices and fault activations within a model are exhaustively
enumerated, the generated transitions are minimized with regard to the faults
they activate, and a fault-aware Kripke structure is generated on-the-fly and
subsequently transformed into a classical one for LTSmin. However, S# is not
a software model checker such as Java Pathfinder or Zing [1,29] as it does not
analyze states after every instruction; only state changes between individual,
more coarse-grained system steps are considered. Additionally, heap allocations
or threads are unsupported during model checking.

5.2 Evaluated Case Studies

S#’s analysis efficiency with fault removal Dcca and fault-aware Kripke struc-
tures is evaluated with three case studies. The first two case studies were previ-
ously analyzed using hand-written NuSMV models [12,25]; the safety analysis
results obtained with S# match those from previous analyses, the main improve-
ments over them lie in S#’s modular, high-level modeling language and flexible
model composition capabilities based on C# that, for instance, no longer require
manual work for composing system design variants. Additionally, S#’s unified
model execution approach not only generates and checks the required Dcca for-
mulas fully automatically, but also allows for interactive visualizations and visual
replays of model checking counter examples based on the same underlying S#

model without sacrificing analysis efficiency unacceptably.

 111

Radio-Controlled Railroad Crossing. The radio-controlled railroad crossing
replaces sensors on the track by onboard computations of the train position and
radio-based communication between the train and the crossing [12]. The hazard
is a train passing an unsecured crossing, potentially resulting from faults such as
lost communication messages or the crossing’s barrier getting stuck. Being model
checking-based, Dcca is automatically able to cope with temporal dependencies
inherent to the case study: Simultaneous occurrences of multiple faults might be
safe, while consecutive occurrences might not due to the communication inter-
play between the train and the crossing.

Height Control System. The height control system [25] of the Elbe Tunnel
in Hamburg, Germany, tries to prevent overheight vehicles from entering the
tunnel at unsuitable locations to avoid collisions with the tunnel’s ceiling. The
antagonistic hazards of collisions and false alarms must be balanced, taking
failures of various sensors into account. The system’s design space is restricted
by the physical properties of the sensors as well as the road layout; the “best”
designs strike a balance between the two aforementioned hazards. S# supports
modular modeling of different design variants and their composition in order to
analyze the safety of all modeled design variants.

Hemodialysis Machine. The third case study is a hemodialysis machine [22],
consisting of several physical components such as tubing valves, pumps, drip
chambers, and the dialyzer itself. To adequately express the causal dependencies
between these components, it is necessary to model the fluid flows that inter-
connect them. The analyzed hazard is that of contaminated blood entering the
patient’s vein.

5.3 Evaluation Results

S#’s latest version makes use of fault removal Dcca and automatically generates
fault-aware Kripke structures for explicit-state model checking with LTSmin.
Compared to previous versions of S# that employed explicit-state model checking
with state-based fault modeling, analysis efficiency improves by up to almost
four orders of magnitude depending on the case study as outlined by Table 1.
S# is generally faster than the established explicit-state model checker Spin:
In the worst case of valid formulas where the model’s entire state space must
be enumerated, S# and LTSmin take 68.8 s for the height control model. Spin,
by contrast, takes 553 s to check a hand-optimized, non-modular version of the
model that semantically corresponds to the S# version. On a quad-core CPU,
LTSmin achieves a speedup of 3.7x, bringing the analysis time down to 18.6 s
whereas Spin scales by a factor of 1.5x only. Fault awareness makes S# more
efficient than Spin, causing it to compute less transitions while still finding
all reachable states. For the height control case study, activation minimality is
partially encoded into the Spin model; general and automated support would
require changes to Spin’s model checking algorithms, however.

For the height control case study, BDD-based symbolic analysis with
NuSMV is faster than using S#: For a hand-written, very low-level and

112

Table 1. The results of the S#-based evaluation of the explicit-state efficiency improve-
ments, comparing fault-aware modeling and specification with state-based fault mod-
eling in (a). A comparison of both Dcca variants is shown in (b). Three S# case
studies were evaluated on a 3.4 GHz quad-core CPU: The height control system (T),
the radio-controlled railroad crossing (R), and the hemodialysis machine (H), checking
the hazards of tunnel collisions, trains on unsecured crossings, and contaminated blood
entering the patient’s vein, respectively.

State-Based Fault-Aware
States Trans Time States Trans Time

T 249 1219724 1.5d 1.3 57 14.2s 9127x
R 116 10564 12m 2.5 8.5 1.9s 379x
H 0.6 152 3m 0.05 0.9 10.1s 18x

(a) Comparison of both fault modeling approaches.
The “States” columns show the models’ approximate
amount of reachable states in millions, “Trans” the ap-
proximate amount of reachable transitions in millions,
and “Time” the time to enumerate all states. The last
column shows the analysis speed-up.

Fault-Aware
Faults MCS Std Time FR Time

T 11 3 3010s 33.1s 91x
R 7 6 23s 1.4s 16x
H 8 4 1040s 15.9s 65x

(b) Comparison of both DCCA variants.
“Faults” lists the number of faults, “MCS”
the amount of minimal critical sets. The
time columns show the times of standard
and fault removal DCCA; the speed-up is
shown on the right.

non-modular NuSMV model that is approximately equivalent to the S# model,
the entire state space is generated almost instantly, despite state-based fault
modeling. By contrast, the railroad crossing case study is more efficiently checked
by S# or Spin than by NuSMV, so the relative efficiency of explicit-state and
symbolic model checking is case study-specific and independent from S#. In gen-
eral, highly nondeterministic models seem to profit more from symbolic tech-
niques. Fault awareness can partially be encoded into NuSMV models using
input variables [5], slowing down analysis noticeably in some cases, however.

6 Conclusion and Future Work

Fault-aware modeling and specification of safety-critical systems has two main
advantages over the commonly used state-based fault modeling approach: Explic-
itly denoting faults and their activations simplifies the descriptions and formal
definitions of safety analysis techniques like Dcca and of safety-related concepts
such as fault injection and fault removal. Moreover, model checking efficiency in
general and safety analysis times in particular are improved significantly such
that explicit-state model checking becomes competitive with symbolic techniques
when analyzing safety-critical systems. Some case studies still have higher analy-
sis times with S# compared to NuSMV; this tradeoff seems acceptable, however,
when considering the step-up in modeling flexibility and expressiveness as well as
the guarantees of semantic consistency and conservative fault injection that S#

provides over Spin, NuSMV, or, in parts, Vecs. Compared to other approaches
for safety modeling and analysis like Compass, Vecs, AltaRica, or HiP-HOPS,
S# has a competitive edge by tightly integrating the development, debugging,

 113

and simulation of models with their formal analysis with no or only minor sac-
rifices in analysis efficiency. In general, however, fair comparisons between these
tools and S# are hard to achieve due to their different models of computation.
For instance, it took us about 740 lines to create a scaled down Compass ver-
sion of the railroad crossing model that is semantically similar to the S# version
written in 400 lines of C# code. Compass performs a safety analysis that is
equivalent to Dcca in 21 min using NuSMV instead of the 1.4 s it takes S# to
do the same. Of course, the comparison is unfair as forcing Compass semantics
onto S# might likewise slow down analyses.

While S# and Dcca only compute the minimal critical fault sets for a haz-
ard, the actual hazard probability is also of interest. We are therefore working
on fault-aware probabilistic model checking; preliminary results are promising,
bringing the achieved analysis time reductions for non-probabilistic analyses to
probabilistic ones. Additionally, we plan to explore (semi-)automatic abstrac-
tions from irrelevant environment states to decrease analysis times similar to
partial order reduction [3]: S# models always contain parts of the system’s phys-
ical environment for reasons of adequacy [13], for which the system’s sensors
might readily serve as abstraction functions.

References

1. Andrews, T., Qadeer, S., Rajamani, S.K., Rehof, J., Xie, Y.: Zing: a model checker
for concurrent software. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol.
3114, pp. 484–487. Springer, Heidelberg (2004)

2. Avižienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxon-
omy of dependable and secure computing. Dependable Secure Comput. 1(1), 11–33
(2004)

3. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

4. Batteux, M., Prosvirnova, T., Rauzy, A., Kloul, L.: The AltaRica 3.0 project
for model-based safety assessment. In: Industrial Informatics, pp. 741–746. IEEE
(2013)

5. Bozzano, M., Cimatti, A., Griggio, A., Mattarei, C.: Efficient anytime techniques
for model-based safety analysis. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015.
LNCS, vol. 9206, pp. 603–621. Springer, Heidelberg (2015)

6. Bozzano, M., Cimatti, A., Katoen, J.-P., Nguyen, V.Y., Noll, T., Roveri, M.: The
COMPASS approach: correctness, modelling and performability of aerospace sys-
tems. In: Buth, B., Rabe, G., Seyfarth, T. (eds.) SAFECOMP 2009. LNCS, vol.
5775, pp. 173–186. Springer, Heidelberg (2009)

7. Bozzano, M., Cimatti, A., Tapparo, F.: Symbolic fault tree analysis for reactive
systems. In: Namjoshi, K.S., Yoneda, T., Higashino, T., Okamura, Y. (eds.) ATVA
2007. LNCS, vol. 4762, pp. 162–176. Springer, Heidelberg (2007)

8. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: an opensource tool for symbolic model
checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp.
359–364. Springer, Heidelberg (2002)

9. Clarke, E.M.: The birth of model checking. In: Grumberg, O., Veith, H. (eds.) 25
Years of Model Checking. LNCS, vol. 5000, pp. 1–26. Springer, Heidelberg (2008)

114

10. Grunske, L., Kaiser, B.: An automated dependability analysis method for COTS-
based systems. In: Franch, X., Port, D. (eds.) ICCBSS 2005. LNCS, vol. 3412, pp.
178–190. Springer, Heidelberg (2005)

11. Güdemann, M., Ortmeier, F., Reif, W.: Using deductive cause-consequence analysis
(DCCA) with SCADE. In: Saglietti, F., Oster, N. (eds.) SAFECOMP 2007. LNCS,
vol. 4680, pp. 465–478. Springer, Heidelberg (2007)

12. Habermaier, A., Güdemann, M., Ortmeier, F., Reif, W., Schellhorn, G.: The For-
MoSA approach to qualitative and quantitative model-based safety analysis. In:
Railway Safety, Reliability, and Security, pp. 65–114. IGI Global (2012)

13. Habermaier, A., Knapp, A., Leupolz, J., Reif, W.: Unified simulation, visualization,
and formal analysis of safety-critical systems with S#. In: ter Beek, M., Gnesi, S.,
Knapp, A. (eds.) FMICS-AVoCS 2016. LNCS, vol. 9933, pp. 150–167. Springer,
Heidelberg (2016)

14. Holzmann, G.: The SPIN Model Checker. Addison-Wesley, Reading (2004)
15. ISO: ISO/IEC 23270: Information technology - Programming languages – C#

(2006)
16. ISO: ISO/IEC 23271: Information technology – Common Language Infrastructure

(2012)
17. ISO/IEC/IEEE: ISO 24765: Systems and software engineering – Vocabulary (2010)
18. Kant, G., Laarman, A., Meijer, J., van de Pol, J., Blom, S., van Dijk, T.: LTSmin:

high-performance language-independent model checking. In: Baier, C., Tinelli, C.
(eds.) TACAS 2015. LNCS, vol. 9035, pp. 692–707. Springer, Heidelberg (2015)

19. Kromodimoeljo, S., Lindsay, P.A.: Automatic Generation of Minimal Cut Sets. In:
Engineering Safety and Security Systems, pp. 33–47 (2015)

20. Lipaczewski, M., Struck, S., Ortmeier, F.: Using tool-supported model based safety
analysis – progress and experiences in SAML development. In: High-Assurance
Systems Engineering, pp. 159–166. IEEE (2012)

21. Markey, N.: Temporal logic with past is exponentially more succinct. In: EATCS
Bulletin, vol. 79, pp. 122–128. European Association for Theoretical Computer
Science (2003)

22. Mashkoor, A.: The hemodialysis machine case study. In: Butler, M., Schewe, K.-D.,
Mashkoor, A., Biro, M. (eds.) ABZ 2016. LNCS, vol. 9675, pp. 329–343. Springer,
Heidelberg (2016). doi:10.1007/978-3-319-33600-8 29

23. Noll, T.: Safety, dependability and performance analysis of aerospace systems. In:
Artho, C., Ölveczky, P.C. (eds.) FTSCS 2014. CCIS, vol. 476, pp. 17–31. Springer,
Heidelberg (2015)

24. Object Management Group: OMG Systems Modeling Language (OMG SysML),
Version 1.4 (2015)

25. Ortmeier, F., Schellhorn, G., Thums, A., Reif, W., Hering, B., Trappschuh, H.:
Safety analysis of the height control system for the Elbtunnel. In: Anderson, S.,
Bologna, S., Felici, M. (eds.) SAFECOMP 2002. LNCS, vol. 2434, pp. 296–308.
Springer, Heidelberg (2002)

26. Papadopoulos, Y., Walker, M., Parker, D., Rüde, E., Hamann, R., Uhlig, A., Grätz,
U., Lien, R.: Engineering failure analysis and design optimisation with HiP-HOPS.
Eng. Fail. Anal. 18(2), 590–608 (2011)

27. Pradella, M., San Pietro, P., Spoletini, P., Morzenti, A.: Practical model checking
of LTL with past. In: Automated Technology for Verification and Analysis (2003)

28. Vesely, W., Dugan, J., Fragola, J., Minarick, J., Railsback, J.: Fault tree handbook
with aerospace applications. Technical report, NASA, Washington, DC (2002)

29. Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model checking programs.
Autom. Softw. Eng. 10(2), 203–232 (2003)

http://dx.doi.org/10.1007/978-3-319-33600-8_29

	Preface
	Organization
	Abstracts of the Invited Talks
	Lessons Learned in a Journey Toward Correct-by-Construction Model-Based Development
	Model-based Testing Strategies and Their (In)dependence on Syntactic Model Representations
	Random Testing of Formal Properties for Industrial Critical Systems
	Contents
	Invited Talk
	Model-Based Testing Strategies and Their (In)dependence on Syntactic Model Representations
	1 Introduction
	2 Problem Description
	3 A Model-Independent Method for Input Equivalence Class Partition Testing
	4 Model-Based Transformation-Invariant Calculation of Input Equivalence Classes
	5 Conclusion
	References

	Automated Verification Techniques
	Abstract Interpretation of MATLAB Code with Interval Sets
	1 Introduction
	1.1 Contribution

	2 Related Work
	3 Abstract Interpretation of MATLAB
	3.1 Syntax and Concrete Semantics
	3.2 Abstract Semantics
	3.3 Abstract Interpretation

	4 Evaluation
	5 Conclusion
	References

	Workflow Nets Verification: SMT or CLP?
	1 Introduction
	2 Preliminaries
	2.1 Workflow Nets
	2.2 Modal Specifications
	2.3 Modal Specifications Verification Method

	3 Experimental Protocol
	4 Results and Feedback from Experiments
	4.1 Observation from State-Machine Workflow Nets Verification
	4.2 Observation from Marked-Graph Workflow Nets Verification
	4.3 Observation from Free-Choice Workflow Nets Verification
	4.4 Observation from Ordinary Workflow Nets Verification
	4.5 Lessons Learned from Experience

	5 Related Work and Conclusion
	References

	One Step Towards Automatic Inference of Formal Specifications Using Automated VeriFast
	1 Introduction
	2 Architecture
	3 An Inner Look at Automated VeriFast
	3.1 Auto-generating Predicates
	3.2 Auto-fixing

	4 Automated VeriFast by Examples
	4.1 Stack Example
	4.2 Bank Example

	5 Related Work
	6 Conclusions and Future Work
	References

	Analyzing Unsatisfiability in Bounded Model Checking Using Max-SMT and Dual Slicing
	1 Introduction
	2 Background and Motivating Example
	2.1 Bounded Model Checking for Embedded Control Software
	2.2 Example Model with a Counter
	2.3 Motivation

	3 Initial Condition Analysis Using Maximum Satisfiability
	3.1 Max-SMT
	3.2 Analyzing Initial Conditions with a Partial Max-SMT Solver
	3.3 Example of Analyzing Initial Conditions
	3.4 Limitations

	4 Causal Path Analysis Using Dual Slicing
	4.1 Dual Slicing
	4.2 Causal Path Analysis
	4.3 How to Compare Execution Logs
	4.4 Example of Analyzing the Causal Path

	5 Case Study
	5.1 Outline of the Model and Problem Setting
	5.2 Results

	6 Related Work
	7 Conclusion and Future Work
	References

	Towards the Automated Verification of Weibull Distributions for System Failure Rates
	1 Introduction
	2 Multi-state Failure Mode in Satellite Subsystems
	3 Preliminaries
	3.1 Continuous-Time Markov Chains
	3.2 The PRISM Model Checker
	3.3 Continuous Stochastic Logic

	4 Approximation of Weibull Failure Models
	4.1 Weibull Distributions
	4.2 Increasing Failure Rates (IFR)
	4.3 Decreasing Failure Rates (DFR)

	5 Encoding the Weibull Models with CTMCs in PRISM
	5.1 Encoding the Weibull Distribution with IFR
	5.2 Encoding the Weibull Distribution with DFR

	6 Conclusion and Future Work
	References

	Fault-Aware Modeling and Specification for Efficient Formal Safety Analysis
	1 Introduction
	2 Model-Based Safety Analysis
	2.1 Fault Terminology
	2.2 State-Based Fault Modeling

	3 Fault-Aware Modeling and Specification
	3.1 Fault-Aware Kripke Structures
	3.2 Fault-Aware Linear Temporal Logic
	3.3 Fault Injection

	4 Deductive Cause Consequence Analysis
	4.1 Conceptual Improvement: Safe Fault Sets
	4.2 Efficiency Improvement: Fault Removal

	5 Tool Support and Evaluation
	5.1 The S# Modeling and Analysis Framework for Safety-Critical Systems
	5.2 Evaluated Case Studies
	5.3 Evaluation Results

	6 Conclusion and Future Work
	References

	Model-Based System Analysis
	Block Library Driven Translation Validation for Dataflow Models in Safety Critical Systems
	1 Introduction
	2 Formal Specification of Blocks in Dataflow Languages
	2.1 Example of Block Specification: IntegerDelay
	2.2 Specifying a Block Family
	2.3 Verification and Validation of Block Specifications
	2.4 Handling Loop Constructs

	3 Verification of the Correctness of Generated Code
	3.1 Semantic Annotation of the Generated Code
	3.2 Verification Using the Frama-C Toolset

	4 Translation Validation of IntegerDelay
	5 Related Work
	6 Conclusion and Future Work
	References

	A Model-Based Framework for the Specification and Analysis of Hierarchical Scheduling Systems
	1 Introduction
	2 Background
	3 Formal Model-Based Compositional Framework for Hierarchical Scheduling Systems
	3.1 Automata-Based Models for a Scheduling Unit
	3.2 Formal Analysis of Hierarchical Scheduling Systems

	References

	Utilising K Semantics for Collusion Detection in Android Applications
	1 Introduction
	1.1 Related Work

	2 A Collusion Definition on the Android Level
	3 The K Framework
	4 Concrete Android Semantics
	5 Abstract Android Semantics
	6 Model Checking for Collusion
	7 Concluding Remarks and Future Work
	References

	Unified Simulation, Visualization, and Formal Analysis of Safety-Critical Systems with
	1 Introduction
	2 Case Study: Height Control System
	3 Modeling Safety-Critical Systems with
	3.1 Model of Computation
	3.2 The Modeling Language
	3.3 Fault Modeling

	4 Analyzing Safety-Critical Systems with
	4.1 Execution Semantics of Models
	4.2 Model Checking Models
	4.3 Simulating Models
	4.4 Evaluation of Model Checking Efficiency
	4.5 Safety Analysis of the Height Control Case Study

	5 Conclusion and Future Work
	References

	Applications and Case Studies
	Formal Verification of a Rover Anti-collision System
	1 Introduction
	2 The S3 Toolset
	3 Specification and Design of the ARP Use Case
	3.1 The Context of Use Case
	3.2 System-Level Safety and Functional Requirements
	3.3 System Design Choice
	3.4 High-Level Software Requirements and Software Design

	4 Property Verification
	4.1 The Workflow of Property Verification
	4.2 K-Inductive Proof of Safety Property
	4.3 BMC and Test Case Generation
	4.4 Safety Property and Map Data Validation
	4.5 Property Verification Results

	5 Equivalence Proof Between Design and Generated Code
	6 Lessons Learned
	6.1 Proof of Generated Code
	6.2 Proof-Driven Design Guidance

	7 Conclusion and Perspective
	References

	Verification of AUTOSAR Software Architectures with Timed Automata
	1 Introduction
	2 Background
	2.1 Introduction to AUTOSAR
	2.2 Timed Automata

	3 Transformation of AUTOSAR Models
	3.1 Transformation

	4 AUTOSAR Timing Extensions
	4.1 Timing Events

	5 Implementation and Evaluation
	6 Conclusion
	References

	Verification by Way of Refinement: A Case Study in the Use of Coq and TLA in the Design of a Safety Critical System
	1 Introduction
	2 Application: Arbitrary Waveform Generator (AWG)
	3 Expressing the AWG in TLA+
	3.1 Limitations of the TLA+ Framework

	4 Expressing the AWG in TLACoq
	5 Implementing TLACoq
	6 Conclusions
	References

	Application of Coloured Petri Nets in Modelling and Simulating a Railway Signalling System
	1 Introduction
	2 Introduction to the Railway Signalling Principle and Desired Properties
	2.1 Railway Signalling Principle
	2.2 Desired Properties

	3 The Coloured Petri Net Model
	3.1 Global Declarations and Route's State
	3.2 Setting Routes
	3.3 Clearing Signals
	3.4 Approach Locked and Back Locked
	3.5 Releasing Route

	4 Lessons Learnt and Perspective
	5 Conclusion and Suggested Work
	References

	Formal Techniques for a Data-Driven Certification of Advanced Railway Signalling Systems
	1 Introduction
	2 Innovation in Signalling Systems
	2.1 ``Communication Based'' Distancing Systems
	2.2 Highly Innovative Distancing Concepts
	2.3 Distributed Interlocking Systems
	2.4 Safety Paradigm Shift

	3 Integrity and Consistency of Vital Information
	4 Demonstrating Safety
	4.1 Data-Driven Safety Design Techniques
	4.2 Software Faults

	5 Quantitative Dependability Assessment
	6 Conclusions
	References

	Author Index

