Interoperable & Efficient: Linked Data for the
Internet of Things

Eugene Siow, Thanassis Tiropanis, and Wendy Hall

Electronics & Computer Science, University of Southampton
{eugene.siow,t.tiropanis,wh}@soton.ac.uk

Abstract. Two requirements to utilise the large source of time-series
sensor data from the Internet of Things are interoperability and efficient
access. We present a Linked Data solution that increases interoperabil-
ity through the use and referencing of common identifiers and ontologies
for integration. From our study of the shape of Internet of Things data,
we show how we can improve access within the resource constraints of
Lightweight Computers, compact machines deployed in close proximity
to sensors, by storing time-series data succinctly as rows and producing
Linked Data ‘just-in-time’. We examine our approach within two scenar-
ios: a distributed meteorological analytics system and a smart home hub.
We show with established benchmarks that in comparison to storing the
data in a traditional Linked Data store, our approach provides gains in
both storage efficiency and query performance from over 3 times to over
three orders of magnitude on Lightweight Computers. Finally, we reflect
how pushing computing to edge networks with our infrastructure can
affect privacy, data ownership and data locality.

Keywords: Interoperability, Internet of Things, Query Translation, Linked
Data

1 Introduction

The Internet of Things (IoT) envisions a world-wide, interconnected network
of smart physical entities with the aim of providing technological and societal
benefits [8]. However, as the W3C Web of Things Interest Group charter! points
out, the IoT is currently beset by product silos and to unlock its potential, an
open ecosystem based upon open standards for the interoperation of services is
required. There is also a need for rich descriptions and shared data models, with
close attention to security, privacy and scalability.

Linked Data is a set of best practices for publishing data on the Web so that
distributed, structured data can be interconnected and made more useful by se-
mantic queries [4]. A common representation is as a set of triples formed from a
subject, predicate and object. For example, in the statement ‘sensorl has weath-
erObservationl’, the subject is sensorl, the predicate is has and the object is

! https://www.w3.org/2014/12/wot-ig-charter.html

2 Interoperable & Efficient: Linked Data for the Internet of Things

weatherObservationl. ‘weatherObservationl hasValue 30knots’ is another triple
and the union of this set of triples forms a Linked Data graph. SPARQL is a
language for querying Linked Data. Linked Data has demonstrated its feasibility
as a means of connecting and integrating rich and heterogeneous web data using
current infrastructure [7] and Barnaghi et al. [3] have supported the view that
semantics can serve to facilitate interoperability, data abstraction, access and
integration with other cyber, social or physical world data in the IoT.
In particular, Linked Data helps with interoperability in the IoT through:

1. The use and referencing of common identifiers (internationalised resource
identifiers (IRIs)) and ontologies to help establish common data structures
and types for integration e.g. the Semantic Sensor Ontology (SSN)?2.

2. The provision of machine-interpretable descriptions within Linked Data to
describe what data represents, where it originates from, how it can be related
to its surroundings, who is providing it, and what its attributes are e.g. a
unit of measure of knots for each wind speed reading, the sensor that records
it, its platform and its location.

The next question is whether Linked Data for the IoT can provide efficient
access in terms of query performance and scalability. Buil-Aranda et al. [5] have
examined traditional Linked Data stores on the web and shown that performance
can be an issue. Performance for generic queries can vary by up to 3-4 orders
of magnitude and stores generally limit or have worsened reliability when issued
with a series of non-trivial queries.

ToT devices present even greater resource constraints, however, time-series
sensor data from the IoT also presents a unique opportunity for optimisation. In
this paper, we study the shape of IoT data in Section 2 and from that, design and
implement a solution to optimise the storage and query performance of Linked
Data using row storage and producing Linked Data ‘just-in-time’ in Sections 3 &
4 on an IoT infrastructure across two varying scenarios described in Section 5. We
show with established benchmarks how our approach compares to a traditional
Linked Data store in terms of storage and query performance in Section 6 and
reflect on the impact our infrastructure, which distributes computing and storage
to edge networks, has on privacy and data ownership in Section 7. Finally, we
look at the related work in the area in Section 8.

2 Shape of IoT Data

To investigate the shape of data produced by sensors in the Internet of Things,
we collected a sample of the schema of over 20,000 unique IoT devices from
public data streams on Dweet.io3.

Dweet.io supports the publishing of data from IoT devices in JavaScript
Object Notation (JSON). Since JSON is the data format, the schema for the data

2 https://www.w3.org/2005/Incubator/ssn /ssnx/ssn
3 http://dweet.io/see

Interoperable & Efficient: Linked Data for the Internet of Things 3

can be flat (row-like with a single level of data) or complex (tree-like /hierachical
with multiple nested levels of data). We collected about 20,000 unique device
schema from a one month period in January 2016 and analysed the structure of
data. It was observed that out of 19,914 schema, 1542 (7.7%) are empty. From
the non-empty schema, 18,280 (99.5%) are flat while 92 (0.5%) are complex.
Hence, non-empty Dweet.io schema was almost always, flat (99.5%).

The field count of a schema refers to the number of values in a flat schema
besides the timestamp. Fig. 1 shows us the field counts of each flat device schema
from Dweet.io. We found that 92.8% of the devices sampled had a schema of
2 or more fields attached on top of the timestamp. The majority (54.7%) had
4 fields attached to each timestamp. Hence, the schema indicates that sampled
data on Dweet.io is largely wide. Our data is available on Github*.

Field Count

0 2000 4000 6000 8000 10000

Number of Schema

Fig. 1. Field counts from flat device schema

Therefore, through the study of public IoT device schema, we observe that
our sample of over 20,000 unique IoT devices have data structures that are largely
1) flat and 2) wide (not just one, but multiple sensor values at a timestamp) .

2.1 Optimising for Time-Series IoT Data

We hypothesise that flat and wide data, made up of a timestamp and multiple
sensor values, can be succinctly represented as rows and the necessary Linked
Data produced ‘just-in-time’ for interoperability. As compared to representation
as traditional Linked Data triples:

1. Storage is efficient as each field in a row stores just the value without addi-
tional subject and predicate values.

2. Queries that retrieve two or more fields from a row require no joins.

3. Metadata triples produced ‘just-in-time’ (e.g. the location of a sensor or unit
of measure of its value) can be kept in-memory and need not be retrieved as
data and joined.

4. Intermediate nodes (e.g. observation identifier connecting time instant and
actual value) might seldom be used and can be abstracted from data

4 https://github.com/eugenesiow /iotdevices/releases/download /data/dweet _release.zip

4 Interoperable & Efficient: Linked Data for the Internet of Things

To realise this optimisation, we present our approach that involves mapping
(a representation of abstracted metadata and data row bindings) and translation
of queries from Linked Data SPARQL queries to row /relational SQL queries.

3 Mapping

Mapping serves the dual purpose of abstracting schema and metadata from
actual sensor data stored as rows and providing bindings from that row data to
Linked Data, allowing the translation of queries from SPARQL to SQL.

We propose the SPARQL2SQL Mapping Language (S2SML), a simple and
compact RDF-based language, designed with the structure of IoT data in mind,
that is compatible with W3C recommendation, R2RML?, for mapping.

3.1 Mapping as a Store of Abstracted Metadata

The difference and justification for S2SML over R2RML in the IoT is that S2SML
mappings act like a Linked Data store for abstracted metadata (e.g. altitude of a
sensor) and intermediate nodes (e.g. observation node connecting time instant,
measurement data and sensor platform). It makes sense to abstract these to
mappings as they are structurally different from the row data or are seldom
projected from queries, however, they serve to connect and make Linked Data
interoperable ‘just-in-time’. R2ZRML on the other hand is designed just for bind-
ing relational datasets to Linked Data.

3.2 Formal Definition of Mappings

Mappings and elements unique to S2SML are defined in Definitions 1, 2, 3, 4
and Table 1 gives descriptions and examples for each S2SML element.

Definition 1 (S2SML Mappings, M). Given a set of all possible S2SML
mappings, M and a mapping, m € M, a triple pattern, tp = (s,p,0) that is
part of a mapping, tp € m, has subject, s, predicate, p, and object, o where
s =A{I,Inap, B, F}, p={I} and o = {1, Lyap, B, L, Liap, F'}.

Definition 2 (IRI Map, I,,qp). An Imap s defined as a template that consists
of the union of a set of IRI string parts, I, and a set of table column binding
strings, C, $0 Imap = I, UC and |C| >=1,|I,| >= 1. ¢ is a string that consists
of the table name and column separated by a’. character, enclosed within braces

and c € C.

Definition 3 (Literal Map, Lyqp). An Ly is defined as a RDF literal that
consists of a table column binding string, c, as its value and a specific IRI,
<s2s:literalMap> identifying it as an S2SML literal map as its datatype. ¢ is a

string that consists of the table name and column separated by a’. character.

® http://www.w3.org/TR/r2rml/

Interoperable & Efficient: Linked Data for the Internet of Things 5

Definition 4 (Faux Node, F). An F is defined as a template that consists of
the union of a set of IRI string parts, I, and a set of ID placeholders, Uq, so
F=1,UU;q and |Ujq| >=1,|I,| >= 1. u = {tablename.vuid} and v € Uyq.

Table 1. Examples of elements in (s,p, 0) sets

Symbol Name Example

I IRI <http://knoesis.wright.edu/ssw/ont/weather.owl#degrees>
TIap IRI Map <http://knoesis.wright.edu/ssw/{sensors.sensorName} >

B Blank Node _ :bNodeld

L Literal "-111.88222"" " <xsd:float>

Lpmap Literal Map "readings.temperature"” " <s2s:literalMap >

F Faux Node <http://knoesis.wright.edu/ssw/obs/{readings.uuid}>

3.3 Mapping Closure

Devices and hubs might have multiple sets of row data and their corresponding
mappings. We define a mapping closure in Definition 5 that allows us to represent
this collection of multiple mappings on a device.

Definition 5 (Mapping Closure, M.). Given the set of all mappings on a
device, Mg = {mg|mq € M}, where M is a set of all possible S2SML mappings.
A mapping closure is the union of all elements in My, so M, = UmeMd m.

3.4 Implicit Join Conditions

Sensor data that is represented across multiple tables within a mapping closure
might need to be joined if matched by a SPARQL query. In the R2RML spec-
ification, one or more join conditions (rr:joinCondition) may be specified between
triple maps of different logical tables.

In S2SML, these join conditions are automatically discovered as they are
implicit within mapping closures from IRI template matching involving two or
more tables.

Definition 6 (IRI Template Matching). Following from Definition 2, Inap,
and Lyap, are matching if Uilelpl = Ui261p2 io and Yiy € I, ,Yiy € I,
pos(i1) = pos(ia) where pos(z) is a function that returns the position of x within
s Imap-

From matching IRI templates in the mapping closure, join conditions can
be inferred. Given Definition 2 and 6, if ¢; # ¢, where ¢; € C1,co € Cs and
pos(c1) = pos(cz), then, a join condition of ¢; = ¢g is required.

Fig. 2 shows a mapping closure consisting of sensors and observations map-
pings. An IRI map, sen:system{sensors.name} and sen:system{readings.sensor}, ill each of
the mappings, fulfil a template matching. A join condition is inferred between
the columns {sensors.name} and {readings.sensor} as a result.

6 Interoperable & Efficient: Linked Data for the Internet of Things

Sensors Mapping

geonames:{sensors.near} wgs84:lat
e U

ssw:hasLocation wgs84:long|

wgs84:alt

[ssw:LocatedNearRel J [wgs84:Point }—Pm

4

T ssw:processLocation
ssw:hasLocatedNearRel

sen:system_{sensors.name} ’
sen:system_{readings.sensor)’ - Literal Map

T ssw:Procedure D BNode Class

ssw:WindDirectionObservation } D IRI

Observations Mapping {

Fig. 2. Graph representation of an Implicit Join within a Mapping Closure

3.5 Cross Joins

Definition 7 (Table Selection, «). Given a SPARQL query q € Q, where
Q is a set of all possible SPARQL queries, and a mapping closure, M., a table
selection function apg, (q) returns a set of table names required by the query and
referenced by elements in the mapping closure.

The output of « is used in the FROM clause of the translated SQL query. If
there are tables in the FROM where there are no corresponding join conditions,
a cross join, resulting in the cartesian product of two tables, is performed. This
is possible in a mapping, m, within the mapping closure, M., that refers to two
or more logical tables within its collection of Literal or IRI Maps.

3.6 Compatibility with R2ZRML

Although S2SML is more compact in terms of verbosity and can be processed
by any existing SPARQL engines (without needing any additional structures,
translation or algorithms) it can be translated to and from R2RML without
losing expressiveness. Table 2 defines the other R2RML predicates and the cor-
responding S2SML construct.

In particular, {rr:inverseExpression} is encoded within a literal, Liv7 with a
datatype of <s2s:inverse> and the {rr:column} denoted with double braces {{COL?}}
<rr:sqlQuery> is encoded by generating a named graph to group triples produced
from that TripleMap and the query is stored in a literal object with context as
the subject and <s2s:sqlquery> as predicate as shown in Table 2.

Interoperable & Efficient: Linked Data for the Internet of Things 7

Table 2. Other R2RML predicates and the corresponding S2SML construct

R2RML predicate S2SML example

rr:language "literal" @en
rr:datatype "iteral" "~ <xsd:float >
rranverseErpression "{COL1} = SUBSTRING({{COL2}}, 3)"" " <s2s:inverse>
rr:class ?s a <ont:class>.
rr:sqlQuery <contextl> {<sen:sys {table.col}> ?p 0.}
<contextl> s2s:sqlQuery "query".

> s

s o .

(03; 5 2 Mappings

AN L

(e} é v} Build

& b

=z & x

o < w R

n 5 a Mapping

Q Closure

—— I
: FILTER S NN
! GROUP ! | Variable Table Join ||
: Bindings | | Selection List |}
: UNION !
|
| [_project |
|

PRt

Fig. 3. Translation Flow from SPARQL to SQL

4 Translation

The translation step is the process by which a Linked Data SPARQL query is
applied to a mapping closure and translated to produce an SQL query that can
be executed on the relational row store. Fig. 3 describes the process whereby:

1. A SPARQL Query is parsed to SPARQL Algebra with Jena ARQS.

2. Each Basic Graph Pattern (BGP) in the algebra is visited so that:
— A mapping closure, M., is built from the set of mappings (Section 4.1).
— The BGP is expressed as a SPARQL select query and executed using any
SPARQL engine in-memory on the mapping closure (Section 4.2).
— The result set is processed to produce a map of variable bindings (e.g.
?var, tablel.coll), table selection (v, Definition 7) and join list (Section 3.4).

3. Other operators like FILTER, GROUP, UNION and PROJECT are visited
and referencing the map of variable bindings, table selection a and join list,
an SQL query is generated by doing syntax translation (Section 4.3).

5 https://jena.apache.org/documentation/query/

8 Interoperable & Efficient: Linked Data for the Internet of Things

4.1 Building a Mapping Closure

Following from Definition 5 of a Mapping Closure, M., a translation engine
needs to perform, |J,,c a, M, @ union of all mappings on a device, My. Giving
consideration to template matching as described in Definition 6, we replace all
Irnap within each mapping m with I,, the union of IRI string parts, and extract
C, the set of table column binding strings. C is then stored as a global map,
Mjoin, With I, as key and C as value. This map is used to produce the join list.

In the example in Flg 2, <sen:system_> will replace <sen:system_{sensors.name}> and
<sen:system_{readings.sensor}> and Mjoin will store under the key <sen:system_>, the set
{sensors.name, readings.sensor}.

With this transformation, an M. can be formed by adding all My to it. This
can be done using any triple store that can be queried with a SPARQL engine.

4.2 BGP Resolution with Swappable SPARQL engines

As mapping closures are standard Resource Description Format (RDF) triples,
any SPARQL engine can perform BGP resolution. The BGP is expressed as
a SPARQL select query (seLect = wnere {8ep}) and executed on a repository con-
taining the mapping closure. We provide swappable Jena and OpenRDF Sesame
engines in our implementation and a Java interface to extend to any other engine.
Code is available on Github”.

4.3 Operators and Syntax Translation

Definition 8 (Syntax Translation, trans). trans() is a function that takes
a set of operators from SPARQL algebra, a table selection o, map of variable
bindings, Vmap, and join list, J, and returns syntazx for an SQL query.

The trans() function internally constructs an SQL query with clauses SE-
LECT, FROM, WHERE, GROUP BY, HAVING, UNION, ORDER BY, LIMIT
and OFFSET. BGP is just one of many operators that are visited from the
SPARQL algebra and each operator when input into the trans function, either
modifies one of the clauses or adds to the vyqp, @ and J. Table 3 shows a sample
of clauses and the operators & maps that construct them.

4.4 Compression with Faux and Blank Nodes

Blank nodes, B and faux nodes, F' help to compress intermediate nodes un-
likely to be accessed by abstracting them to the mapping and only if they
are retrieved from a BGP and PROJECT are they generated ‘just-in-time’. An
ssn:Observation node in the SSN ontology can be connected to an ssn:SensorOutput,
time:Instant and ssn:SensingDevice node. In turn an ssn:SensorOutput node
is connected to a ssn:ObservationValue node which is connected to the ac-
tual value as a literal. The intermediate ssn:Observation, ssn:SensorOutput,

7 https://github.com/eugenesiow /sparql2sql

Interoperable & Efficient: Linked Data for the Internet of Things 9

Table 3. Example of operators and clauses bindings in translation

Clause Operators & Maps
SELECT PROJECT, DISTINCT, UNION, vmap
FROM «@

WHERE J, FILTER, UNION
HAVING FILTER

GROUP BY GROUP, vmap
LIMIT SLICE

ssn:ObservationValue and time:Instant nodes are not required if we want to
obtain the timestamp and the reading and can be compressed as B or F' nodes.

If the intermediate nodes are required for some reason, F' nodes can be
used. When F' is input to a PROJECT operator, an SQL update statement,
UPDATE table SET col=RANDOM_UUID(), is run to generate a row of identifiers and the U;q
part of F' in the mapping is updated from {table.uuid} to {table.col}.

5 Linked Data Infrastructure for IoT Scenarios

We note from Section 2 that IoT time-series sensor data from our sample is flat
and wide. In this section, we focus on two specific IoT scenarios with flat and
wide IoT data: a distributed meteorological analytics system of weather sensors
and a personal smart home hub.

A cl | Meteorological Smart Home
v uster = System
g <
I .
S > Computer/Server 3 | Analytics Hub |
&= =8
f -’E’_ Lightweight Computer g |-|-| Station Hubl | Personal Store/Hubl
S s =
g~ Device g Weather Devices
S 5 Sensors w/Sensors
Sensor =
A\

Fig. 4. Distributed Infrastructure for IoT Scenarios

In Fig. 4, we propose an inverse relationship between the level of distribution
and compute and storage capability of components in a distributed architecture
e.g. a cluster has high compute but cannot be distributed widely while sensors
can be deployed widely but have minimal compute capability. Lightweight com-
puters are compact and mobile machines that provide a balance of distribution
and compute. We deploy our Linked Data Infrastructure on these lightweight
computers, in close proximity to sensors and devices. The reference lightweight
computer used is a Raspberry Pi 2 Model B+ with 1GB RAM, a 900MHz quad-
core ARM Cortex-A7 CPU and a Class 10 SD Card.

10 Interoperable & Efficient: Linked Data for the Internet of Things

5.1 Distributed Meteorological System and SRBench

This IoT scenario uses the established Linked Sensor Data [9] dataset that de-
scribes sensor data from about 20,000 weather stations across the United States
with recorded observations from periods of hurricanes and blizzards. We used
the Nevada Blizzard, with about 100k triples for storage and performance tests
and the largest 300k triple Hurricane Ike dataset in storage tests.

At each station, there are a varying number of sensors (e.g. WindDirection,
Rainfall) which produce observations at fixed intervals. This forms a stream of
flat and wide rows of data. Each station and sensor also has metadata associated
to it like the location, nearby stations or units of measure.

Fig. 4 shows our design of the meteorological system. Lightweight computers
serve as station hubs that store and make available for querying (as Linked Data)
the stream of observations from weather sensors. An analytics hub on a server
broadcasts queries to all station hubs and retrieves the results for visualisation.

We performed a benchmark with SRBench [15], an analytics benchmark for
Linked Sensor Data. The benchmark uses streaming SPARQL queries but can
be applied, with similar effect, to SPARQL queries constrained by time. Queries
1 to 10® were used as they involve time-series sensor data while the remaining
queries involved integration or federation with DBpedia or Geonames which was
not within the scope of the experiment. Queries are available on Github®.

We transformed the Linked Sensor Data from Linked Data to row datal®.
Due to resource constraints, we ran the benchmarks for each station in series
on a Pi, which is similar to parallel execution on a network with low latency,
recording individual times and taking the maximum time among all stations.

5.2 Smart Home Hub and Analytics Benchmark

In this scenario, we used data from smart home sensors collected by Barker et al.
[2] over 3 months in 2012. We utilised a variety of data including environment
sensors, motion sensors in each room and energy meter readings to devise a set
of queries that require space-time aggregations for descriptive and diagnostic
analytics. Queries can be found on this wiki!! and include 1) hourly aggre-
gation of internal or external temperature 2) daily aggregation of temperature
3) hourly and room-based aggregation of energy usage 4) diagnose unattended
energy usage with meter and motion, aggregating by hour and room.

Fig. 4 shows our design of the smart home system with lightweight computers
serving as the personal hub aggregating and storing sensor readings from energy
meters, environment sensors, etc. Each device or sensor contributes a mapping
in the mapping closure based on the SSN ontology!?.

& http://www.w3.org/wiki/SRBench

9 https://github.com/eugenesiow /sparql2sql /wiki
10 https://github.com/eugenesiow /lsd-ETL
' https://github.com/eugenesiow/ldanalytics-PiSmartHome /wiki/
12 http://pi.webobservatory.me/info /datamodel

Interoperable & Efficient: Linked Data for the Internet of Things 11

5.3 Experiment

For both scenarios, we compared two Java-based database management systems,
a traditional Linked Data store, TDB'? and our approach with S2SML map-
ping and S2S (SPARQL-to-SQL) translation on a row-based store, H2!4.
Both stores were run in disk-based mode. Ethernet connections were used be-
tween the client and the Pis’ to reduce network overhead for consistency. We
took averages over 3 runs for each test. Running off the Java Virtual Machine
on the Pis’ gave a consistent platform for benchmarking with 512mb the memory
size allocated. We compared both storage efficiency and performance.

6 Results & Discussion

6.1 Storage Efficiency

Table 4 shows the difference in database storage sizes of different datasets for the
S2S and TDB setups. As time-series sensor data benefits from the more succinct
storage as rows, the S2S setup outperformed the Linked Data store, TDB, in
terms of storage efficiency from one to two orders of magnitude. Furthermore,
Linked Data stores rely on indexing all triples for performance [14] and TDB
creates 3 triple indexes (OSP,POS,SPO) and 6 quad indexes to boost query
performance. This increases storage size as observed.

Table 4. Database Size By Dataset

Dataset S2S (mb) TDB (mb) %improve

Nevada Blizzard 90 6162 6847%
Hurricane Ike 761 85274 11206%
Smart Home 135 2103 1558%

6.2 Query Performance

The performance of the two setups for the SRBench queries from the Nevada
Blizzard are shown in Figure 5. Query performance for the S2S setup was from
3 times to 3 orders of magnitude better than the TDB setup.

The S2S setup performs consistently well for all the queries with similar
execution times whereas the TDB setup differs significantly on different queries.
The S2S setup does not have to perform joins between tables for all queries and
hence the stable average run times.

The TDB setup performs much slower than the S2S setup on query 9 due to
the join operation between two subtrees retrieved in the graph for two observa-
tions, WindSpeedObservation and WindDirectionObservation, being very time

'3 https://jena.apache.org/documentation/tdb/
1 http://www.h2database.com/

12 Interoperable & Efficient: Linked Data for the Internet of Things

10
47.08 ‘ 1328.20 ‘
2 3 4 6 7 8 9

1 5 10
Query S2S mTDB

Thousands

Max Time Taken (ms)
w -

5 9

Fig. 5. SRBench Query Performance

consuming in the low-resource environment. An in-depth investigation showed
the total query time was a 100 times more than the time to retrieve both sub-
graphs individually. Query 4 offers a similar situation with TemperatureObserva-
tion and WindSpeedObservation. The S2S setup, on the other hand, eliminates
the need for this join as both observations belong to columns of the same row.

ot
=)
S

'
o
S

w
=}
S

N}
o
S

=
o
S

1 2 3 4
Query S2S H TDB

Time Taken (ms) Thousands

=}

Fig. 6. Smart Home Query Performance

Figure 6 shows the Smart Home query performance for the S2S and TDB
setups. Again the S2S Setup performed better for all queries, from 3 to 70 times
faster. Both S2S and TDB performed much faster on queries 1 and 2 than 3
and 4 as they involved disk access (a limiting factor due to the SD card) on a
much smaller portion of the database - environment sensor readings as compared
to motion and meter sensor readings. The S2S setup still produced an order of
magnitude better performance due to reducing joins e.g. between timestamp and
the internal temperature values recorded in the same row.

Interoperable & Efficient: Linked Data for the Internet of Things 13

Query 3 utilised smart meter data and query 4 involved both the smart meter
and motion sensor data, a comparatively larger set of data and both did space
and time aggregations on the data, hence, each took longer than the previous
queries. Joins between tables (meter and motion) in Q4 affect both setups, as
they belong to 2 different sensors, although the S2S setup still provides significant
overall performance improvements in analytical queries. Table 5 summarises the
results for both benchmarks.

Table 5. Average Query Run Times of SRBench and Smart Home Scenarios

SRBench Ts2s(ms) Tros(ms) %improve

1 365 1679 460%
g g;g 122; gg?gz SmartHome Tso5(ms) Trpg(ms) %oimprove
4 533 47084 8839% 1 466 13709 2942%
5 415 1119 269% 2 2457 21898 891%
6 457 2751 602% 3 4685 322357 6881%
7 455 6563 1444% 4 147649 527184 357%
8 320 1785 558%
9 436 1328197 304865%
10 354 2514 709%

6.3 Overall Efficient Access

Our approach, represented by the S2S setup, improves both storage efficiency
and query performance. Most queries can be answered in sub-second times which
means efficient access to time-series sensor data by IoT applications is possible
while maintaining interoperability through the use of Linked Data.

7 Impact on Privacy, Data Ownership & Data Locality

The use of lightweight computers as distributed hubs in our proposed infrastruc-
ture means that data that is collected from sensors and devices are stored and
processed locally. As Vaquero et al. [13] state, data ownership will be a corner-
stone of distributed IoT networks, where some applications will be able to use
the network to run applications and manage data without relying on centralised
services. This approach has an advantage over storing encrypted data in tra-
ditional clouds as a means to maintain privacy because it is easier to perform
processing (no need for crypto-processors or applying special encryption func-
tions) over such data. In our smart home scenario, the use of a personal hub on
a lightweight computer based on an open ecosystem helps to mitigate the fears
proposed by Albrecht et al. [1] that a mega corporation owns our data (and the
local supermarket) and has little incentive to value our privacy. Roman et al. [12]
further emphasise with their study of centralised and decentralised IoT infras-
tructures that when data is managed by the distributed entities, specific privacy

14 Interoperable & Efficient: Linked Data for the Internet of Things

policies and access control with additional trust and fault tolerance mechanisms
can be created.

Data locality is beneficial in the sense that we no longer need to send all
the data around the world all the time. In disaster management IoT scenarios,
where last-mile connectivity is lost, having data locality and offline access is
especially valuable. An example is the Nepal earthquake in 2015 where last-mile
connectivity was lost though global connectivity was maintained.

Hence, our infrastructure that pushes both storage and compute to lightweight
computers in edge networks within an open ecosystem, makes it more viable for
end users to own their data. Specific privacy policies and technology can be built
on top of this distributed infrastructure which has data locality as an added ad-
vantage. We show with our experiment that performance and storage efficiency
for a variety of queries on data are sub-second and analytics-ready.

8 Related Work

SPARQL to SQL query translation has evolved with state-of-the-art engines
like morph [10] and ontop [11] able to produce flatter & more efficient SQL
queries. Both these engines, however, are designed for Ontology-Based Data Ac-
cess (OBDA) or mapping relational stores to Linked Data with R2RML. Our
work differs in that we build an R2ZRML-compatible mapping language that is ad-
ditionally designed for the abstraction and storage of metadata within mappings.
Secondly, we support the use of blank nodes (within the R2RML specification
but not supported by other engines at the time of writing) and faux nodes to
represent and compress intermediate nodes unlikely to be accessed. Lastly, we
evaluate the performance of this approach on an IoT infrastructure with Pis’.

Previous work on SPARQL to SQL translation by Chebotko et al. [6] helped
to establish formally that the full separation of translation from the relational
database schema design was possible and that efficient queries significantly im-
proved query performance. While work by Elliot et al. has the same aims of
efficient SQL queries but covers a smaller subset of SPARQL 1.0 e.g. no support
date functions required for time aggregation in analytical queries.

9 Conclusion

Our approach of storing time-series data from IoT sensors in rows on lightweight
computers and allowing Linked Data SPARQL queries through translation via
mappings is shown to increase the performance of both storage and compute in
two IoT scenarios as compared to traditional Linked Data stores. The improve-
ment in storage and query performance is significant, 3 times to three orders of
magnitude. More essentially, it allows most benchmark queries and space-time
aggregations for analytics to run in sub-second, providing a basis for IoT ap-
plications working on sensor data. With Linked Data produced ‘just-in-time’,
the approach supports interoperability without exchanging efficient access. The
proposed infrastructure also shows how compute and storage in the IoT can be

Interoperable & Efficient: Linked Data for the Internet of Things 15

distributed to edge networks with lightweight computers which is a boon for
privacy, data ownership and situations where last-mile access breaks down.

References

10.

11.

12.

13.

14.

15.

. Albrecht, K., Michael, K.: Connected: To Everyone and Everything. IEEE Tech-

nology and Society Magazine pp. 31-34 (2013)

Barker, S., Mishra, A., Irwin, D., Cecchet, E.: Smart*: An open data set and tools
for enabling research in sustainable homes. In: Proceedings of the Workshop on
Data Mining Applications in Sustainability (2012)

Barnaghi, P., Wang, W.: Semantics for the Internet of Things: early progress and
back to the future. International Journal on Semantic Web and Information Sys-
tems 8(1), 1-21 (2012)

Bizer, C., Heath, T., Berners-Lee, T.: Linked Data - The Story So Far. International
Journal on Semantic Web and Information Systems 5, 1-22 (2009)

Buil-Aranda, C., Hogan, A.: SPARQL Web-Querying Infrastructure: Ready for
Action? The Semantic Web - ISWC 2013 pp. 277-293 (2013)

Chebotko, A., Lu, S., Fotouhi, F.: Semantics preserving SPARQL-to-SQL transla-
tion. Data and Knowledge Engineering 68(10), 973-1000 (2009)

Heath, T., Bizer, C.: Linked Data Evolving the Web into a Global Data Space. In:
Synthesis Lectures on the Semantic Web: Theory and Technology (2011)
International Telecommunication Union: Overview of the Internet of things. Tech.
rep. (2012)

Patni, H., Henson, C., Sheth, A.: Linked Sensor Data. In: Proceedings of the In-
ternational Symposium on Collaborative Technologies and Systems. pp. 362-370
(2010)

Priyatna, F., Corcho, O., Sequeda, J.: Formalisation and Experiences of R2ZRML-
based SPARQL to SQL Query Translation using Morph. Proceedings of the 23rd
International Conference on World Wide Web pp. 479-489 (2014)
Rodriguez-Muro, M., Rezk, M.: Efficient SPARQL-to-SQL with R2RML mappings.
Web Semantics: Science, Services and Agents on the World Wide Web 33, 141-169
(2014)

Roman, R., Zhou, J., Lopez, J.: On the features and challenges of security and
privacy in distributed internet of things. Computer Networks 57(10), 2266-2279
(2013)

Vaquero, L.M., Rodero-Merino, L.: Finding your Way in the Fog: Towards a Com-
prehensive Definition of Fog Computing. ACM SIGCOMM Computer Communi-
cation Review 44(5), 27-32 (2014)

Weiss, C., Karras, P., Bernstein, A.: Hexastore: sextuple indexing for semantic web
data management. Proceedings of the VLDB Endowment 1(1), 1008-1019 (2008)
Zhang, Y., Duc, P., Corcho, O., Calbimonte, J.P.: SRBench: A Streaming RDF/S-
PARQL Benchmark. The Semantic Web - ISWC 2012 7649, 641-657 (2012)

