
ar
X

iv
:1

60
7.

05
95

6v
1

 [
cs

.L
O

]
 1

8
Ju

l 2
01

6

Occam’s Razor Applied to the Petri Net

Coverability Problem

Thomas Geffroy, Jérôme Leroux, and Grégoire Sutre

Univ. Bordeaux & CNRS, LaBRI, UMR 5800, Talence, France

Abstract. The verification of safety properties for concurrent systems
often reduces to the coverability problem for Petri nets. This problem
was shown to be ExpSpace-complete forty years ago. Driven by the con-
currency revolution, it has regained a lot of interest over the last decade.
In this paper, we propose a generic and simple approach to solve this
problem. Our method is inspired from the recent approach of Blondin,
Finkel, Haase and Haddad [3]. Basically, we combine forward invariant
generation techniques for Petri nets with backward reachability for well-
structured transition systems. An experimental evaluation demonstrates
the efficiency of our approach.

1 Introduction

Context. The analysis of concurrent systems with unboundedly many processes
classically uses the so-called counter abstraction [12]. The main idea is to forget
about the identity of each process, so as to make processes indistinguishable.
Assuming that each process is modeled by a finite-state automaton, it is then
enough to count, for each state q, how many processes are in state q. The resulting
model is a Petri net, with no a priori bound on the number of tokens. The
verification of a safety property on the original concurrent system (e.g., mutual
exclusion) translates into a coverability question on the Petri net: Is it possible
to reach a marking that is component-wise larger than a given marking?

Related work. Karp and Miller [14] proved in 1969 that coverability is decidable
(but their algorithm is not primitive recursive), Lipton showed that it requires
at least exponential space [15], and Rackoff showed that it only requires expo-
nential space [17]. Despite these somewhat negative results, and driven by the
concurrency revolution, the coverability problem has regained a lot of interest
over the last decade. Recent efficient approaches include target set widening [13]
and structural analysis mixed with SMT solving [7,3]. We believe that the time is
ripe to experiment with new ideas and prototypes for coverability, and to apply
them to real-world concurrent systems.

Our work builds notably on [3], which proposes a new approach to the cov-
erability problem and its implementation. The approach of [3] is conceptually
simple and exploits recent advances in the theory of Petri nets as well as the
power of modern SMT-solvers. In a nutshell, they leverage recent results on cov-
erability in continuous Petri nets [9] to over-approximate coverability under the

1

http://arxiv.org/abs/1607.05956v1

standard semantics: any configuration that is not coverable in a continuous Petri
net is also not coverable under the standard semantics. This observation is then
exploited inside a backward-coverability framework [1].

Our contribution. We present a generic backward coverability algorithm that
relies on downward-closed (forward) invariants to prune the exploration of the
state space. Our algorithm is in fact a family of algorithms parametrized by
downward-closed invariants. It generalizes the algorithm presented in [3] and
implemented in the promising tool QCover. We implemented our algorithm as a
variant of QCover that we call ICover. Whereas QCover is based on invariants
obtained from recent results on continuous Petri nets [9], our tool ICover is
based on two classical methods: the state equation for Petri nets, and data-flow
sign analysis [4]. On the 143 Petri net coverability questions that QCover solved,
the tool QCover took 10318 seconds, while ICover used only 5517 seconds.

Outline. Section 2 recalls the Petri net coverability problem. Sections 3 and 4
present our backward coverability algorithm with pruning based on downward-
closed invariants. In Sections 5 and 6, we recall two classical methods for com-
puting invariants, namely the state (in-)equation and sign analysis. Section 7
is dedicated to the experimental evaluation of the tool ICover. In Section 8,
we provide mathematical foundations for explaining our empirical good results
based on the notion of limit-reachability in continuous Petri nets [18].

2 The Coverability Problem for Petri nets

A Petri net is a tuple N = (P, T, F, minit) comprising a finite set of places P , a
finite set of transitions T disjoint of P , a flow function F from (P ×T)∪ (T ×P)
to N, and an initial marking minit ∈ NP . It is understood that NP denotes the
set of total maps from P to N. Elements of NP are called markings. Intuitively,
a marking specifies how many tokens are in each place of the net. Tokens are
consumed and produced through the firing of transitions. A transition t ∈ T
may fire only if it is enabled, meaning that each place p contains at least F (p, t)
tokens. Firing an enabled transition t modifies the contents of each place p by first
removing F (p, t) tokens and then adding F (t, p) tokens. To clarify this intuitive
description of the Petri net semantics, we introduce, for each transition t ∈ T ,

the t-step binary relation
t
−→ over NP , defined by

m
t
−→ m′ ⇔ ∀p ∈ P : m(p) ≥ F (p, t) ∧ m′(p) = m(p) − F (p, t) + F (t, p)

The one-step binary relation → is the union of these t-step relations. Formally,

m → m′ ⇔ ∃t ∈ T : m
t

−→ m′. The many-step binary relation
∗
−→ is the reflexive-

transitive closure of →.

Example 2.1. Figure 1 depicts a simple Petri net N = (P, T, F, minit) with
places P = {p1, p2, p3}, transitions T = {t1, t2, t3} and flow function F such

2

p1

t1

p2

t2

t3

p3

2

2

Fig. 1: Simple Petri net example

that F (p1, t1) = 1, F (p2, t2) = 1, F (p3, t3) = 1, F (t1, p2) = 1, F (t2, p3) = 2,
F (t3, p2) = 2, and F (p, t) = F (t, p) = 0 for all other cases. The initial marking
is minit = (1, 0, 0). The sequence of transitions t1t2t3 may fire from the initial

marking. Indeed, (1, 0, 0)
t1−→ (0, 1, 0)

t2−→ (0, 0, 2)
t3−→ (0, 2, 1).

One of the most fundamental verification questions on Petri nets is coverabil-
ity. In its simplest form, the coverability problem asks whether it is possible, by
firing a sequence of transitions, to put a token in a given place. In essence, the
coverability problem for Petri nets corresponds to the control-state reachability
problem for other models of computation, such as counter machines, which are
equipped with control states. The formal definition of coverability relies on a
partial order over markings, defined hereafter.

Let ≤ denote the usual total order on N. We extend ≤ over NP component-
wise, by m ≤ m′ ⇔ ∀p ∈ P : m(p) ≤ m′(p). This extension is a partial order
over NP . Given two markings m and m′ in NP , we say that m covers m′ when
m ≥ m′. The coverability problem asks, given a Petri net N = (P, T, F, minit)
and a target marking mfinal ∈ NP , whether there exists a marking m ∈ NP such

that minit
∗
−→ m and m ≥ mfinal. The main goal of this paper is to provide a

simple, yet efficient procedure for solving this problem. Our method is inspired
from the recent approach of [3]. Basically, we combine forward invariant gener-
ation techniques for Petri nets with backward reachability for well-structured
transition systems [1,8]. Before delving into the details, we need some additional
notations.

For a transition t ∈ T and a set S ⊆ NP of markings, we let pret
N (S)

denote the predecessors of S via the transition t. Similarly, preN (S) and pre∗
N (S)

denote the one-step and many-step predecessors of S, respectively. Formally, the

functions pret
N , preN and pre∗

N from 2N
P

to 2N
P

are defined by

pret
N (S) = {m ∈ NP | ∃m′ ∈ S : m

t
−→ m′}

preN (S) = {m ∈ NP | ∃m′ ∈ S : m → m′}

pre∗
N (S) = {m ∈ NP | ∃m′ ∈ S : m

∗
−→ m′}

Given a subset S ⊆ NP of markings, we let ↑S and ↓S denote its upward

closure and downward closure, respectively. These are defined by

↑S = {u ∈ NP | ∃m ∈ S : u ≥ m}
↓S = {d ∈ NP | ∃m ∈ S : d ≤ m}

3

A subset S ⊆ NP is called upward-closed when S = ↑S, and it is called downward-

closed when S = ↓S.

Notation 2.2. For the remainder of the paper, to avoid clutter, we will simply
write m in place of {m} for singletons, when this causes no confusion.

Recall that the coverability problem asks whether minit
∗
−→ m ≥ mfinal for

some marking m ∈ NP . This problem is equivalently phrased as the question
whether minit belongs to pre∗

N (↑mfinal). This formulation can be seen as a
backward analysis question. We may also phrase the coverability problem in
terms of a forward analysis question, using the notion of coverability set.

Given a Petri net N = (P, T, F, minit), the coverability set of N is the set

CovN = ↓{m ∈ NP | minit
∗
−→ m}. It is readily seen that the coverability problem

is equivalent to the question whether mfinal belongs to CovN . We are now
equipped with the necessary notions to present our mixed forward/backward
approach for the coverability problem.

3 Backward Coverability Analysis with Pruning

We now present our method to solve the coverability problem for Petri nets.
This section gives the mathematical foundations of our approach, with no regard
for implementability. We will focus on the implementation of this approach in
Section 4.

The classical backward reachability approach for the coverability problem [1,8]
consists in computing a growing sequence U0 ⊆ U1 ⊆ · · · of upward-closed
subsets of NP that converges to pre∗

N (↑mfinal). Here, we modify this growing
sequence in order to leverage an a priori known over-approximation of the cov-
erability set. In practice, this means that we narrow the backward reachability
search by pruning some markings that are known to be not coverable.

An invariant for a Petri net N = (P, T, F, minit) is any subset I ⊆ NP

that contains every reachable marking, i.e., every marking m with minit
∗
−→ m.

Observe that a downward-closed subset of NP is an invariant of N if, and only
if, it contains CovN . Sections 5 and 6 will discuss the automatic generation of
downward-closed invariants.

For the remainder of this section, we consider a Petri net N = (P, T, F, minit)
and we assume that we are given a downward-closed invariant I for N . We
introduce the sequence U0, U1, . . . of subsets of NP defined as follows:

U0 = ↑(mfinal ∩ I)
Uk+1 = ↑(preN (Uk) ∩ I) ∪ Uk

Observe that each Uk is upward-closed and that the sequence (Uk)k is growing for
inclusion. On the contrary to the classical backward reachability approach [1,8],
Uk+1 does not consider all one-step predecessors of Uk, but discards those that
are not in I. Note that by taking I = NP , which is trivially a downward-closed

4

invariant, we obtain the same growing sequence as in the classical backward
reachability approach [1,8]. The two following lemmas show that we can use the
sequence (Uk)k to solve the coverability problem.

Lemma 3.1. The sequence (Uk)k is ultimately stationary.

Lemma 3.2. It holds that mfinal ∈ CovN if, and only if, minit ∈
⋃

k Uk.

We have presented in this section a growing sequence of upward-closed sub-
sets of markings that is ultimately stationary and whose limit contains enough
information to solve the coverability problem. Our next step is to transform this
sequence into an algorithm.

4 The ICover Algorithm

In this section, we turn the growing sequence (Uk)k of upward-closed subsets of
markings defined in Section 3 into an algorithm. Of course, we cannot directly
compute the sets Uk since they may be infinite (in fact, they are either empty or
infinite). Instead, we will compute finite sets Bk ⊆ NP such that Uk = ↑Bk. The
existence of such finite sets is guaranteed by the following lemma. A basis of an
upward-closed subset U ⊆ NP is any set B ⊆ NP such that U = ↑B. Recall that
a minimal element of a subset S ⊆ NP is any m ∈ S such that u ≤ m ⇒ u = m
for every u ∈ S.

Lemma 4.1. For every subset S ⊆ NP , the set Min S of its minimal elements

is finite and satisfies ↑S = ↑Min S.

Corollary 4.2. Every upward-closed subset U ⊆ NP admits a finite basis.

We still need to show how to compute a finite basis of Uk+1 from a finite
basis of Uk. To this end we introduce, for each transition t ∈ T , the covering

predecessor function cpret
N : NP → NP defined by

cpret
N (m)(p) = F (p, t) + max(0, m(p) − F (t, p))

Informally, cpret
N (m) is the least marking that can cover m in one step by

firing the transition t. This property will be formally stated in Lemma 4.3. The
function cpret

N is extended to sets of markings by cpret
N (S) = {cpret

N (m) | m ∈
S}.

Lemma 4.3. It holds that pret
N (↑m) = ↑cpret

N (m) for every marking m ∈ NP .

The previous lemma can easily be extended to sets of markings. We extend
it further, in Lemma 4.4, to bridge the gap with the definition of (Uk)k. The
lemma shows how to compute a finite basis of Uk+1 from a finite basis of Uk.

Lemma 4.4. Let I be a downward-closed invariant for N . For every subset

S ⊆ NP , it holds that ↑pret
N ((↑S) ∩ I) = ↑(cpret

N (S) ∩ I).

5

ICover(N , mfinal, I)

Input: A Petri Net N = (P, T, F, minit), a target marking mfinal ∈ NP and a
downward-closed invariant I for N .

Output: Whether there exists a marking m ∈ NP such that minit
∗
−→ m and

m ≥ mfinal.
1 begin

2 if mfinal ∈ I then

3 B ← {mfinal}
4 else

5 B ← ∅

6 while minit 6∈ ↑B do

7 N ← {cpret
N (m) | t ∈ T, m ∈ B} \ ↑B /* new predecessors */

8 P ← N ∩ I /* prune uncoverable markings */

9 if P = ∅ then

10 return False

11 B ← Min(B ∪ P)

12 return True

Proof. The straightforward extension of Lemma 4.3 to sets of markings shows
that pret

N (↑S) = ↑cpret
N (S) for every subset S ⊆ NP . Moreover, it is readily

seen that, for every subset S ⊆ NP , ↑((↑S) ∩ I) = ↑(S ∩ I). This property follows
from the assumption that I is downward-closed. We derive that

↑(cpret
N (S) ∩ I) = ↑((↑cpret

N (S)) ∩ I)
= ↑(pret

N (↑S) ∩ I)

This concludes the proof of the lemma. ⊓⊔

The previous lemma leads to a backward coverability algorithm, called ICover

and presented on page 6. Basically, this procedure symbolically computes the
growing sequence (Uk)k of upward-closed sets. Let us make the relationship be-
tween the procedure and the sequence (Uk)k more precise. Consider an input in-
stance (N , mfinal, I) of ICover. Since the procedure is deterministic, ICover(N , mfinal, I)
has a unique maximal execution, that either terminates (at line 10 or 12) or it-
erates the while loop (lines 6–11) indefinitely. Let ℓB, ℓP ∈ N ∪ {∞} denote
the numbers of executions of lines 6 and 9, respectively. It is understood that
lP ≤ lB ≤ lP + 1, with the convention that ∞ + 1 = ∞. Let (Bk)k<ℓB

and
(Pk)k<ℓP

denote the successive values at lines 6 and 9 of the variables B and P ,
respectively.

Lemma 4.5. For every k with 0 ≤ k < ℓB, the set Bk is a finite basis of Uk.

For every k with 0 ≤ k < ℓP , the set Pk is a finite basis of ↑(Uk+1 \ Uk).

Theorem 4.6. The procedure ICover terminates on every input and is correct.

6

Remark 4.7. Petri nets obtained by translation from high-level concurrent pro-
grams often contain transitions that cannot be fired from any reachable marking.
Downward-closed invariants can be used in a pre-processing algorithm to filter
out some of them. Basically, if a transition t is not enabled in any marking
of an invariant I, it can be safely removed without modifying the coverability
set. Algorithmically, when I is downward-closed, detecting such a property just
reduces to a membership problem in I. In fact a transition t is enabled in a
downward-closed set of markings D if, and only if, D contains the marking mt

defined by mt(p) = F (p, t) for every place p.

The algorithm ICover is parametrized by an a priori known downward-closed
invariant that is given as input. On the one hand, this invariant needs to be
precise enough to discard markings (at line 8) and accelerate the main loop.
On the other hand, we need to decide efficiently whether a marking is in the
invariant, to avoid slowing down the main loop. The next two sections show how
to generate downward-closed invariants with efficient membership testing.

5 State Inequation for Downward-Closed Invariants

The state equation provides a simple over-approximation of Petri net reachability
relations that was successfully used in two recent algorithms for deciding the
coverability problems [7,3]. This equation is obtained by introducing the total
function ∆(t) in ZP called the displacement of a transition t and defined for every
place p by ∆(t)(p) = F (t, p)−F (p, t). Let us assume that a marking mfinal is in
the coverability set of a Petri net N . It follows that there exists a word t1 . . . tk

of transitions and a marking m ≥ mfinal such that minit
t1−→ · · ·

tk−→ m. We
derive the following relation:

minit + ∆(t1) + · · · + ∆(tk) = m ≥ mfinal

By reordering the sum ∆(t1) + · · · + ∆(tk), we can group together the displace-
ments ∆(t) corresponding to the same transition t. Denoting by λ(t) the number
of occurrences of t in the word t1 . . . tk, we get:

minit +
∑

t∈T

λ(t)∆(t) ≥ mfinal (1)

The relation (1) is called the state inequation for the coverability problem. Notice
that a similar equation can be derived for the reachability problem by replacing
the inequality by an equality. We do not consider this equality in the sequel since
we restrict our attention to the coverability problem. We introduce the following
set IS where Q≥0 is the set of non-negative rational numbers.

IS = {m ∈ NP | ∃λ ∈ QT
≥0 : minit +

∑

t∈T

λ(t)∆(t) ≥ m} (2)

Proposition 5.1. The set IS is a downward-closed invariant with a polynomial-

time membership problem.

7

A more precise downward-closed invariant can be obtained by requiring that
λ ∈ NT . In particular, the pruned backward algorithm presented in Section 4
should produce smaller sets of configurations with this more precise invariant.
In practice, we do not observe any significant improvement on a large set of
benchmarks. Moreover, whereas the membership problem of a marking m is
decidable in polynomial time when λ ranges over QT

≥0, the problem becomes

NP-complete when λ is restricted to NT .

6 Sign Analysis for Downward-Closed Invariants

In this section we introduce a downward-closed invariant based on data-flow sign
analysis [4]. Rephrased in the context of Petri nets, an invariant I is said to be

inductive if m
t
−→ m′ and m ∈ I implies m′ ∈ I. Sign analysis then reduces to

the computation of the maximal (for the inclusion) set Z of places such that the
following set IZ is an inductive invariant:

IZ = {m ∈ NP |
∧

p∈Z

m(p) = 0} (3)

The unicity of that set is immediate since the class of sets Z such that IZ is
an invariant is clearly closed under union. In the sequel, Z denotes the maximal
set satisfying this property, and this maximal set is shown to be computable in
polynomial time thanks to a fixpoint propagation. We introduce the operator
propt : 2P → 2P associated to a transition t and defined for any set Q of places
as follows:

propt(Q) =

{

{q ∈ P | F (t, q) > 0} if
∧

p∈P \Q F (p, t) = 0

∅ otherwise

Intuitively, if t is a transition such that
∧

p∈P \Q F (p, t) = 0 then from a marking
with large number of tokens in each place of Q, it is possible to fire t. In particular
places q satisfying F (t, q) > 0 cannot be in Z. This property is formally stated
by the following lemma.

Lemma 6.1. We have propt(Q) ⊆ P \Z for every set Q ⊆ P \Z.

The set Z can be computed as a fixpoint by introducing the non-decreasing
sequence Q0, Q1, . . . of places defined as follows:

Q0 = {q ∈ P | minit(q) > 0}

Qk+1 = Qk ∪
⋃

t∈T

propt(Qk)

Let us notice that the set Q =
⋃

k≥0
Qk is computable in polynomial time. The

following lemma shows that Q provides the set Z as a complement.

Lemma 6.2. We have Z = P \Q.

Corollary 6.3. The set Z is computable in polynomial time.

8

7 Experimental Evaluation

We implemented our approach using the QCover [3] tool as a starting point.
This tool, which implements a backward coverability algorithm for Petri nets,
is written in Python and relies on the SMT-solver z3 [16]. QCover also uses
some other heuristics that we kept unchanged. QCover was competitive with
others tools especially for uncoverable Petri net. Only the BFC tool performs
significantly better on coverable Petri net. We have made two modifications to
QCover. First, we have added a pre-processing step (see Remark 4.7) based on
sign analysis. Second, we have replaced their pruning technique, which is based
on coverability in continuous Petri nets, by the one of our algorithm ICover

presented in Section 4. ICover is available as a patch [11] for QCover [2].

To test our implementation, we used the same benchmark as Petrinizer [7]
and QCover [3]. It comprises models from various sources: Mist [10], BFC [13],
Erlang programs abstracted into Petri nets [6], as well as so-called medical and
bug_tracking examples [7]. We let each tool work for 2000 seconds in a machine
on Ubuntu Linux 14.04 with Intel(R) Core(TM) i7-4770 CPU at 3.40GH with 16
GB of memory for each benchmark. The computation times are the sum of the
system and user times. Overall QCover solved 106 uncoverable instances on 115
Petri net and 37 coverable problems on 61 Petri nets. ICover was able to find
one more coverable instance. In fact calling QCover on the Petri net computed
by the pre-processing, that we will call QCover/Pp, can even solve one more
uncoverable instance than ICover. On the 143 instances that QCover solved, the
tool took 10318 seconds, QCover/Pp used 6479 seconds, and ICover used only
5162 seconds.

Figure 2(a) shows the comparison between ICover and QCover in time. The
straight line represents when the two tools took the same time. Each dot rep-
resents a coverability question. When the dot is under the line, it means that
ICover was faster than QCover and conversely. There are three instances where
QCover performs very well, under a second, and where ICover took a few tens
of seconds to answer. For the three cases, the formula used by QCover for cover-
ability in Q was enough to discard the target as uncoverable and it didn’t have
to enter in the while loop. But ICover wasn’t able to discard the target and
had to enter the while loop in the three cases. We also see two dots above the
line at the middle of the figure. The pre-processing took respectively 12 and 45
seconds while the initial Petri net was solved by QCover in respectively 16 and 33
seconds. The pre-processing has not been optimized yet, and it could probably
run faster.

Figure 2(b) and (c) show the intermediate comparisons: ICover versus QCover/Pp

and QCover/Pp versus QCover. We can observe that the pre-processing has a ma-
jor impact on the good performance of ICover compared to QCover.

Figure 2(e) and Figure 2(f) aims to show the effect of the pre-processing
on the size of Petri nets. The former show the percentage of places left af-
ter pre-processing. Some Petri nets kept all their places but others were left
with only 2.5% of their initial places. And most of Petri nets lost a significant

9

100 101 102 103

100

101

102

103

time for QCover (s)

ti
m

e
fo

r
I
C
o
v
e
r

(s
)

(a) ICover vs QCover

100 101 102 103

100

101

102

103

time for QCover/Pp (s)

ti
m

e
fo

r
I
C
o
v
e
r

(s
)

(b) ICover vs QCover/Pp

100 101 102 103

100

101

102

103

time for QCover (s)

ti
m

e
fo

r
Q
C
o
v
e
r
/
P
p

(s
)

(c) QCover/Pp vs QCover

100 102 104

20

40

60

80

100

markings pruned in QCover

%
a
ls

o
p

ru
n

ed
in

I
C
o
v
e
r

(d) Pruning efficiency

100 102 104

0

50

100

places in the original Petri net

%
o
f

p
la

ce
s

le
ft

(e) Pre-processing and # of places

100 102 104

0

50

100

transitions in the original Petri net

%
o
f

tr
a
n

si
ti

o
n

s
le

ft

(f) Pre-processing and # of transitions

Fig. 2: Experimental results for ICover, QCover and QCover/Pp

number of places. The latter shows the percentages of transitions left after the
pre-processing. Overall less transitions were cut than places. Half of the Petri
nets kept all their transitions, but some were left with only 4% of their initial
transitions.

10

Figure 2(d) compares the efficiency of pruning between ICover and QCover.
Again, each dot represents a coverability question. As discussed in Section 8,
QCover always prunes at least as many markings as ICover (but at the expense
of more complex pruning tests). A value of 100% means that ICover was able
to prune the same markings as QCover. It turns out that on most instances, this
perfect value of 100% is obtained. This is rather surprising at first sight, and
warrants an investigation, which is the focus of the next section.

8 Comparison with Continuous Petri Net

Continuous Petri nets are defined like Petri nets except that transitions can be
fired a non-negative rational number of times. The firing of such a transition
produces markings with non-negative rational numbers of tokens. Under such a
semantics, called the continuous semantics, the reachability problem was recently
proved to be decidable in polynomial time [9]. Based on this observation, the
tool QCover implements the pruning backward coverability algorithm presented
in Section 3 with a downward-closed invariant derived from the continuous se-
mantics. Whereas this invariant is more precise than the downward-closed invari-
ant obtained from the state inequation introduced in Section 5, we have seen in
Section 7 that such an improvement is overall not useful in practice for the prun-
ing backward algorithm. In this section, we provide a simple structural condition
on Petri nets in such a way the two kinds of downward-closed invariants derived
respectively from the continuous semantics and the state inequation are “almost”
equal. This structural condition is shown to be natural since it is fulfilled by the
Petri nets obtained after the pre-processing introduced in Remark 4.7.

A continuous marking is a mapping m ∈ QP
≥0 where Q≥0 denotes the set of

non-negative rational numbers, and P the set of places. Given r ∈ Q≥0 and a

transition t, the continuous rt-step binary relation
rt

≻ over the continuous
markings is defined by

m
rt

≻ m′ ⇔ ∀p ∈ P : m(p) ≥ r.F (p, t) ∧ m′(p) = m(p) − r.F (p, t) + r.F (t, p)

The one-step continuous binary relation ≻ is the union of these rt-step rela-

tions. Formally, m ≻ m′ if there exists r ∈ Q≥0 and t ∈ T such that m
rt

≻ m′.

The many-step continuous binary relation
∗

≻ is the reflexive-transitive closure
of ≻ . We also introduce the binary relation

∞
≻ defined over the continuous

markings by m
∞

≻ m′ if there exists a sequence (mk)k≥0 of continuous mark-
ings that converges towards m′ with the classical topology on QP

≥0 and such that

m
∗

≻ mk for every k.

Example 8.1. Let us look back at the simple Petri net N depicted in Figure 1.
For every positive natural number k, we have:

(1, 0, 0)
1

k
t1

≻ (1 −
1

k
,

1

k
, 0)

1

k
t2

1

k
t3

≻ (1 −
1

k
,

2

k
,

1

k
) · · ·

1

k
t2

1

k
t3

≻ (1 −
1

k
, 1 +

1

k
, 1)

11

It follows that (1, 0, 0)
∞

≻ (1, 1, 1). Notice that the relation (1, 0, 0)
∗

≻ (1, 1, 1)
does not hold.

The downward-closed invariant used in the tool QCover for implementing the
pruning backward algorithm is defined as follows:

IC = {m ∈ NP | ∃m′ ∈ QP
≥0 : minit

∗
≻ m′ ≥ m} (4)

Recall that in Section 5 we introduced the set IS for denoting the downward-
closed invariant derived from the state inequation. The following result1 provides
a characterization of that invariant when the Petri net satisfies a structural
condition.

Theorem 8.2 ([18, Theorem 7]). If every transition is fireable from the downward-

closed invariant IZ introduced in Section 6, we have:

IS = {m ∈ NP | ∃m′ ∈ QP
≥0 : minit

∞
≻ m′ ≥ m} (5)

The two equalities Equation (4) and Equation (5) show that IS and IC are
very similar for Petri nets satisfying the structural condition stated in Theorem 8.2.
This condition will be fulfilled by the Petri nets produced by the pre-processing
algorithm introduced in Remark 4.7. Notice that even if the membership prob-
lem in IS and IC are both decidable in polynomial time, the extra computational
cost for deciding the membership problem for the invariant IC , even for efficient
SMT solvers like Z3, is not neglectable. Naturally, if a marking is in IC then it is
also in IS , and the converse property is false in general as shown by Example 8.1.
However, in practice, we observed that configurations that are in IS are very of-
ten also in IC (see Figure 2(d)), as already mentioned in Section 7.

9 Conclusion

Petri nets have recently been used as low-level models for model-checking con-
current systems written in high-level programming languages [5,6]. The original
verification question on the concurrent program reduces to a coverability ques-
tion on the resulting Petri net. We have proposed in this paper a family of simple
coverability algorithms parametrized by downward-closed invariants. As future
work, we intend to look for classes of downward-closed invariants with a good
tradeoff between precision and efficient membership.

References

1. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.: Algorithmic analysis of programs
with well quasi-ordered domains. Information and Computation 160(1-2), 109–127
(2000)

1 The statement of Theorem 7 in [18] is wrong since it is based on a too strong defi-
nition of limit-reachability. However, the proof becomes correct with our definitions
and notations.

12

2. Blondin, M., Finkel, A., Haase, C., Haddad, S.: QCover with benchmarks.
http://www-etud.iro.umontreal.ca/~blondimi/doc/qcover_with_benchmarks.zip

3. Blondin, M., Finkel, A., Haase, C., Haddad, S.: Approaching the coverability prob-
lem continuously. In: TACAS. pp. 480–496. Springer (2016)

4. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL. pp.
238–252. ACM (1977)

5. Donaldson, A., Kaiser, A., Kroening, D., Wahl, T.: Symmetry-aware predicate ab-
straction for shared-variable concurrent programs. In: CAV. pp. 356–371. Springer
(2011)

6. D’Osualdo, E., Kochems, J., Ong, C.L.: Automatic verification of Erlang-style con-
currency. In: SAS. pp. 454–476. Springer (2013)

7. Esparza, J., Ledesma-Garza, R., Majumdar, R., Meyer, P.J., Niksic, F.: An SMT-
based approach to coverability analysis. In: CAV. pp. 603–619. Springer (2014)

8. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theo-
retical Computer Science 256(1-2), 63–92 (2001)

9. Fraca, E., Haddad, S.: Complexity analysis of continuous Petri nets. Fundamenta
Informaticae 137(1), 1–28 (2015)

10. Ganty, P.: Mist – A safety checker for petri nets and extensions.
http://github.com/pierreganty/mist

11. Geffroy, T., Leroux, J., Sutre, G.: ICover patch.
http://dept-info.labri.u-bordeaux.fr/~tgeffroy/icover/

12. German, S.M., Sistla, A.P.: Reasoning about systems with many processes. Journal
of the Association for Computing Machinery 39(3), 675–735 (1992)

13. Kaiser, A., Kroening, D., Wahl, T.: A widening approach to multithreaded program
verification. ACM Trans. Program. Lang. Syst. 36(4), 14:1–14:29 (2014)

14. Karp, R.M., Miller, R.E.: Parallel program schemata. Journal of Computer and
System Sciences 3(2), 147–195 (1969)

15. Lipton, R.J.: The reachability problem requires exponential space. Tech. Rep. 62,
Yale University (1976)

16. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: TACAS. pp. 337–340.
Springer (2008)

17. Rackoff, C.: The covering and boundedness problems for vector addition systems.
Theoretical Computer Science 6(2), 223–231 (1978)

18. Recalde, L., Teruel, E., Silva, M.: Autonomous continuous P/T systems. In:
ICATPN. pp. 107–126. Springer (1999)

13

http://www-etud.iro.umontreal.ca/~blondimi/doc/qcover_with_benchmarks.zip
http://github.com/pierreganty/mist
http://dept-info.labri.u-bordeaux.fr/~tgeffroy/icover/

A Proofs for Section 3

Lemma 3.1. The sequence (Uk)k is ultimately stationary.

Proof. The partial order ≤ on NP is a well-quasi-order by Dickson’s Lemma.
Therefore, every growing sequence of upward-closed sets is ultimately stationary
(see, e.g., [8, Lemma 2.4]). The lemma follows from the observation that each Uk

is upward-closed and that the sequence (Uk)k is growing. ⊓⊔

Lemma 3.2. It holds that mfinal ∈ CovN if, and only if, minit ∈
⋃

k Uk.

Proof. If mfinal ∈ CovN then minit
∗
−→ m ≥ mfinal for some marking m in

NP . Since minit
∗
−→ m, there exists m0, . . . , mn ∈ NP such that minit = mn,

mn → mn−1 · · · → m0 and m0 ≥ mfinal. First observe that mi ∈ I for every
i ∈ {0, . . . , m} because I is an invariant for N . Moreover, mfinal ∈ I since I
is downward-closed, m0 ≥ mfinal and m0 ∈ I. We prove, by induction on i,
that mi ∈ Ui for all i ∈ {0, . . . , n}. The basis m0 ∈ U0 follows from the facts
that m0 ≥ mfinal and mfinal ∈ I. For the induction step, let i ∈ {0, . . . , n − 1}
and assume that mi ∈ Ui. Recall that mi+1 ∈ I and mi+1 → mi. It follows
that mi+1 ∈ (preN (Ui) ∩ I) ⊆ Ui+1. We have thus shown that mn ∈ Un, hence,
minit = mn belongs to

⋃

k Uk.

Let us show the converse of the lemma. We first prove, by induction on k,
that Uk ⊆ pre∗

N (↑mfinal) for every k ∈ N. The basis follows from the observation
that U0 ⊆ ↑mfinal ⊆ pre∗

N (↑mfinal). For the induction step, let k ∈ N and as-
sume that Uk ⊆ pre∗

N (↑mfinal). Recall that Uk+1 = ↑(preN (Uk) ∩ I)∪Uk, hence,
Uk+1 ⊆ ↑preN (Uk)∪Uk. Since N is a Petri net, preN (S) is upward-closed for ev-
ery upward-closed subset S ⊆ NP . It follows that ↑preN (Uk) = preN (Uk). We de-
rive from the induction hypothesis that Uk+1 ⊆ preN (Uk)∪Uk ⊆ pre∗

N (↑mfinal).
We have thus shown that Uk ⊆ pre∗

N (↑mfinal) for every k ∈ N. The observa-
tion that mfinal ∈ CovN ⇔ minit ∈ pre∗

N (↑mfinal) concludes the proof of the
lemma. ⊓⊔

B Proofs for Section 4

Lemma 4.1. For every subset S ⊆ NP , the set Min S of its minimal elements

is finite and satisfies ↑S = ↑Min S.

Proof. The partial order ≤ on NP is a well-quasi-order by Dickson’s Lemma.
Therefore, the set Min S of minimal elements of S is necessarily finite. Moreover,
S ⊆ ↑Min S since ≤ is well-founded. It follows that ↑S = ↑Min S. ⊓⊔

Lemma 4.3. It holds that pret
N (↑m) = ↑cpret

N (m) for every marking m ∈ NP .

Proof. Let u ∈ pret
N (↑m). There exists v ≥ m such that u

t
−→ v. Consider a

place p ∈ P . It holds that u(p) ≥ F (p, t) and v(p) = u(p)−F (p, t)+F (t, p) since

u
t
−→ v. We consider two cases.

14

– If m(p) ≤ F (p, t) then cpret
N (m)(p) = F (p, t) ≤ u(p).

– If m(p) ≥ F (p, t) then cpret
N (m)(p) = F (p, t) + m(p) − F (t, p). Since v ≥ m,

we get that cpret
N (m)(p) ≤ F (p, t) + v(p) − F (t, p) = u(p).

In both cases, we obtain that cpret
N (m)(p) ≤ u(p). We have thus shown that

u ∈ ↑cpret
N (m).

Conversely, let u ∈ ↑cpret
N (m). This means that u(p) ≥ cpret

N (m)(p) for
every place p ∈ P . Therefore, u(p) ≥ F (p, t) and u(p) ≥ F (p, t) + m(p) − F (t, p).

It follows that u
t

−→ v for the marking v ≥ m defined by v(p) = u(p) − F (p, t) +
F (t, p). We have thus shown that u ∈ pret

N (↑m). ⊓⊔

Lemma 4.5. For every k with 0 ≤ k < ℓB, the set Bk is a finite basis of Uk.

For every k with 0 ≤ k < ℓP , the set Pk is a finite basis of ↑(Uk+1 \ Uk).

Proof. It is readily seen that Bk and Pk are finite subsets of NP for every k. We
first observe that, for every k with 0 ≤ k < ℓP ,

↑Pk = ↑(({cpret
N (m) | t ∈ T, m ∈ Bk} \ ↑Bk) ∩ I) [Lines 7–8]

= ↑({cpret
N (m) | t ∈ T, m ∈ Bk} ∩ (I \ ↑Bk))

=
⋃

t∈T ↑(cpret
N (Bk) ∩ (I \ ↑Bk))

=
⋃

t∈T ↑(pret
N (↑Bk) ∩ (I \ ↑Bk)) [Lemma 4.4]

= ↑(preN (↑Bk) ∩ (I \ ↑Bk))
= ↑((preN (↑Bk) ∩ I) \ ↑Bk)

Let us now prove, by induction on k, that Uk = ↑Bk for every k with 0 ≤ k < ℓB.
The basis U0 = ↑B0 follows from lines 1–6 of ICover and from the definition of
U0. For the induction step, let k ∈ N with k+1 < ℓB, and assume that Uk = ↑Bk.
Line 11 entails that Bk+1 = Min(Bk ∪ Pk). It follows that

↑Bk+1 = ↑Bk ∪ ↑Pk [Lemma 4.1]
= ↑Bk ∪ ↑((preN (↑Bk) ∩ I) \ ↑Bk)
= Uk ∪ ↑((preN (Uk) ∩ I) \ Uk) [Uk = ↑Bk]
= Uk ∪ ↑(preN (Uk) ∩ I)
= Uk+1

This concludes the proof that Uk = ↑Bk for every k with 0 ≤ k < ℓB. Moreover,
coming back to the characterization of ↑Pk, we get that

↑Pk = ↑((preN (↑Bk) ∩ I) \ ↑Bk)
= ↑((preN (Uk) ∩ I) \ Uk)
= ↑(Uk+1 \ Uk)

for every k with 0 ≤ k < ℓP . ⊓⊔

Theorem 4.6. The procedure ICover terminates on every input and is correct.

Proof. Let us first prove termination. We need to show that the unique maximal
execution of ICover(N , mfinal, I) is finite. By contradition, assume that ℓB = ∞.

15

According to Lemma 3.1, there exists an index h ∈ N such that Uh = Uh+1. We
derive from Lemma 4.5 that Ph = ∅. Therefore, the execution should terminate
at line 10 during the (h + 1)th iteration of the while loop. This contradicts our
assumption that ℓB = ∞.

We now turn our attention to the correctness of ICover. As it is finite, the
unique maximal execution of ICover(N , mfinal, I) either returns False at line 10
or returns True at line 12.

– If it returns False then PℓP −1 = ∅ and it follows from Lemma 4.5 that
UℓP

⊆ UℓP −1. We get from the definition of (Uk)k that Uk = UℓP −1 for every
k ≥ ℓP . Therefore, UℓP −1 =

⋃

k Uk. Moreover, minit 6∈ ↑BℓP −1 because the
condition of the while loop had to hold. It follows from Lemma 4.5 that
minit 6∈ UℓP −1. We derive from Lemma 3.2 that mfinal 6∈ CovN .

– If it returns True then minit ∈ ↑BℓB−1 and it follows from Lemma 4.5 that
minit ∈ UℓB−1. We derive from Lemma 3.2 that mfinal ∈ CovN .

⊓⊔

C Proofs for Section 6

Lemma 6.1. We have propt(Q) ⊆ P \Z for every set Q ⊆ P \Z.

Proof. We can assume without loss of generality that
∧

p∈P \Q F (p, t) = 0 since

otherwise the set propt(Q) is empty. For the same reason, we can assume that
there exists q ∈ P such that F (t, q) > 0. Let us prove that such a place q cannot
be in Z. We introduce the markings mt and m′

t defined by mt(p) = F (p, t) and
m′

t(p) = F (t, p) for every p ∈ P . Those markings are the minimal ones satisfying

mt
t

−→ m′
t. Observe that for every p ∈ Z, we have p ∈ P \Q since Q ∩ Z is empty.

It follows that F (p, t) = 0 for every p ∈ Z. Hence mt is in the inductive invariant

IZ . Since mt
t
−→ m′

t, we deduce that m′
t ∈ IZ . As F (t, q) > 0, we get m′

t(q) > 0.
Hence q 6∈ Z. ⊓⊔

Lemma 6.2. We have Z = P \Q.

Proof. Since Q0 ⊆ P \Z, Lemma 6.1 shows by induction that Qk ⊆ P \Z for
every k. It follows that Q ⊆ P \Z. We derive Z ⊆ P \Q. The converse inclusion
is obtained by proving that the set M = {m ∈ NP |

∧

p∈P \Q m(p) = 0} is
an inductive invariant. First of all, since Q0 ⊆ Q, we deduce that minit ∈ M .

Now let us consider m ∈ M and a transition t such that m
t

−→ m′ for some
marking m′. Observe that m(p) ≥ F (p, t) for every p ∈ P . In particular, for
p ∈ P \Q, the equality m(p) = 0 implies F (p, t) = 0. Assume by contradiction
that m′ 6∈ M . In that case, there exists q ∈ P \Q such that m′(q) > 0. Since
m′(q) = m(q)+F (t, q)+F (q, t) and m(q) = 0 = F (q, t), we deduce that F (t, q) >
0. Thus q ∈ propt(Q). By definition of Q, we get q ∈ Q and we obtain a
contradiction. Thus M is an inductive invariant. By maximality of Z, we get
the inclusion P \Q ⊆ Z. Thus Z = P \Q. ⊓⊔

16

	Occam's Razor Applied to the Petri Net Coverability Problem

