Longest Common Abelian Factors
and Large Alphabets

Golnaz Badkobeh!, Travis Gagie?, Szymon Grabowski®, Yuto Nakashima®®,
Simon J. Puglisi?, and Shiho Sugimoto®*

! University of Warwick, Department of Computer Science,
Conventry, United Kingdom
g.badkobeh@warwick.ac.uk

2 Helsinki Institute for Information Technology
University of Helsinki, Department of Computer Science
Helsinki, Finland
{gagie, puglisi}@cs.helsinki.fi
3 Lodz University of Technology, Institute of Applied Computer Science,
L6dz, Poland
sgrabow@kis.p.lodz.pl
4 Kyushu University, Department of Informatics,
Kyushu, Japan
{shiho.sugimoto, yuto.nakashima}@inf .kyushu-u.ac. jp
5 Japan Society for the Promotion of Science,
Tokyo, Japan

Abstract. Two strings X and Y are considered Abelian equal if the
letters of X can be permuted to obtain Y (and vice versa). Recently,
Alatabbi et al. (2015) considered the longest common Abelian factor prob-
lem in which we are asked to find the length of the longest Abelian-equal
factor present in a given pair of strings. They provided an algorithm
that uses O(on?) time and O(on) space, where n is the length of the
pair of strings and o is the alphabet size. In this paper we describe an
algorithm that uses O(n?log® nlog* n) time and O(nlog?n) space, sig-
nificantly improving Alatabbi et al.’s result unless the alphabet is small.
Our algorithm makes use of techniques for maintaining a dynamic set of
strings under split, join, and equality testing (Melhorn et al., Algorith-
mica 17(2), 1997).

1 Introduction

Two strings X and Y are considered to be Abelian equal if the letters of X can
be permuted to obtain Y (and vice versa). At the String Masters 2013 meeting,
Thierry Lecroq and Arnaud Lefebvre, posed the longest common Abelian factor
problem in which we are asked to find the length of the longest Abelian-equal
factor present in a given pair of strings.

The problem is a variant on the classic longest common factor (LCF) prob-
lem, the colorful history of which has been recently chronicled by Apostolico et
al. [3]. The LCF of two strings can be computed in time linear in the length of

the strings via suffix tree construction, and indeed the drive for a linear-time
LCF algorithm was the reason the suffix tree was unearthed when it was.

To our knowledge, the only work on the LCAF problem was presented very
recently by Alatabbi et al. [1]. They describe an algorithm that runs in O(on?)
worst-case time, using O(on) working space®, where n is the length of the strings
and o = |X| is the alphabet size.

Our main result in this paper is an algorithm that uses O(n?log®nlog* n)
time and O(nlog? n) space, significantly improving Alatabbi et al.’s result unless
the alphabet is o(log2 nlog® n). To obtain this result, we make use of techniques
for maintaining a set of strings under split, join, and equality testing by Melhorn,
Sundar, and Uhrig [8].

We also show how to reduce the space requirements of Alatabbi et al.’s algo-
rithm from O(on) to O(n), without affecting their running time. Before getting
to these new results, however, in Section 3 we highlight a link between the LCF
and LCAF problems that provides an alternative path to Alatabbi et al.’s up-
perbound.

2 Preliminaries

Let S = S[1..n] be a string of length n over an alphabet X of size o = |X].
For 1 <i < j < n, S[i] denotes the ith symbol of S, and S[i..j] the contiguous
sequence of symbols (or factor or substring) S[i]S[i+ 1]...S[j]. We will use the
same notation for arrays. String S[i..j], where j — i + 1 = ¢, will also be called
an {-gram from S. Throughout we assume that ¢ = O(n) and X' = {1,2,...,0}.
If this is not the case, we can first remap the alphabet for both input strings in
O(nlogn) time and using O(n) extra space.

The Parikh vector for string S, denoted as P(S)[1...0], is defined as a vector
(array) of size o storing the number of occurrences of each alphabet symbol in S.
Formally, P(S)[c] = k iff |{i : S[i] = c¢}| = k, for any alphabet symbol c. For two
strings S and T of equal length and over a common alphabet, we say that the
Parikh vector P(S) is (lexicographically) smaller than the Parikh vector P(T),
denoted as P(S) < P(T), iff there exists an alphabet symbol ¢/, 1 < ¢’ < o, such
that P(S)[c] = P(T)[c] for all ¢ < ¢ and P(S)[¢'] > P(T)[c']. The two Parikh
vectors are equal, i.e., P(S) = P(T), when P(S)[c] = P(T)[¢] for all symbols c.

3 LCAF via LCF

While Alatabbi et al.’s algorithm for computing the LCAF is simple, we note
here that the same result can be immediately obtained by a reduction from the
LCF problem.

Hui [6] showed that using a generalized suffix tree it is possible to find the
LCF for a pair of strings of length n in O(n) time. We use this algorithm n

5 We express space usage in words, throughout.

times, for each factor length /¢, replacing each ¢-length factor by its Parikh vec-
tor followed with a unique terminator (e.g., for the factors taken from A the
subsequent terminators can be —1, —2, ..., while for the factors taken from B
they can be —n — 1, —n — 2, ...). The terminators prevent matches longer than
o. If there exists an LCF of length exactly o, it must correspond to a pair of
factors, one from A and one from B, of length ¢. This takes O(on) time for one
value of £, using O(on) space, hence the total time, for all possible factor lengths,
becomes O(on?) with O(on) space (we build and discard the generalized suffix
trees one at a time). In this way, we obtain the same time and space bounds as
Alatabbi et al.’s solution.

4 Reducing space usage in Alatabbi et al.’s algorithm

Recently, Kociumaka et al. [7] showed that for any tradeoff parameter 1 < 7 < n,
the LCF problem can be solved in O(7) space and O(n?/7) time. Applying this
to the LCAF problem, we obtain an algorithm using O(7on?) time and O(on/7)
space, for any 1 <7 < on.

The specifics of LCAF, however, allow for a better result. We consider each
factor length ¢ separately. For a given ¢, we sort all n—¢+1 factors of A according
to their Parikh vectors, using LSD radix sort. Each factor is represented as its
start position in A. There are o passes of the radix sort and the problem seems
to be accessing the keys’ “digits”. However, before each pass of the radix sort
we scan A and for each {-sized window collect the count of the corresponding
symbol in it. More precisely, just before the ith pass of the radix sort, in which
the keys will be distributed according to P(-)[c — i + 1], we compute and store
P(A[j...j+¢—1])[o —i+1] for each factor A[j...j+£—1], using O(n) time and
O(n) extra space. This allows us to access a digit in the radix sort in constant
time. After the ith pass, the P(-)[c — ¢+ 1] statistics are discarded. In this way,
sorting of the ¢-length factors of A takes O(on) time and requires O(n) working
space, including for the output.

We sort the factors of B in the same way. Additionally, for every oth evenly
sampled /-length factor of A and B, we store explicitly its Parikh vector us-
ing O(o) space. More precisely, we compute and store the Parikh vectors for
the factors A[1...¢],Alc+1...0+{],A[20 +1...20 4+ {],..., and similarly for
Bl1...4,Blc+1...0+/f],B[20+1...20 +{],.... Because we scan the strings
from left to right and compute the successive Parikh vectors incrementally (first
making a copy of the previous vector), this phase takes O(n + (n/o)o) = O(n)
time and O(n) space.

The computed Parikh vectors serve to speed up factor comparisons during
the last phase, which is to intersect the lists of factors from A and B (similar
to a two-way merge). By using the sampled Parikh vectors that we have kept at
regular intervals of A and B, each factor comparison takes O(c) time, and the
intersection therefore takes O(on) time.

The total cost of the described procedure, over all relevant factor lengths, be-
comes O(on?) and the required space is O(n). This matches the time complexity
of Alatabbi et al.’s solution, but reduced space usage by a factor of o.

5 New algorithm based on dynamic string sets

To determine if A and B have a common factor of length £, it suffices to be able
to count the number of distinct Parikh vectors in a string. To see this, let Dy(A),
Dy(B), and Dy(A3$B) denote the number of distinct Parikh vectors in strings A,
B, and A$B, respectively, where $ is a sentinel symbol not occurring in either
A or B.
Clearly, if
Dy(ASB) < D¢(A) + De(B) (1)

then at least one Parikh vector is shared by A and B, and so the LCAF
will have length at least ¢. This gives us a simple algorithm for computing the
LCAF: compute D¢(A), D¢(B), and Dy(AS$B) for every £ € [1,n]; the largest ¢
for which (1) holds is the length of the LCAF.

For the remainder of this section we focus on how to compute Dy(X) for a
given string X and window length £. Our main tool is a data structure due to
Melhorn et al. [8] for maintaining a (dynamic) set of strings under split, join, and
equality testing. More precisely, their data structure supports four operations:

(i) make_sequence(s, aj): creates the sequence s equal to the symbol a;.
(ii) equal(sy, s2): returns true iff the strings s; and so are equal.
(iil) join(sy, s2, s3): creates the sequence s; = s189 without destroying s; and
S92.
(iv) split(s1, s2, s3, i), which creates two new sequences, s = aj...a; and
S3 = Qj+1 - - - Gy, without destroying s;.

All presented operations work with string identifiers (ids). For example, join
takes as its parameters the ids of strings s; and s3, and returns the id of the
newly created sj3; if some string already in the collection is equal to s3, their
ids will be equal. Importantly, the ids in the collection are positive integers and
their maximum value after m operations is m3.

Two solutions were presented by Melhorn et al.: one deterministic and one
randomized — the latter with slightly better expected times for the operations
(#4)—(iv) — we only make use here of the deterministic solution. The correspond-
ing four time complexities, for the mth operation in the lifecycle of the struc-
ture, are: O(1) for make_sequence, O(log m) for equal, and O(logn(logmlog™ m+
logn)) for join and split. After m operations the space used is O(m logn(log* m+
logn)).

Our use of Melhorn et al.’s data structure is to store Parikh vectors, which we
will simultaneously treat as both strings and arrays of integers. In the context of
our application, all we need to be able to do is support increment and decrement
of elements of these Parikh vectors. This can be simulated with split and join

operations allowed by Melhorn et al.’s string collection data structure, as we
now explain.

Consider the successive windows of length ¢ shifted over sequence X. For the
first window, we calculate the corresponding Parikh vector in O(o + ¢) = O(n)
time and add it to the string collection using a series of make_sequence and join
operations. For any following window, starting at some valid position ¢ + 1, the
respective Parikh vector for X[t +1...i+/] is calculated from the Parikh vector
for X[i...i+£—1] by incrementing P(X[i...i+£¢—1])[X[i+/]] and decrementing
P(X[i...i+£€—1])[X][i]]. For presentation clarity, let us implement this operation
in two stages: first going from P(X[i...i+ ¢ —1]) to P(X[i...i+ £]) and then
going from P(Xi...i+/]) to P(X[i+1...i+/]). Let sy = P(X[i...i+¢—1]).
Using the dynamic collection of strings, the first transition between the Parikh
vectors boils down to the following sequence of steps:

split(sl, S2, 83, X[Z + é]),

split(sa, s4, s5, X[i +£] — 1),
make_sequence(sg, s1[X[i + €]] + 1),
S7 :join(54,56),

sg = join(sz, $3).

The sequence labeled by sg corresponds to P(X[i...i+]), hence the first stage is
accomplished. The second stage is analogous so we omit it here. This procedure
uses a constant number of split, join, and make_sequence operations and so has
time complexity O(logn(logmlog®m + logn)).

We observe now that in O(nlogn(logmlog® m + logn)) time (where m =
©(n)) we can obtain the Parikh vectors for all {-grams from X, and the corre-
sponding string ids in passing.

Our goal is to know the number of different string ids produced (which cor-
responds to the number of distinct Parikh vectors for the ¢-length factors of X).
With this in mind, at each step i we record the id produced in element i of an
array of n— ¢ elements. Recall that the maximum id is upper-bounded by ©(n?),
and so each id can be stored in O(logn) bits or O(1) words of space. This in
turn means the search tree requires O(n) space overall. We then sort this array
and then scan it to determine the number of distinct elements.

6 Concluding remarks

Finding the longest common Abelian factor is a recently posed problem, with a
solution given in [1], achieving O(on?) worst-case time and needing O(on) words
of space. A significant weakness of that result is its space requirement, which
may be unacceptable with a larger alphabet. We have improved this result in
two ways.

The algorithm of Section 4 keeps the time complexity of Alatabbi et al.’s but
reduces its space usage to O(n). This is obtained by very simple means (the key
component is LSD radix sort). Our second algorithm removes the dependency on
o and uses O(n?log? nlog* n) time and O(nlog? n) space. This algorithm is also

simple conceptually, exploiting a reduction of the problem to counting distinct
Parikh vectors present in a string for different factor lengths.

We believe better algorithms for the LCAF problem are possible, and the
discovery of one is the main open problem we leave; to be specific: is O(n?) time
and O(n) space possible? One obvious line of attack is to use word-level paral-
lelism (in the word-RAM model) for Parikh vector comparisons. The anticipated
speed-up factor however is only about w/ log(n/o), where w is the machine word
size. Perhaps more interesting would be to attempt to share computations for
different factor lengths to obtain faster algorithms. Hardness results, possibly
following the 3SUM reduction for other Abelian problems by Amir et al. [2],
would also be welcome. In another direction, we may be able to use rounding
techniques described by Cicalese et al. [4] to trade off accuracy for time. We are
currently working on sampling techniques that we hope can be combined with
rounding to yield even faster algorithms.

Finally, we note that achieving O(n?) time and O(n) space is possible if we
are happy with answers that are sometimes incorrect. More precisely, we can use
Karp-Rabin hashing in place of Melhorn et al.’s data structure in our algorithm
(which is effectively acting as a rolling hash function). This gives a Monte Carlo
algorithm that correctly computes the LCAF with high probability; and can
be made Las Vegas fairly easily by applying techniques from [5]. We defer the
details to the full version of this paper.

References

1. A. Alatabbi, C. S. Iliopoulos, A. Langiu, and M. S. Rahman. Algorithms for longest
common abelian factors. arXiv preprint arXiv:1503.00049, 2015.

2. A. Amir, T. M. Chan, M. Lewenstein, and N. Lewenstein. On hardness of jum-
bled indexing. In Proceedings of the 41st International Colloquium on Automata,
Languages, and Programming (ICALP), LNCS 8572, pages 114-125, 2014.

3. A. Apostolico, M. Crochemore, M. Farach-Colton, Z. Galil, and S. Muthukrishnan.
40 years of suffix trees. Communications of the ACM, 59(4):66-73, 2016.

4. F. Cicalese, T. Gagie, E. Giaquinta, E. S. Laber, Z. Liptdk, R. Rizzi, and A. L
Tomescu. Indexes for jumbled pattern matching in strings, trees and graphs. In
Proceedings of the 20th International Symposium on String Processing and Infor-
mation Retrieval (SPIRE), pages 56—63, 2013.

5. T. Gagie, P. Gawrychowski, J. Karkkéinen, Y. Nekrich, and S. J. Puglisi. Lz77-
based self-indexing with faster pattern matching. In Proceedings of the 11th Latin
American Theoretical Informatics Symposium (LATIN), LNCS 8392, pages 731742,
2014.

6. L. C. K. Hui. Color set size problem with applications to string matching. In Pro-
ceedings of the 3rd Annual Symposium on Combinatorial Pattern Matching (CPM),
LNCS 644, pages 230-243. Springer, 1992.

7. T. Kociumaka, T. A. Starikovskaya, and H. W. Vildhgj. Sublinear space algorithms
for the longest common substring problem. In Proceedings of the 22nd Annual
European Symposium on Algorithms (ESA), LNCS 8737, pages 605-617. Springer,
2014.

8. K. Mehlhorn, R. Sundar, and C. Uhrig. Maintaining dynamic sequences under
equality tests in polylogarithmic time. Algorithmica, 17(2):183-198, 1997.

