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Abstract

A border of a string is a non-empty prefix of the string that is also a suffix of the string, and a string
is unbordered if it has no border other than itself. Loptev, Kucherov, and Starikovskaya [CPM 2015]
conjectured the following: If we pick a string of length n from a fixed non-unary alphabet uniformly
at random, then the expected maximum length of its unbordered factors is n − O(1). We confirm this
conjecture by proving that the expected value is, in fact, n−Θ(σ−1), where σ is the size of the alphabet.
This immediately implies that we can find such a maximal unbordered factor in linear time on average.
However, we go further and show that the optimum average-case running time is in Ω(

√
n)∩O(

√

n log
σ
n)

due to analogous bounds by Czumaj and Gąsieniec [CPM 2000] for the problem of computing the shortest
period of a uniformly random string.

1 Introduction

Let Σ be a finite alphabet of size σ ≥ 2. A string S ∈ Σn is a sequence S = S[1] · · ·S[n] of n symbols from Σ;
the length n of S is denoted by |S|. For 1 ≤ i ≤ j ≤ n, we denote S[i, j] = S[i] · · ·S[j] and call the string
S[i, j] a factor of S. A factor S[1, j] is a prefix of S and a factor S[i, n] is a suffix of S. A border of a string is
a non-empty prefix of the string that is also a suffix of the string. In other words, the string S has a border
of length ℓ, 1 ≤ ℓ ≤ n, if and only if S[1, ℓ] = S[n− ℓ+ 1, n].
A string S is unbordered if it does not have any proper border, i.e., any border other than the whole of S.

By L(S) we denote the maximum length of unbordered factors of S. Any unbordered factor of length L(S)
is called a maximal unbordered factor of S.
An integer p > 0 is a period of a string S ∈ Σn if S[i] = S[i+ p] for 1 ≤ i ≤ n− p. The shortest period of

a string S is denoted per(S). Note that p is a period of S if and only if S has a border of length n− p, so S
is unbordered if and only if per(S) = n. Moreover, per(S[i, j]) ≤ per(S); applied to a maximal unbordered
factor, this yields L(S) ≤ per(S).

Example 1 ([1]). If S = 1011001101, then per(S) = 7 and L(S) = 6. The maximal unbordered factors are
S[1, 6] = 101100 and S[5, 10] = 001101.

Unbordered factors were first studied by Ehrenfeucht and Silberger [6], with emphasis on the relationship
per(S) and L(S). The question when per(S) = L(S) received more attention in the literature [1, 5, 9, 8].
For strings S ∈ Σn, the equality holds if L(S) ≤ 3

7n [9] or per(S) ≤ 1
2n [6].
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Loptev, Kucherov, and Starikovskaya [15] proved that for uniformly random string S ∈ Σn over an alpha-
bet Σ of size σ ≥ 2 the expected maximum length E[L(S)] of unbordered factors is at least n(1− ξ(σ) · σ−4).+
O(1), where ξ(σ) converges to 2 as σ grows. When σ ≥ 5 and n is sufficiently large, their bound implies
E[L(S)] ≥ 0.99n. Supported by experimental results, Loptev et al. [15] conjectured that E[L(S)] = n−O(1).
In Section 2, we confirm this conjecture and prove that the tail of n− L(S) decays exponentially.

Theorem 2. Let S ∈ Σn be a uniformly random string over an alphabet Σ of size σ ≥ 2.

(a) E[L(S)] = n−O(σ−1).

(b) For each δ > 0, the probability of L(S) = n−O(logσ δ
−1) is at least 1− δ.

One can easily deduce that per(S) ≥ L(S) also satisfies both claims of Theorem 2. However, a recent
study by Holub and Shallit [10] provides much stronger results concerning the shortest periods of uniformly
random strings.
The problem of computing a maximal unbordered factor of a uniformly random string was studied

by Loptev et al. [15] and Gawrychowski et al. [7], who gave algorithms with average-case running times

of O(n
2

σ4 + n) and O(n log n), respectively. The solution by Loptev et al. [15, Theorem 3] actually takes
O(n(n − L(S) + 1)) worst-case time. By Theorem 2(a), its average-case running time is therefore O(n).
Nevertheless, this is still much worse than what is necessary to compute the shortest period of a uniformly
random string [4]. To address this issue, in Section 3 we develop a pair of reductions using Theorem 2(b) to
show that computing L(S) and per(S) is equivalent with respect to the average-case running time.

Theorem 3. Let S ∈ Σn be a uniformly random string over an alphabet Σ of size σ.

(a) The problem of computing L(S) can be reduced in O(logσ n) expected time to the problem of computing
per(S′) for a fixed factor S′ of S.

(b) The problem of computing per(S) can be reduced in O(1) expected time to the problem of computing
L(S).

Consequently, the Ω(
√
n) and O(

√

n logσ n) lower and upper bounds known for computing the shortest
period of a uniformly random string, both due to Czumaj and Gąsieniec [4], carry over to computing a
maximal unbordered factor of such a string.

Corollary 4. The problem of computing a maximal unbordered factor of a uniformly random string over an
alphabet Σ of size σ takes O(

√

n logσ n) time on average, and this bound is within an O(
√

logσ n) factor of
optimal.

Czumaj and Gąsieniec also conjectured that the optimum average-case running time of computing the
shortest period is Θ(

√

n logσ n); any resolution of this conjecture automatically transfers to maximal unbor-
dered factors.
The worst-case running time we get from Theorem 3 and Czumaj and Gąsieniec’s work [4] is O(n2).

However, to obtain state-of-the-art running time both in the average case and in the worst case, we can
dovetail our solution with any of the worst-case algorithms for computing a maximal unbordered factor.
Gawrychowski et al. [7] gave such an algorithm with the running time O(n1.5). Very recently, this has been
improved [12] to O(n logn log2 logn) (and further to O(n log n) if one allows Las Vegas randomization).
Nevertheless, this is still slower than the O(n) time needed to compute the shortest period in the worst-
case [16, 11].
Data structures for answering a period queries have also recently been developed. Such a query takes

two indices i and j and the answer is the shortest period per(S[i, j]). Kociumaka et al. [14] developed a
data structure of size O(n) answering period queries in O(log n) time, which improved upon several earlier
time-space trade-offs they presented in an earlier paper [13]. Computing L(S[i, j]) for a given factor S[i, j]
appears to be a much more difficult task.
Another interesting possibility is to extend our results from average-case analysis to smoothed analysis [17,

18, 2], in which the input can be chosen adversarially but some random noise is then added to it. We
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conjecture that when the noise level is reasonably large — e.g., each symbol is replaced by a randomly
chosen one with some positive constant probability — then our bounds do not change significantly. Our
results or techniques could also be applicable to other problems concerning borders and periods.

2 Distribution of Maximum Length of Unbordered Factors

Let us fix an alphabet Σ of size σ ≥ 2. For every n ≥ 0, we define a random variable ∆n distributed as
|S| − L(S) for uniformly random S ∈ Σn. The following lemma, which gives a common upper bound of the
moment-generating functions M∆n

(t) = E[et∆n ], is the key tool behind Theorem 2.

Lemma 5. For n ∈ N and 0 ≤ t ≤ 0.1 lnσ, we have M∆n
(t) ≤ C(t), where

C(t) =
σ3 − σ2e2t

σ3 − 2σ2e2t + e4t
. (1)

Proof. We proceed by induction on n. The base case is n ∈ {0, 1} for which∆n = 0 and thereforeM∆n
(t) = 1.

Consequently, we need to prove that

C(t)−M∆n
(t) =

σ3 − σ2e2t

σ3 − 2σ2e2t + e4t
− 1 =

σ2e2t − e4t

σ3 − 2σ2e2t + e4t
≥ 0.

Note that the denominator is a quadratic function of e2t with a minimum at e2t = σ2. Hence, σ3 − 2σ2e2t +
e4t ≥ σ3 − 2σ2.2 + σ0.4 for t ≤ 0.1 lnσ. The right-hand side is a polynomial of σ0.2, and one can easily verify
that it is positive for σ ≥ 2. Consequently, the denominator is positive. To complete the proof of the base
case, observe that e2t(σ2 − e2t) is also positive for t ≤ lnσ.
For n ≥ 2, we assume M∆m

(t) ≤ C(t) for m < n and 0 ≤ t ≤ 0.1 lnσ. We consider a uniformly random
S ∈ Σn and condition over the possible lengths ℓ of the shortest border of S. More formally, we define F (S)
as the smallest integer ℓ > 0 such that S[1, ℓ] = S[n− ℓ+ 1, n], and we write

M∆n
(t) = E[et(n−L(S))] =

n
∑

ℓ=1

P[F (S) = ℓ] · E[et(n−L(S)) | F (S) = ℓ]. (2)

Now, we bound from above individual terms of this sum. Observe that F (S) = n is equivalent to L(S) = n
and therefore

E[et(n−L(S)) | F (S) = n] = 1. (3)

For ℓ ≤ 1
2n, we observe that S[ℓ+ 1, n− ℓ] is independent from F (S) = ℓ. Due to L(S) ≥ L(S[ℓ+ 1, n− ℓ]),

this yields

E[et(n−L(S)) | F (S) = ℓ] ≤ E[et(n−L(S[ℓ+1,n−ℓ])) | F (S) = ℓ] = E[et(n−L(S[ℓ+1,n−ℓ]))] =

= e2tℓ E[et(n−2ℓ−L(S[ℓ+1,n−ℓ]))] = e2tℓM∆n−2ℓ
(t). (4)

Moreover, we note that F (S) = ℓ implies S[i] = S[n− ℓ+ i] for 1 ≤ i ≤ ℓ and these events are independent.
For ℓ ≥ 2, we have one more independent event S[1] 6= S[ℓ] due to F (S) 6= 1. Consequently,

P[F (S) = ℓ] ≤
{

σ−1 if ℓ = 1,

(σ − 1)σ−ℓ−1 if 2 ≤ ℓ ≤ 1
2n.

(5)

In the remaining case of 1
2n < ℓ < n, we observe that if S[1, ℓ] = S[n− ℓ+1, n], then S[n− ℓ+1, ℓ] is also a

border of S. This contradicts F (S) = ℓ because |S[n− ℓ+ 1, ℓ]| = 2ℓ− n < ℓ. Consequently,

P[F (S) = ℓ] = 0 if 1
2n < ℓ < n. (6)
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Plugging (3–6) into (2), we obtain

M∆n
(t) ≤ P[F (S) = n] +

⌊n/2⌋
∑

ℓ=1

P[F (S) = ℓ] · e2tℓ ·M∆n−2ℓ
(t)

≤ 1 + σ−1 · e2t ·M∆n−2
(t) +

⌊n/2⌋
∑

ℓ=2

(σ − 1)σ−ℓ−1 · e2tℓ ·M∆n−2ℓ
(t). (7)

The inductive assumption further yields

M∆n
(t) ≤ 1 + σ−1 · e2t · C(t) +

⌊n/2⌋
∑

ℓ=2

(σ − 1)σ−ℓ−1 · e2tℓ · C(t)

≤ 1 + C(t)

(

σ−1e2t + (σ − 1)σ−3e4t ·
∞
∑

ℓ=0

(σ−1e2t)ℓ

)

= 1 + C(t)

(

σ−1e2t + (σ − 1)σ−3e4t · 1

1− σ−1e2t

)

= 1 + C(t) · σ(σ − e2t)e2t − (σ − 1)e4t

σ2(σ − e2t)
(8)

= 1 +
σ3 − σ2e2t

σ3 − 2σ2e2t + e4t
· σ

2e2t − e4t

σ3 − σ2e2t

=
σ3 − 2σ2e2t + e4tσ2e2t − e4t

σ3 − 2σ2e2t + e4t

= C(t).

This completes the proof of Lemma 5.

Next, let us focus on the expected value E[∆n]. Note thatM∆n
(t) = E[et∆n ] ≥ E[1+t∆n]. Consequently,

for 0 < t ≤ 0.1 lnσ we have

E[∆n] ≤
M∆n

(t)− 1

t
≤ C(t)− 1

t
. (9)

Hence, E[∆n] is bounded by a function of σ independent of n. To analyze its asymptotics in terms of σ, we
plug t = 1 (valid for σ ≥ e10), which yields

E[∆n] ≤ C(1)− 1 =
σ2e2 − e4

σ3 − 2σ2e2 + e4
=

O(σ2)

Ω(σ3)
= O(σ−1). (10)

This completes the proof of Theorem 2(a).
For the claim (b), we apply Markov’s inequality on top of Lemma 5:

P[∆n ≥ ℓ] ≤ E[et∆n ]

etℓ
=

M∆n
(t)

etℓ
≤ C(t)

etℓ
. (11)

Hence, it suffices to take ℓ ≥ 10 logσ(δ
−1 · C(0.1 lnσ)) to make sure that the probability does not exceed δ.

To complete the proof, observe that

C(0.1 lnσ) =
σ3 − σ2.2

σ3 − 2σ2.2 + σ0.4
=

O(σ3)

Ω(σ3)
= O(1). (12)
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3 Average-Case Algorithms for Maximal Unbordered Factors

In this section, we give a pair of reductions between the problems of computing the shortest period and
the maximum length of unbordered factors of a uniformly random string, thereby proving Theorem 3. We
assume that the alphabet Σ is of size σ ≥ 2. Otherwise, both values are always 1.
We start with a simple argument showing Theorem 3(b). Suppose that we aim at computing per(S) for

a uniformly random string S ∈ Σn. Having determined L(S), we rely on the fact that per(S) ≥ L(S). We
construct a string S$ := S[1, n − L(S)]$S[L(S) + 1, n], where $ /∈ Σ is a sentinel symbol, and observe that
S has a border of length ℓ ≤ n − L(S) if and only if S$ has such a border. Moreover, the presence of the
sentinel symbol guarantees that S$ does not have proper borders longer than n − L(S). Consequently, we
have |S|−per(S) = |S$|−per(S$). The value per(S$) can be computed using a worst-case algorithm [16, 11],
which takes O(|S$|) = O(n − L(S) + 1) time. The expected running time of the reduction is O(1) due to
Theorem 2(a).
We proceed with a proof of Theorem 3(a). Suppose that we aim at computing L(S) for a uniformly

random string S ∈ Σn. We apply Theorem 2(b) for δ = 1
n2 to obtain a value d = O(logσ n) such that

P[|T | − L(T ) ≥ d] ≤ 1
n2 for uniformly random strings T ∈ Σm of arbitrary length m. Note that this also

yields P[|T | − per(T ) ≥ d] ≤ 1
n2 due to per(T ) ≥ L(T ).

If n ≤ 6d, we simply determine L(S) using Loptev et al.’s algorithm [15], which takes O(d) = O(logσ n)
time on average. Otherwise, we construct three strings

S̄ := S[1, 3d]S[n− 3d+ 1, n],

S′ := S[d+ 1, n− d],

S̄′ := S[d+ 1, 3d]S[n− 3d+ 1, n− d],

and we compute |S̄| − L(S̄), |S′| − per(S′), and |S̄′| − per(S̄′). If any of these values exceeds d, we fall back
to the algorithm of [15] to compute L(S). Otherwise, we determine L(S) based on |S|−L(S) = |S̄|−L(|S̄|).
Before proving this equality, let us analyze the running time of the reduction. Observe that S̄, S′, and

S̄′ are uniformly random strings of the respective lengths, which lets us use average-case algorithms. In
particular, it takes O(d) time on average to compute L(S̄′) using Loptev et al.’s algorithm [15]. Determining
per(S′) is the target of the reduction, so we do not include it in the analysis. The value per(S̄′) is computed
in O(d) worst-case time [16, 11]. The probability of a fall-back is at most 3

n2 by the choice of d, which
compensates for the worst-case1 time O(n2) it takes to apply Loptev et al.’s algorithm to the whole of S.
Overall, the reduction works in O(d) = O(logσ n) time on average.
It remains to prove |S| − L(S) = |S̄| − L(S̄) provided that |S̄| − L(S̄) ≤ d, |S′| − per(S′) ≤ d, and |S̄′| −

per(S̄′) ≤ d. First, consider a maximal unbordered factor of S̄. It must be of the form S[i, 3d]S[n− 3d+1, j]
for some 1 ≤ i ≤ d and n− d+1 ≤ j ≤ n, and we claim that S[i, j] is then an unbordered factor of S. For a
proof by contradiction, suppose that S[i, j] has a proper border and the longest such border is of length ℓ.
Note that ℓ > min(|S[i, 3d]|, |S[n− 3d + 1, j]|) because S[i, 3d]S[n− 3d + 1, j] is unbordered. We conclude
that per(S[i, j]) = |S[i, j]| − ℓ < n − 3d. However, this yields per(S′) ≤ per(S[i, j]) < n − 3d = |S′| − d, a
contradiction. Consequently, |S| − L(S) ≤ |S̄| − L(S̄).
The proof of |S| − L(S) ≥ |S̄| − L(S̄) is symmetric. We consider a maximal unbordered factor S[i, j] of

S, observe that 1 ≤ i ≤ d and n−d+1 ≤ j ≤ n due to |S|−L(S) ≤ d, and claim that S[i, 3d]S[n− 3d+1, j]
is unbordered For a proof by contradiction we suppose that it a border of length ℓ. We note that ℓ >
min(|S[i, 3d]|, |S[n−3d+1, j]|) because S[i, j] is unbordered and derive per(S̄′) ≤ per(S[i, 3d]S[n−3d+1, j]) <
3d, which contradicts per(S̄′) ≥ |S̄′| − d = 3d.
This completes the proof of Theorem 3(a).

1Note that we cannot use the average-case bound of O(n) because the conditional distribution of S (in case of a fall-back)
is no longer uniform across Σn.
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