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Abstract. With the appearance of the heterogeneous platform Open-
Power, many-core accelerator devices have been coupled with Power host
processors for the first time. Towards utilizing their full potential, it is
worth investigating performance portable algorithms that allow to choose
the best-fitting hardware for each domain-specific compute task. Suiting
even the high level of parallelism on modern GPGPUs, our presented ap-
proach relies heavily on abstract meta-programming techniques, which
are essential to focus on fine-grained tuning rather than code porting.
With this in mind, the CUDA-based open-source plasma simulation code
PIConGPU is currently being abstracted to support the heterogeneous
OpenPower platform using our fast porting interface cupla, which wraps
the abstract parallel C++11 kernel acceleration library Alpaka.
We demonstrate how PIConGPU can benefit from the tunable kernel
execution strategies of the Alpaka library, achieving portability and per-
formance with single-source kernels on conventional CPUs, Power8 CPUs
and NVIDIA GPUs.

Keywords: OpenPower, heterogeneous computing, HPC, C++11, CUDA,
OpenMP, particle-in-cell, platform portability, performance portability

1 Introduction

PIConGPU [2] is a fully-relativistic, multi-GPU, 3D3V particle-in-cell (PIC)
code. As such it allows to model the mutual interaction between electromagnetic
fields and charged particles, including effects of retardation in special relativ-
ity (SRT) and the collective motion of collisionless plasmas, by solving Maxwell’s
equations self-consistently for charged particles and electromagnetic fields. Be-
sides the satisfied demand for large scales and high resolutions by computing the
whole PIC cycle on GPUs, simulations of laser-ion acceleration from overdense
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targets [19] induce a further complexity in the dynamics of the plasma from
collisional excitation and ionization processes. As the free electron density from
ionization processes determines intrinsic observables such as the plasma wave-
length, the modeling of underlying quantum processes needs to be taken into
account and is not yet covered in the plain electrodynamics provided by PIC.
Our approach to enhance the PIC algorithm is therefore to add a Monte Carlo
step in the simulation with 0-D atom physics from SCFLY [4]. This method
requires to calculate the transition rate matrix, representing the likelihood of
change of the atomic configuration of each ion from one time step to the next.
Each of the quantum processes has its own individual models, calibrated with
experimental and theoretical estimates. Even when considering the reduction of
possible transitions by using an effective number of states, removing physically
forbidden and very unlikely transitions, the total number of transitions can grow
quadratically with the number of considered configurations. In combination with
the dependency of the transition matrix elements on local quantities, such as the
energy distribution of neighboring electrons and photons of each individual ion
in the plasma, the required amount of memory can easily grow into the size of
several dozen gigabytes for a non-equilibrium system.

None of the accelerators that are currently available or announced for the near
future fulfill these memory requirements. However, the accelerator’s host system
provides access to fast and large main memories and file systems. The host’s
CPUs are used as a first computing stage to reduce the full transition matrix
to smaller lookup tables. CPUs excel at this task, since they typically provide
better performance on trigonometric functions and implicit solvers. Accordingly,
only relevant data needs to be streamed to the GPU.

The OpenPower platform couples various advanced hardware technologies on
the same system [11] such as Power CPUs, NVIDIA GPUs, and fast CPU–GPU
interconnect technology [7]. To fully utilize the compute power of this platform,
it is currently necessary to use various programming models such as CUDA for
GPU and OpenMP for CPU. However, this style of programming has the disad-
vantage that the code is difficult to maintain and it requires more work to switch
algorithms between GPU and CPU implementations. A uniform programming
model allows to selectively determine the kernel execution hardware depending
on the algorithmic requirements. These requirements depend on the models of
the individual physical process: some are memory bound, some compute bound,
and the user chooses, based on domain knowledge and the relevance, on which
hardware these processes should be executed.

Currently, widely utilized uniform parallel programming models such as
OpenCL [17] do not fulfill all our requirements of a sustainable, open, main-
tainable, testable, optimizable, and single-source programming model. Loop and
container based approaches such as RAJA [9], Kokkos [5], and OpenMP 4.0 [15]
would require a complete redesign of the CUDA based PIConGPU code. With
Alpaka [20], there exists an interface for parallel kernel acceleration which enables
the programmer to compile single-source C++ kernels to various architectures,
while providing all the requirements mentioned above. As a first step to selec-



tive kernel acceleration on the OpenPower platform, PIConGPU has been ported
with the CUDA-like interface cupla [16] to Alpaka, which currently allows for
an execution either on the CPU or on the GPU.

This paper is structured as follows. In Section 2, we give a brief overview
on PIConGPU, Alpaka, and cupla. In Section 3, we provide our experiences
on porting PIConGPU with cupla from CUDA to Alpaka. Finally, the ported
prototype is evaluated on various architectures in Section 4.

2 Preliminaries

2.1 PIConGPU

PIConGPU is a multi-GPU particle-in-cell (PIC) code for three-dimensional
field–particle interaction with high spatial resolution. The code decomposes its
global simulation domains into a grid of cells. Cells are grouped into a cuboid
volume called super cell, and multiple of these super cells are again grouped into
a cuboid volume which defines the local simulation domain of a single GPU.

Additionally, there is a second, spatially continuous domain for finite size
macro particles such as ions and electrons. They are able to move through the
cells and interact with them, making PIC a particle mesh algorithm [3]. Macro
particles are grouped in frames, where each frame contains as many macro par-
ticles as there are cells in a super cell. Frames are stored in a doubly linked list
and correspond to a particular super cell.

Most of the operations on the cells are local stencils which include only a few
neighboring cells and are therefore well suited to CUDA programming model of
a multidimensional grid. PIConGPU is mapped to this model as follows: The
local simulation domain is mapped to the grid of a single GPU. A super cell is
mapped to a block that contains as many threads as there are cells — in our
simulation this amounts usually to 256 cells. A thread calculates the field of a
cell and its proportion of particles of its super cell.

2.2 Alpaka and cupla

Alpaka provides a uniform, abstract C++ interface to a range of parallel pro-
gramming models. It can express multiple levels of parallelism and allows for
generic programming of kernels either for a single accelerator device or a single
address space with multiple CPU cores. The Alpaka abstraction of paralleliza-
tion is influenced by and based on the groundbreaking CUDA abstraction of
a multidimensional grid of blocks of threads. The four main execution hierar-
chies introduced by Alpaka are called grid, block, thread, and element level. The
element level denotes an amount of work a thread needs to process sequen-
tially. These levels describe an index space which is called work division. Other
programming models call these levels differently e.g. OpenCL work-groups of
work-items, OpenMP teams of threads, and OpenACC gang, worker, and vector.



Separating parallelization abstraction from specific hardware capabilities al-
lows for an explicit mapping of these levels to hardware. The current imple-
mentation includes mappings to programming models, called back-ends, such
as OpenMP, CUDA, C++ threads, and boost fibers [14]. Nevertheless, mapping
implementations are not limited to these choices and can be extended or adapted
for application-specific optimizations. Which back-end and work division to uti-
lize is parameterized per kernel within the user code.

A fast approach to port CUDA code to Alpaka is provided by the CUDA-
like Alpaka interface cupla [qχap ′la?]. Cupla leaves most CUDA API calls un-
changed, yet performs Alpaka calls in the background. Thus, cupla provides a
simple and fast porting approach by reducing the number of lines of the original
CUDA code a programmer needs to modify.

3 Porting with cupla

In this section we discuss the steps necessary to port the CUDA accelerated code
of PIConGPU from GPU to CPU hardware. Our approach is to replace CUDA
by the CUDA-like interface cupla. Afterwards, we can utilize Alpaka’s CUDA
and OpenMP 2.0 back-ends to execute our kernels on both GPUs and CPUs.

Cupla leaves most parts of the CUDA code unchanged such as memory allo-
cations, memory copies, stream handling, device handling, and index queries.
The programmer is still required to handle three porting steps. Firstly, the
cuda runtime.hpp include has to be replaced by cuda to cupla.hpp and all
.cu files renamed to .cpp. Secondly, The host , device , and global

keywords need to be replaced by equivalent cupla macros and CUDA global
functions rewritten into parenthesis operators of C++ functors. The accelerator
object of the accelerator template type has to be passed to these operators and
the underlying device functions. Finally, each shared memory allocation has to
be replaced by an equivalent cupla macro. Listing 1 shows equivalent CUDA and
cupla code snippets of a kernel function initializing an array by a constant value.
In contrast to the CUDA kernel, each thread of the cupla kernel loops over the
x dimension of the element level.

The native PIC code consists of about forty thousand lines of code. This
code is a mixture C++11 and platform-dependent CUDA code. R. Widera pro-
grammed about two days, applied the cupla porting steps mentioned above,
touched most of our nine hundred device functions, forty kernels, amounting to
two thousand lines of code, to provide the first Alpaka based prototype. Although
this prototype did not utilize the element level, it was already executable on both
a Power8 device using the OpenMP 2.0 back-end and on an NVIDIA device us-
ing the CUDA back-end. The number of threads in a block was left unchanged.
Accordingly, the domain of a super cell is processed by a block consisting of 256
threads.

This block-size leads to inefficient communication between threads on the
Power8 when the the element level is omitted, resulting in more frequent cache
misses and a decrease in performance. Accordingly, the integration of the ele-



1 // CUDA Kernel

2 __global__ void kernel ( int * data )

3 {

4 int id = blockDim.x * blockIdx.x

5 + threadIdx.x;

6 data[ id ] = 42;

7 }

1 // Alpaka Kernel

2 struct void kernel {

3 template < typename Acc >

4 ALPAKA_FN_ACC void operator () (

5 Acc const & acc ,

6 int * data

7 ) const

8 {

9 int id = blockDim.x * blockIdx.x * elemDim.x

10 + threadIdx.x * elemDim.x;

11 for( int elem = 0; elem < elemDim.x; ++elem)

12 data[ id + elem ] = 42

13 }

14 };

Fig. 1. CUDA and cupla kernels which initialize each element in the input array data

by the value 42. The cupla kernel on the bottom was created through wrapping the
CUDA kernel on the top within a C++ functor. Each thread of the cupla kernel
processes multiple elements through looping over the dimensions of the additional
element level. In the cupla kernel blockDim, blockIdx, threadIdx, and elemDim are
pre-processor macros accessing the acc variable.

ment level enables for a work division of blocks with a single thread and mul-
tiple elements to calculate the entire domain of a super cell. This provides a
more efficient mapping of Alpaka-threads to hardware threads and, therefore,
an improved vectorization and cache utilization by the compiler. The integra-
tion of the element level required to loop over the fixed-size element index space
for each sequential kernel part. These sequential parts were wrapped in lambda
functions. Furthermore, single element variables were expanded to multidimen-
sional fixed-size arrays. This change, on three thousand lines of code, took our
developer about ten days.

To sum up, our developer modified about five thousand lines of code in a
matter of two weeks, after which the entire forty thousand lines PIConGPU
code could be compiled and run efficiently on CPU and GPU devices. It was not
necessary to modify the core data structures or algorithms of PIConGPU. The
element level has been added to enable a single thread to process the domain
of a super cell. In the following section we will evaluate the performance of our
Alpaka-based PIC simulation on both architectures.



Table 1. Compute nodes for evaluation (core counts in braces are HW threads).

Vendor AMD Intel IBM NVIDIA
Architecture Interlagos [1] Haswell [10] Power8 [6] Kepler [12]
Model Opteron 6276 Xeon E5-2698v3 Power8 8247-42L K80 GK210
Used devices per node 4 2 2 1
Cores per device 16 16 (32) 10 (80) 2496
Base clock frequency 2.3 GHz 2.3 GHz 2.1 GHz 0.56 GHz
Release date Q4/2011 Q3/2014 Q1/2014 Q4/2014
Peak performance(sp) 960 GFLOPS 2354 GFLOPS 1120 GFLOPS 4350 GFLOPS
Peak performance(dp) 480 GFLOPS 1177 GFLOPS 560 GFLOPS 1450 GFLOPS

4 Evaluation

This section provides the evaluation of the PIConGPU code [18] that was ported
to various compute architectures (see Table 1). We measured the runtime and
performance of the memory-bound PIC algorithm as implemented in PICon-
GPU with a simulation of the Kelvin-Helmholtz instability [3] for one thousand
time steps in double and single precision and compared these results between the
various architectures. The simulation was parameterized with the Boris pusher,
Esirkepov current solver, Yee field solver, trilinear interpolation in field gather-
ing, three spatial dimensions (3D3V), 128 cells in each dimension, electron and
ion species with each sixteen particles per cell, and quadratic-spline interpolation
(TSC) [8]. On all CPU devices the OpenMP 2.0 back-end was used with a block
consisting of a single thread with 256 elements. On NVIDIA GPUs the CUDA
back-end is used with a block consisting of 256 threads with a single element.
All GPU evaluations are compiled with nvcc1 7.0 and all CPU evaluations with
gcc2 4.9.2.

Figure 2 displays the measured runtime and efficiency of the evaluated sim-
ulation. On the NVIDIA K80, the differences in runtime between the native
and the ported PIC code are about one percent for single precision. For double
precision, the Alpaka based code is even faster, because Alpaka emulates dou-
ble atomicAdd using atomicCAS instead of the slower atomicExch used by the
native PIConGPU implementation. Nevertheless, this small optimization could
have been introduced easily into the native PIConGPU code to achieve the same

1 --use fast math --ftz=false -g0 -O3 -m64
2 -g0 -O3 -m64 -funroll-loops -march=native --param max-unroll-times=512

-ffast-math

Runtime and Floating Point Efficiency of the PIConGPU Kelvin Helmholtz Instability Simulation
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Fig. 2. As an example to evaluate a memory-bound PIC code, runtime and floating
point efficiency of the PIConGPU Kelvin-Helmholtz instability simulation for single
precision and for double precision was measured on various architectures (see Table 1).



runtime results. According to these measurements, Alpaka can keep its promise
of zero-overhead abstraction on the same architecture even for rather complex
applications such as PIConGPU. The runtime between GPU and CPU imple-
mentations differ in one order of magnitude for single precision. However, the
results need to be evaluated in relation to the theoretical peak performance of
the particular architecture. This metric is denoted as floating point efficiency in
Figure 2. Regarding floating point efficiency, CPU and GPU vary by a factor
of three to four on single precision and by a factor of two on double precision.
Thus, Alpaka provides not just portability between GPU and CPU, but decent
performance on both. All evaluated CPU architectures show similar runtime
and efficiency characteristics. Nevertheless, the Intel architecture offers the low-
est runtime and highest (theoretical) peak performance of all evaluated CPU
devices. However, there still exists some potential to increase performance, as
it only provides five percent floating point efficiency on double precision. While
the IBM and AMD architectures fare slightly better with about eight percent
double precision efficiency, there is still a lot of potential compared to the GPU
efficiency. By refining the Alpaka back-ends and tuning the work division, this
potential can be utilized to increase the performance of the CPU architectures
even more.

5 Conclusion

We have presented the current progress in porting the particle-in-cell simula-
tion PIConGPU onto the OpenPower platform through utilizing the CUDA-like
Alpaka interface cupla. The core routines of the forty thousand lines mixed
C++ and CUDA code have been ported from CUDA to Alpaka within two
weeks. Through this abstraction, the ported PIConGPU implementation is exe-
cutable on AMD, IBM, Intel, and NVIDIA architectures. The code was not just
ported, but has been moved to a generic single-source multi-platform program-
ming model. Thus, PIConGPU never needs to be ported again.

The native CUDA version and the Alpaka version show no significant differ-
ences in runtime or performance on the NVIDIA hardware, which demonstrates
zero overhead abstraction capabilities of Alpaka. GPU and CPU devices dif-
fer in a factor of about two in efficiency on double precision, providing decent
performance among the evaluated architectures.

Future work will focus on the evaluation of each kernel on CPU and GPU
hardware separately. Based on these measurements, we want to provide a static
mapping of kernels to heterogeneous hardware to achieve the best possible overall
performance on the particular HPC system. Furthermore, we want to complete
the porting of the remaining simulation plugins within PIConGPU and add a
more fine-grain element level implementation.

The code is ready for the upcoming Power9 and NVIDIA Volta-based het-
erogeneous systems such as Summit [13] at the Oak Ridge National Laboratory.
By using Alpaka we have the possibility to optimize and adapt our back-ends to
these systems once they are fully specified and available for evaluation.
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