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Abstract

While the Matrix Generalized Inverse Gaussian (MGIG) distribution arises naturally in some settings as a distri-
bution over symmetric positive semi-definite matrices, certain key properties of the distribution and effective ways of
sampling from the distribution have not been carefully studied. In this paper, we show that the MGIG is unimodal,
and the mode can be obtained by solving an Algebraic Riccati Equation (ARE) equation [7]. Based on the property,
we propose an importance sampling method for the MGIG where the mode of the proposal distribution matches
that of the target. The proposed sampling method is more efficient than existing approaches [32, 33], which use pro-
posal distributions that may have the mode far from the MGIG’s mode. Further, we illustrate that the the posterior
distribution in latent factor models, such as probabilistic matrix factorization (PMF) [25], when marginalized over
one latent factor has the MGIG distribution. The characterization leads to a novel Collapsed Monte Carlo (CMC)
inference algorithm for such latent factor models. We illustrate that CMC has a lower log loss or perplexity than
MCMC, and needs fewer samples.

1 Introduction

Matrix Generalized Inverse Gaussian (MGIG) distributions [3, 10] are a flexible family of distributions over the space
of symmetric positive definite matrices and has been recently applied as the prior for covariance matrix [21, 32, 33].
MGIG is a flexible prior since it contains Wishart, and Inverse Wishart distributions as special cases. We anticipate
the usage ofMGIG as prior for statistical machine learning models to grow with potential applications in Bayesian
dimensionality reduction and Bayesian matrix completion. We illustrate some of these connections in Section 4.

Some properties of theMGIG distribution and its connection with Wishart distribution has been studied in [10,
27, 28]. However, to best of our knowledge, it is not yet known if the distribution is unimodal and, if it is unimodal,
how to obtain the mode ofMGIG. Besides, it is difficult to analytically calculate mean of the distribution and sample
from theMGIG distribution. Monte Carlo methods like the importance sampling can in principle be applied to infer
the mean ofMGIG but one needs to design a suitable proposal distribution [22, 24].

There is only one important sampling procedure for estimating the mean of MGIG [32, 33]. In this approach,
MGIG is viewed as a product of the Wishart and Inverse Wishart distributions and one of them is used as the proposal
distribution. However, we illustrate that the mode of the proposal distribution in [32, 33] may be far away from the
MGIG’s mode. As a result, the proposal density is small in a region where theMGIG density is large yielding to an
ineffective sampler and drastically wrong estimate of the mean (Figures 1 and 2).

In this paper, we first illustrate that the MGIG distribution is unimodal where the mode can be obtained by
solving an Algebraic Riccati Equation (ARE) [7]. This characterization leads to an effective importance sampler for
the MGIG distribution. More specifically, for estimating the expectation EX∼MGIG [g(X)], we select a proposal
distribution over space of symmetric positive definite matrices like Wishart or Inverse Wishart distribution such that
the mode of the proposal matches the mode of theMGIG. As a result, unlike the current sampler [32, 33], by aligning
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Figure 1: An illustration of bad proposal distribution in importance sampling. Let p(x) = h∗(x)g∗(x)/Zp ∝
h(x)g(x). Note that h(x) = h∗(x)/Zh nor g(x) = g∗(x)/Zg need not be a good candidate proposal distribution
to approximate p(x) since the mode of both h(x) and g(x) distribution is far away from p(x).

the shape of the proposal and theMGIG, the density of the proposal gets higher values in the high density regions of
the target, yielding to a good approximation of EX∼MGIG [g(X)].

Further, we discuss a new application of the MGIG distribution in latent factor models such as probabilistic
matrix factorization (PMF) [25] or Bayesian PCA (BPCA) [4] . In these settings, the given matrix X ∈ RN×M is
approximated by a low-rank matrix X̂ = UV T where U ∈ RN×D and V ∈ RM×D with Gaussian priors over the
latent matrices U and V . We show that after analytically marginalizing one of the latent matrices in PMF (or BPCA),
the posterior over the other matrix has the MGIG distribution. This illustration yields to a novel Collapsed Monte
Carlo (CMC) inference algorithm for PMF. In particular, we marginalize one of the latent matrices, say V , and propose
a direct Monte Carlo sampling from the posterior of the other matrix, say U . Through extensive experimental analysis
on synthetic, SNP, gene expression, and MovieLens datasets, we show that CMC has lower log loss or perplexity with
fewer samples than Markov Chain Monte Carlo (MCMC) inference approach for PMF [26].

The rest of the paper is organized as follows. In Section 2, we cover background materials. In Section 3, we show
thatMGIG is unimodal and give a novel importance sampler forMGIG. We provide the connection ofMGIG with
PMF in Section 4, present the results in Section 5, and conclude in Section 6.

2 Background and Preliminary

In this section we provide some background on the relevant topics and tools that will be used in our analysis. We start
by an introduction to importance sampling,MGIG distribution, a brief overview of the algebraic Riccati Equations
(ARE), followed by describing the connection between Probabilistic Matrix Factorization and PCA.

Notations: Let SN++ and SN+ denote the space of symmetric (N × N ) positive definite and positive semi-definite
matrix, respectively. Denote 0N as a matrix of all zeros {0}N×N . Let |.| denote the determinant of matrix, Tr(.) be
the matrix trace. A matrix random variable Λ ∈ SN++ has a Wishart distribution and is denoted asWN (Λ|Φ, τ) where
τ > N − 1 and Φ ∈ SN++ [31]. A matrix random variable Λ ∈ SN++ has an Inverse Wishart distribution and is denoted
as IWN (Λ|Ψ, α) where α > N − 1 and Ψ ∈ SN++ is the scale matrix. Consider the matrix X ∈ RN×M . We denote
x:m as the mth column of X and xn as the nth row of X .

2.1 Importance Sampling

Consider distribution p(x) = 1
Zp
p∗(x) where Zp is the partition function which plays the role of a normalizing

constant. Importance sampling is a general technique for estimating Ex∼p(x)[f(x)] where sampling from p(x) (the
target distribution) is difficult but we can evaluate the value of p∗(x) at any given x [22]. The idea is to draw S
samples {xi}Si=1 from a similar but easier distribution denoted by proposal distribution q(x) = 1

Zq
q∗(x) and calculate
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the expected value as follows

Ex∼p[f(x)] = Ex∼q
[
f(x)p(x)

q(x)

]
≈
∑S
i=1 f(xi)w(xi)∑S

i=1 w(xi)
,

where w(xi) = p∗(xi)
q∗(xi)

is the weight of each sample i, and Zq is the partition function.
The efficiency of importance sampling depends on how closely the proposal approximates the target in the shape.

One way for monitoring the efficiency of importance sampling is the effective sample size measured as ESS =
(
∑S
i=1 w(xi))

2∑S
i=1 w

2(xi)
[16]. If the proposal has the same shape as the target distribution, ESS achieves the maximum value.

The other extreme happens if all but one of the importance weights are zero yielding to a minimum ESS value
of one. Very small value of ESS indicates a big discrepancy between the proposal and target (for example when
the mode of the proposal distribution is far away from the target’s mode) leading to a drastically wrong estimate of
Ex∼p[f(x)] [22].

In particular, consider target distributions that can be decomposed as a product of two distributions, i.e., p(x) ∝
h(x)g(x). Naturally, one may choose one of the multiplicand of p(x) (h(x) or g(x)) as the proposal distribution since
weight calculation becomes the evaluation at the other multiplicand. However, when mode of h(x) or g(x) is far away
from the p(x)’s mode, neither of them are an appropriate candidate for the proposal distribution since the proposal
density is small in a region where the target density is large (Figure 1). Thus it is quite possible that the sampler has a
very low effective sample size (ESS) [16].

2.2 MGIG Distribution
MGIG distribution was first introduced in [3] as a distribution over the space of symmetric (N ×N ) positive definite
matrices defined as follows.

Definition 2.1 (MGIG Distribution) Let Λ be a symmetric (N × N ) positive definite matrix. A matrix-variate
random variable Λ isMGIG distributed [3, 10] and is denoted as Λ ∼MGIGN (Ψ,Φ, ν) if the density of Λ is

f(Λ) =
| Λ |ν−(N+1)/2

| Ψ
2 |ν Bν(Φ

2
Ψ
2 )

exp{Tr(−1

2
ΨΛ−1 − 1

2
ΦΛ)},

where Bν(.) is the matrix Bessel function [14] defined as

Bν(
Φ

2

Ψ

2
) = |Φ

2
|−ν
∫
SN++

|S|−ν−
N+1

2 exp{Tr(−1

2
ΨS−1 − 1

2
ΦS)}dS. (1)

When N = 1, theMGIG is the generalized inverse Gaussian distribution GIG [15] which is often used as the
prior in several domains [6, 13]. In the following, we show that if Ψ = 0, the MGIG distribution reduces to the
Wishart, and if Φ = 0, it becomes the Inverse Wishart distribution.

Proposition 1 [32, Proposition 2] If matrix Λ ∼MGIGN (Ψ,Φ, ν), then Λ−1 ∼MGIGN (Φ,Ψ,−ν).

Proof: The proof follows from the Bessel function property Bδ(WZ) = |WZ|−δB−δ(ZW ) [32].

Proposition 2 If matrix Λ ∼MGIGN (Ψ, 0N , ν), and −ν > N−1
2 , then Λ ∼ IWN (Ψ,−2ν).

Proof: First note that If −ν > N−1
2 , then we have Bν(0N ) = ΓN (−ν) [11]. Then, the proof simply follows from

Definition 2.1.

Proposition 3 If matrix Λ ∼MGIGN (0N ,Φ, ν), and ν > N−1
2 , then Λ ∼WN (Φ−1, 2ν).

Proof: From Proposition 1, we have Λ−1 ∼ MGIGN (Φ, 0N ,−ν). Also, from Proposition 2, we have Λ−1 ∼
IWN (Φ, 2ν). If matrix Λ−1 ∼ IWN (Φ, 2ν) then Λ ∼WN (Φ−1, 2ν). This completes the proof.

Sampling Mean of MGIG: The sufficient statistics ofMGIG are log |Λ|, Λ, and Λ−1. It is, however, difficult to
analytically calculate the expectations EΛ∼MGIG [Λ] and EΛ∼MGIG [Λ−1]. Importance sampling can be applied to
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Figure 2: (a,b) Comparison of different proposal distribution (a) Wishart (W) and (b) Inverse Wishart (IW) for
sampling mean ofMGIG1(Ψ,Φ, ν) where Λ∗ is the mode of MGIG. The blue curves are the proposal distribution
defined in [32, 33] which can not recover the mode of the MGIG distribution. (c) Density of MGIG2(Ψ,Φ, ν)
for 1000 samples generated by each proposal distribution is calculated. More than 90% of samples generated by the
previous proposal distribution in [32, 33] (IW(ψ,−2ν)) have zeroMGIG density leading to ESS = 40. Whereas,
the new proposal distribution IW (23Λ∗, 20) has the ESS = 550 which has a very similar shape to the targetMGIG
distribution.

approximate those quantities. Note that based on the result of Proposition 1, the importance sampling procedure for
estimating mean ofMGIG, i.e., EΛ∼MGIG [Λ], can also be applied to infer the reciprocal mean i.e. EΛ∼MGIG [Λ−1].

An importance sampling procedure proposed in [32, 33], where the MGIG is viewed as a product of Inverse
Wishart and Wishart distributions and one of the multiplicands is used as the natural choice of the proposal distribution.
In particular, in [32, 33], theMGIG is viewed as

MGIGN (Λ|Ψ,Ψ, ν) ∝ eTr(− 1
2 ΦΛ)︸ ︷︷ ︸

T1

IWN (Λ |Ψ,−2νu)︸ ︷︷ ︸
T2

(2)

∝ eTr(− 1
2 ΨΛ−1)︸ ︷︷ ︸
T3

WN (Λ |Φ, 2νu)︸ ︷︷ ︸
T4

. (3)

Note that T2 is the Inverse Wishart distribution and T4 is the Wishart distribution, and there are efficient samplers for
both of Wishart and Inverse Wishart distributions [29]. In [32, 33], authors advocate using T2 (or T4) as the proposal
distribution which simplify the weight calculation to the evaluation of T1 (or T3). However, it is not studied how close
T2 (or T4) are to theMGIG distribution in shape. For example, consider the 1−dimensionalMGIG distribution

MGIG1(Λ | 35, 10, 10) ∝ eTr(− 35
2 Λ−1)︸ ︷︷ ︸
T3

W1(Λ | 10, 20)︸ ︷︷ ︸
T4

. (4)

In [32, 33], T4 : W1(Λ | 10, 20) is considered as the proposal distribution, but the mode of T4 is far away from
the mode of MGIG1(Λ | 35, 10, 10) (Figure 2(a)). As a result, samples drawn from T4 will be on the tail of the
MGIG1(Λ | 10, 20) distribution, and will end up getting low weights (importance) from the MGIG1(Λ | 10, 20)
distribution. Such a sampling procedure will be wasteful, i.e., drawing samples from the tails of the targetMGIG1

distribution, leading to a very low ESS. Similar behavior is observed with several different choices of parameters for
theMGIG, here we only show three of them in Figure 2 due to the lack of space.

2.3 Algebraic Riccati Equation

An algebraic Riccati equation (ARE) is
ATX +XA+XRX +Q = 0, (5)

where A ∈ RN×N , Q ∈ SN+ , and R ∈ SN+ . We associate a 2N × 2N matrix called the Hamiltonian matrix H with the

ARE (5) as H =

[
A R
−Q −AT

]
. The Hamiltonian matrix has some useful properties appears in various control and
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filtering problems of continuous time systems. In particular, the ARE (5) has a unique positive definite solution if and
only if the associated Hamiltonian matrix H has no imaginary eigenvalues (Section 5.6.3 of [7]).

There have been offered various numerical methods to solve the ARE which can be reviewed in [1]. The key
of numerical technique to solve ARE (5) is to convert the problem to a stable invariant subspace problem of the
Hamiltonian matrix i.e., finding the invariant subspace corresponding to the eigenvalues of H with negative real parts.

In particular, consider V =

[
X1

X2

]
to be a H−invariant subspace, i.e., HV = V Λ. Assume X1 is invertible, we then

post multiply by X−1
1 to obtain

HVX−1
1 = V ΛX−1

1 ⇒
[
A R
−Q −AT

] [
I
X

]
=

[
I
X

]
X1ΛX−1

1 , (6)

where X = X2X
−1
1 . Multiplying both side by

[
−X I

]
, we have[

−X I
] [ A R
−Q −AT

] [
I
X

]
=
[
−X I

] [ I
X

]
X1ΛX−1

1 = 0. (7)

Simplifying the left hand side we get the ARE (5) which implies that X = X2X
−1
1 is the solution of (5).

The usual ARE solvers such as the Schur vector method [17], SR methods [9], the matrix sign function [2, 12]
require in general O(n3) flops [20]. For special cases, faster algorithms such as [20] can be applied which solves such
an ARE with 20k dimensions in seconds. In this paper, we use Matlab ARE solver (care) to find the solution of ARE.

2.4 PMF, PPCA, and Bayesian PCA
Here, we giv a review of PMF [25], Probabilistic PCA (PPCA) [30], and Bayesian PCA (BPCA) [4], to illustrate the
similarity and differences between the existing ideas and our approach. Table 1 provides a summary of the algorithms.
A related discussion appears in [19]. All these models focus on an (partially) observed data matrixX ∈ RN×M . Given
latent factors U ∈ RN×D and V ∈ RM×D, the rows of X are assumed to be generated according to x:m = UvTm + ε,
where ε ∈ RN . The different models vary depending on how they handle distributions or estimates of the latent
factors U, V . Without loss of generality, for all the analysis through the paper, we are considering a fat matrix X
where M > N .
PMF and BPMF: In PMF [25], one assumes independent Gaussian priors for all latent vectors un and vm, i.e.,
un ∼ N (0, σ2

uI), [n]N1 and vm ∼ N (0, σ2
vI), [m]M1 . Then, one obtains the following posterior over (U, V )

p
(
U, V |X,σ2, σ2

u, σ
2
v

)
=
∏
n,m

[N (xnm
∣∣〈un,vm〉, σ2)]δnm

∏
n

N (un
∣∣0, σ2

uI)
∏
m

N (v:m

∣∣0, σ2
vI) , (8)

where δnm = 0 if xnm is missing. PMF obtains point estimates (Û , V̂ ) by maximizing the posterior (MAP), based on
alternating optimization over U and V [25].

Bayesian PMF (BPMF) [26] considers independent Gaussian priors over latent factors with full covariance matri-
ces, i.e., un ∼ N (0,Σu), [n]N1 and vm ∼ N (0,Σv), [m]M1 . Inference is done using Gibbs sampling to approximate
the posterior P (U, V |X). At each iteration, U is sampled from the conditional probability of p(U |V,X), followed by
sampling V from p(V |U,X) using the updated matrix U at the current iteration.
Probabilistic PCA: In PPCA [30], one assumes independent Gaussian prior over un, i.e., un ∼ N (0, σ2

uI), but V
is treated as a parameter to be estimated. In particular, in PPCA, V is chosen so as to maximize the marginalized
likelihood of X given by

p (X |V ) =

∫
U

p(X|U, V )p(U)dU =

N∏
n=1

N (xn|0, σ2
uV V

T + σ2I). (9)

Interestingly, as shown in [30], the estimate V̂ can be obtained in closed form. For such a fixed V̂ , the posterior
distribution over U |X, V̂ can be obtained as:

p(U |X, V̂ ) =
p(X|U, V̂ )p(U)

p(X|V̂ )
=

N∏
n=1

N
(
un|Γ−1V̂ Txn, σ

−2Γ
)
, (10)

where Γ = V̂ T V̂ + σ−2
u σ−2I. Note that the posterior of the latent factor U in (10) depends on both X and V̂ .

For applications of PPCA in visualization, embedding, and data compression, any point xn in the data space can be

5



Table 1: Summary of low rank matrix factorization algorithms illustrated as the handled distribution where (.) is the
inference procedure. CF denotes Closed Form. MCMC alternately sample both U and V from a Markov chain with
the joint posterior p(U, V |X). CMC only samples the smaller U matrix directly from p(U |X).

Algorithm Inference of U Inference of V
PPCA [30] p(U |X, V̂ ) (CF) Point Est. V̂ (ML)
BPCA [4] p(U, V |X) (Approx.) p(U, V |X) (Approx.)
PMF [25] Point Est. (MAP) Point Est. (MAP)
BPMF [26] p(U, V |X) (MCMC) p(U, V |X) (MCMC)
CMC-PMF (ours) p(U |X) (CMC) p(V |X) (CMC)

summarized by its posterior mean E[un|xn, V̂ ] and covariance Cov(un|V̂ ) in the latent space.
Bayesian PCA: In Bayesian PCA [4], one assumes independent Gaussian priors for all latent vectors un and vm, i.e.,
un ∼ N (0, σ2

uI) and vm ∼ N (0, σ2
vI), [m]M1 . Bayesian posterior inference by Bayes rule considers p(U, V |X) =

p(X|U, V )p(U)p(V )/p(X), which includes the intractable partition function

p(X) =

∫
U

∫
V

p(X|U, V )p(U)p(V )dUdV . (11)

The literature has considered approximate inference methods, such as variational inference [5], gradient descent opti-
mization [19], MCMC [26], or Laplace approximation [4, 23].

While PPCA and Bayesian PCA were originally considered in the context of embedding and dimensionality re-
duction, PMF and BPMF have been widely used in the context of matrix completion where the observed matrix X has
many missing entries. Nevertheless, as seen from the above exposition, the structure of the models are closely related
(also see [19, 18]).

3 MGIG Properties and Sampling
Some properties of theMGIG distribution and its connection with Wishart distribution has been studied in [10, 27,
28]. However, to best of our knowledge, it is not yet known if the distribution is unimodal and how to obtain the mode
ofMGIG. In the following Lemma we show that theMGIG distribution is unimodal.

Lemma 4 Consider theMGIG distributionMGIGN (Λ|Ψ,Φ, ν). The mode ofMGIG distribution is the solution
of the following Algebraic Riccati Equation (ARE)

−2αΛ + ΛΦΛ−Ψ = 0, (12)

where α = (ν− N+1
2 ). ARE in (12) has a unique positive definite solution, thus theMGIG distribution is a unimodal

distribution.

Proof: The log-density ofMGIGN (Λ|Ψ,Φ, ν) is

log f(Λ) = α log |Λ| − 1

2
Tr(ΨΛ−1 + ΦΛ) + C, (13)

where α = (ν− N+1
2 ), and C is a constant which does not depend on Λ. The mode ofMGIGN is obtained by setting

derivative of (13) to zero. The derivative is a quadratic matrix equation as follows
∇f(Λ) = −2αΛ + ΛΦΛ−Ψ = 0. (14)

Note that (14) is a special case of ARE (5). The associated Hamiltonian matrix for (14) is H =

[
−αIN Φ

Ψ αIN

]
.

Recall that ARE has a unique positive definite solution if and only if the associated Hamiltonian matrix H has no
imaginary eigenvalues (Section 5.6.3 of [7]). Thus, to show the unimodality ofMGIG, it is enough to show that the
corresponding characteristic polynomial |H − λI2N | = 0 has no imaginary solution.

|H − λI2N | =

∣∣∣∣−(α+ λ)IN Φ
Ψ (α− λ)IN

∣∣∣∣
6



= |−(α+ λ)IN |
∣∣(α− λ)IN + (α+ λ)−1ΨΦ

∣∣
= |(α− λ)IN |

∣∣−(α+ λ)IN − (α− λ)−1ΦΨ
∣∣

=

N∏
i=1

{−(α2 − λ2)− λ̃i} = 0, (15)

which yields to λ2 = λ̃i + α2 where λ̃i is the ith eigenvalue of ΦΨ. Note λ̃i > 0 since Φ and Ψ are positive definite
and product of two positive definite matrix has positive eigenvalue . As a result, (15) has no imaginary solution and
H does not have any imaginary eigenvalue. As a result, ARE in (14) has a unique positive definite solution. This
completes the proof.

Importance Sampling for MGIG: Since MGIG is a unimodal distribution, we propose an efficient importance
sampling procedure forMGIG by mode matching. We select a proposal distribution over space of positive definite
matrices by matching the proposal’s mode to the mode of MGIG (mode matching) which aligns the proposal and
MGIG shapes. Mode matching is a good choice of the proposal as the proposal q(x) is large in a region where the
target distributionMGIG is large leading to a good estimate of the expectations EΛ∼MGIG [Λ] or EΛ∼MGIG [Λ−1].
An example of such proposal distribution is Inverse Wishart or Wishart distribution.

Let Λ∗ be the mode of MGIGN (Λ|Ψ,Φ, ν) which can be found by solving the ARE (14). The mode of In-
verse Wishart WN (Λ|Σ, ρ) distribution is Σ∗ = (ρ − N − 1)Σ. To match the mode of WN (Λ|Σ, ρ) with that of
MGIGN (Λ|Ψ,Φ, ν), we choose the scale parameter Σ of the Wishart distribution by setting Σ∗ = Λ∗. In particular,

Σ∗ = Λ∗ = (ρ−N − 1)Σ ⇒ Σ =
Λ∗

ρ−N − 1
. (16)

Thus, we suggest using WN ( Λ∗

ρ−N−1 , ρ) as the proposal distribution. At each iteration, we draw a sample Λi ∼
WN ( Λ∗

ρ−N−1 , ρ), and calculate the importance weight as w(Λi) = MGIGN (Λi|Ψ,Φ,ν)
WN (Λi|Σ,ρ) . More specifically, the density

of Wishart distribution is

q(Λ) =
q∗(Λ)

Zq
, where q∗(Λ) = |Λ|

ρ−N−1
2 exp{−1

2
Tr(Σ−1Λ)}. (17)

Then, the importance weight can be calculated as

w(Λi) =
| Λi |ν−(N+1)/2 exp{− 1

2 Tr(ΨΛ−1
i + ΦΛi)}

|Λi|
ρ−N−1

2 exp{− 1
2 Tr(Σ−1Λi)}

(18)

= | Λi |ν−
ρ
2 exp

{
−1

2
Tr
(
ΨΛ−1

i + [Φ− Σ−1]Λi
)}

. (19)

As a result, we can approximate the sample mean as

EΛ∼MGIG [f(Λ)] =

∑S
i=1 w(Λi)f(Λi)∑S

j=1 w(Λj)
. (20)

Note that the weight calculation requires to calculate the inverse and determinant of sampled matrix Λi. However, as
illustrated in Algorithm 1, the random samples generator from W [29] returns the upper triangular matrix R where
Λ = RTR. Hence the inverse and determinant of Λ can be calculated efficiently from the inverse and diagonal of the
triangular matrix R, respectively. Therefore, the cost of weight calculation is reduced to the cost of solving a linear
system and upper triangular matrix production at each iteration.

A similar argument holds when the proposal distribution is an Inverse Wishart distribution. In particular, the mode
of Inverse Wishart IWN (Σ, ρ) distribution is Σ

ρ+N+1 . Thus IWN (ρ+N + 1)Λ∗, ρ) is another suitable choice of the
proposal distribution.

Figure 2 illustrates that the proposed importance sampling outperforms the one in [32, 33] for three examples
of MGIG. In particular, more than 90% of samples drawn from the proposal distribution T2 in [32, 33] have zero
weights leading to ESS = 40 (Figure 2 (c)). Whereas, our proposal distribution achieved ESS = 550 leading to a
better approximation of the mean ofMGIG. Similar behavior is observed with several different choices of parameters
for theMGIG.
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Algorithm 1 Random Generator ofWN (Λ|Σ, ρ, L) [29]

1: Note LTL = Σ is the Cholesky factorization of Σ
2: Pii ∼

√
χ2(ρ− (i− 1)) for all i = 1 · · ·N .

3: Pij ∼ N (0, 1) for i < j. . P : upper triangular
4: R = PL.
5: Return Λ = RTR.
6: Return Λ−1 = R−1R−1T .
7: Return |Λ| = [

∏N
i=1Rii]

2.

4 Connection of MGIG and Bayesian PCA

In this section, we illustrate that the mapping matrix V in Bayesian PCA can be marginalized or ‘collapsed’ yielding
a Matrix Generalized Inverse Gaussian (MGIG) [3, 10] posterior distribution over the latent matrix U denoting as
the marginalized posterior distribution. Then, we explain the derivation of the marginalized posterior for data with
missing values, followed by a collapsed Monte Carlo Inference for PMF.

4.1 Closed form Posterior Distribution in Bayesian PCA

The key challenge in models such as Bayesian PCA or Bayesian PMF is that joint marginalization over both latent
factors U, V is intractable. Probabilistic PCA gets around the problem by considering one of the variables, say V , to be
a constant. In this section, we show that one can marginalize or ‘collapse’ one of the latent factors, say V , and obtain
the marginalized posterior P (U |X) over the other variable denoted. In fact, we obtain the posterior with respect to
the covariance structure Λu = βuI +UUT , for a suitable constant βu, which is sufficient to do Bayesian inference on
new test points xtest.

We start with an outline of the analysis. Note that

p(U |X) ∝ p(U)P (X|U) = p(U)

∫
V

P (X|U, V )p(V )dV , (21)

and, based on the posterior over U , one can obtain the probability on a new point as

p(xtest|X) =

∫
U

p(xtest|U)p(U |X)dU . (22)

Next, we show that the posterior over U as in (21), rather the distribution over Λu = βuI + UUT , can be derived
analytically in closed form. The distribution is the Matrix Generalized Inverse Gaussian (MGIG) distribution.

Now, similar to (9), marginalizing V gives

p (X |U) =

∫
V

p(X|U, V )p(V )dV

=

M∏
m=1

∫
vm

N
(
x:m |UvTm, σ

2I
)
N
(
vm | 0, σ2

vI
)

dvm

=

M∏
m=1

N
(
x:m | 0, σ2

vΛu
)
,

where Λu = βvI + UUT and βv = σ2

σ2
v

. Then, the marginalized posterior of U is calculated as

p(U |X) ∝ p(X|U) p(U) ∝ | Λu |−M/2
exp

{
− 1

2σ2
v

M∑
m=1

xT:m Λ−1
u x:m

}

× exp

{
− 1

2σ2
u

Tr(UUT + βuI− βuI)
}
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= | Λu |−M/2
exp

−Tr
(

Λ−1
u

∑M
m=1 x:mxT:m

)
2σ2

v


× exp

{
−Tr(Λu)

2σ2
u

}
× exp

{
Tr(βuI)

2σ2
u

}
(23)

= | Λu |−M/2
exp

{
Tr(−1

2
Λ−1
u Ψu −

1

2
ΛuΦu)

}
∼ MGIG(Λu |Ψu,Φu, νu) , (24)

where Ψu = 1
σ2
v
XXT , Φu = 1

σ2
u
I, and νu = N−M+1

2 .

Therefore, by marginalizing or collapsing V , the posterior over Λu = βvI + UUT corresponding to the latent
matrix U can be characterized exactly with aMGIG distribution with parameters depending only on X . Note that
this is in sharp contrast with (10) for PPCA, where the posterior covariance of un is σ−2Γ which in turn depends on
the point estimate for V̂ .

4.2 Posterior Distribution with Missing Data

In this section, we consider the matrix completion setting, when the observed matrixX has missing values. In presence
of missing values, the likelihood of the observed sub-vector in any column of X is given as

p (xnm,m |U, V ) = N
(
xnm,m | ŨmvTm, σ

2I
)
. (25)

where nm is a vector of size Ñm containing indices of non-missing entries in column m of X , and Ũm is a sub-
matrix of U with size of Ñm × D where each row correspond to a non-missing entry in the mth column of X . The
marginalized likelihood (25) can be written as

p (X |U) =
∏M
m=1 N

(
xnm,m | 0, σ2

vΛun
)
, (26)

where Λun = βvI + ŨnŨ
T
n and βv = σ2

σ2
v

. The marginalized posterior is given by

p(U |X) ∝ exp

{
− 1

2σ2
u

Tr(UUT )

}
(27)

× | Λun |−M/2 exp

{
−1

2
xTnm,m Λ−1

un xnm,m

}
.

As shown in (27), in presence of missing values, the posterior cannot be factorized as in (23) because each column
x:m contributes to different blocks Λun of Λ.

We propose to address the missing value issue by gap-filling. In particular, if one can obtain a good estimate of the
covariance structure in X , so that Ψu = 1

σ2
v
XXT in (24) can be approximated well, one can use theMGIG posterior

to do approximate inference. We consider two simple approaches to approximate the covariance structure of X: (i) by
zero-padding the missing value matrix X (assuming E[X] = 0 or centering the data in practice), and estimating the
covariance structure based on the zero-padded matrix, and (ii) by using a suitable matrix completion method, such as
PMF, to get point estimates of the missing entries inX , and estimating the covariance structure based on the completed
matrix. We experiment with both approaches in Section 5, and the zero-padded version seems to work quite well.

4.3 Collapsed Monte Carlo Inference for PMF

Given that Λu ∼MGIGN , we predict the missing values as follows. Let x = [xo,x∗] ∼ N (0,Λ), where xo ∈ Rp
is the observed partition of x ∈ RN and x∗ ∈ RN−p is missing. Accordingly, partition Λ as

Λu =

p N − p( )
Λoo Λo∗ p
Λ∗o Λ∗∗ N − p

. (28)
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Algorithm 2 CMC Inference for PMF
1: Construct zero-padded matrix Z from X ∈ RN×M .
2: Let Ψu = ZZT

σ2
v

, Φu = I
σ2
u

, and νu = N−M+1
2 .

3: Solve (14) to find mode Λ∗ ofMGIG(Ψu,Φu, νu).
4: Let LTL = Λ∗ be the Cholesky factorization of Λ∗.
5: Let L̃ = L√

ρ−M−1
.

6: for t = 1 · · ·T do
7: Let Λ(t) ∼ WN ( Λ∗

ρ−M−1 , ρ, L̃) . Algorithm 1

8: Let wt = MGIGN (Λ(t)|Ψu,Φu,νu)

WN (Λ(t)| Λ∗
ρ−M−1 ,ρ,L̃)

.

9: Let µt = Λ
(t)
∗oΛ

(t)
oo

−1
xo.

10: Let Σt = Λ
(t)
∗∗ − Λ

(t)
∗oΛ

(t)
oo

−1
Λ

(t)
o∗ .

11: Let µ̄ = µ̄+ wtµt.
12: Let Σ̄ = Σ̄ + wtΣt.
13: µ̃∗ = µ̄∑T

t=1 w
t .

14: Σ̃∗ = Σ̄∑T
t=1 w

t .

15: Report the distribution of x∗ ∼ N (µ̃∗, Σ̃∗).
16: Set the point estimate of x∗ as µ∗.

Then the conditional probability of x∗ given xo and Λ is
p(x∗ |xo,Λ) ∼ N (µ∗,Σ∗), (29)

µ∗ = Λ∗oΛ
−1
oo x

o,

Σ∗ = Λ∗∗ − Λ∗oΛ
−1
oo Λ∗o.

where y = Λ∗oΛ
−1
oo is the solution of the linear system Λooy = ΛT∗o and can be calculated efficiently. Since sampling

fromMGIG is difficult, we propose to use importance sampling to infer the missing values as

p(x∗n|xon) = EΛ∼MGIG [p(x∗n|xon,Λ)] = EΛ∼q

[
p(x∗n|xon,Λ)MGIGN (Λ|Ψu,Φu, νu)

q(Λ)

]
,

where q is the proposal distribution as discussed above and sampling Λ(t) from q yields to the estimate of

µ̃∗ =

∑T
t=1 Λ

(t)
∗oΛ

(t)
oo

−1
xow(Λ(t))∑t

t=1 w(Λ(t))

Σ̃∗ =

∑T
t=1[Λ

(t)
∗∗ − Λ

(t)
∗oΛ

(t)
oo

−1
Λ

(t)
∗o ]w(Λ(t))∑t

t=1 w(Λ(t))
. (30)

Algorithm 2 in appendix illustrates the summary of the collapsed Monte Carlo (CMC) inference for predicting the
missing values. A practical approximation to avoid the calculations in Lines 9-12 of Algorithm 2 at each iteration is

to simply estimate the mean of the posterior Λ̄ =
∑T
t=1 Λ(t)wt∑T
t=1 w

t with samples drawn from the proposal distribution (line

6), then do the inference based on Λ̄. As it is shown in Section 5, if the degrees of freedom νu is small, the mode is
close to the mean and the approximation using Λ̄ works well.

5 Experimental Results

We compared the performance of MCMC and CMC on both log loss and running times.
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5.1 Datasets

We evaluated the models on 4 datasets: 1) SNP: single nucleotide polymorphism (SNP) is important for identifying
gene-disease associations where the data usually has 5 to 20% of genotypes missing [8]. We used phased SNP dataset
for chromosome 13 of the CEU population1. We randomly dropped 20% of the entries. 2) Gene Expression: DNA
microarrays provides measurement of thousands of genes under a certain experimental condition where suspicious
values are usually regarded as missing values. Here we used gene expression dataset for Breast Cancer (BRCA)2. We
randomly dropped 20% of the entries. 3) MovieLens: we used MovieLens3 dataset with 1M rating represented as a
fat matrixX ∈ RN×M whereM = 3900 movies andN = 6040 users. 4) Synthetic: first the latent matrices U and V
are generated by randomly choosing each {un}Nn=1 and {vm}Mm=1 fromN (0, σ2

uI) andN (0, σ2
vI), respectively. Then,

matrix X is built by sampling each xnm from N (〈un,vm〉, σ2). The parameters are set to N = 100, M = 6000,
σ2
u = σ2

v = 0.05, and σ2 = 0.01. We dropped random entries using Bernoulli distributions with δ = 0.1, 0.2.

5.2 Methodology

We compared CMC with MCMC inference for PMF. Gibbs sampling with diagonal covariance prior over the latent
matrices is used for MCMC. For the model evaluation, average of log loss (LL) is reported over 5-fold cross-validation.
LL measures how well a probabilistic model q predicts the test sample defined asLL = − 1

T

∑N
i=1

∑M
j=1 δij log q(xij)

where q(xij) is the inferred probability and T is the total number of observed values. A better model q assign higher
probability q(xij) to observed test data, and have a smaller value of LL.
LL Percentile: For any posterior model q(x), a test data point xtest with low q(xtest) has large log loss, and high
q(xtest) has low log loss. To comparatively evaluate the posteriors obtained from MCMC and CMC, we consider their
log loss percentile plots. For any posterior, we sort all the test data points in ascending order of their log loss, and plot
the mean log loss in 10 percentile batches. More specifically, the first batch corresponds to the top 10% of data points
with the lowest log loss, the second batch corresponds to the top 20% of data points with the lowest log loss (including
the first 10% percentile), and so on.

5.3 Results

We summarize the results from different aspects:
Log loss: CMC has a small log loss across all percentile batches, whereas log loss of MCMC increases exponentially
(linear increase in the log scale) for percentile batches with higher log loss i.e., smaller predicting probability, (Figure
3). Thus, MCMC assigned extremely low probability to several test points as compared to CMC. Figure 4(a) illustrates
that log loss of MCMC continues to decrease with growing sample size up to 2000 samples, implying that MCMC has
not yet converged to the equilibrium distribution. Note that log loss of CMC with 200 samples (Figure 4(b)) is 10 times
less than log loss of MCMC with 2000 samples. We also compared the results with the previous proposal [32, 33], and
observed that for MovieLens the results are worse than our proposed result as they achieved Inf LL on the last batch.
Effective number of samples: For the synthetic, SNP, and gene expression datasets, we generated 10,000 samples
using MCMC. The burn-in period is set to 500 with a lag of 10 yielding to 1000 effective samples. For the MovieLens,
we generated 5,000 samples using MCMC with the burn-in period of 1000 and a lag of 2 yielding to 2000 effective
samples. We initialized the latent matrices U and V with the factors estimated by PMF, to help the convergence of
MCMC. Sample size in CMC procedure is set to 1,000 for all datasets. Note that MCMC alternately sample both latent
matrices U and V from a Markov chain and the quality of the posterior improves with increasing number of samples.
For the proposed CMC procedure, the bigger matrix V is marginalized and only samples from the smaller U matrix is
drawn directly from the true posterior distribution. Hence, CMC has considerably improved sample utilization.
Initialization: As discussed in Section 4.2, in order to use theMGIG posterior for inference, the covariance structure
of matrix X should be estimated. Here we evaluate two approaches to approximate the covariance structure of X: (i)
by zero-padding the missing value matrix X, and (ii) by computing the point estimates of the missing entries in X with

1http://hapmap.ncbi.nlm.nih.gov/downloads/phasing/
2http://cancergenome.nih.gov/
3www.movielens.umn.edu
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(d) MovieLens
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(e) SNP
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Figure 3: Log loss (LL) of CMC and MCMC for different log loss percentile on different datasets presented in the log
scale (δ denotes the missing proportion). CMC consistently achieves lower LL compared to MCMC. LL of MCMC
increases exponentially (linearly in log scale) by adding data points with higher log loss. Proposal in [30,31] achieved
infinity LL for MovieLens. Empty bar represents infinity LL (e.g. 90% and 100% percentile in (d)

PMF. CMC with zero-padded initialization has a similar log loss behavior as point estimate initialization with PMF
(Figures 3 (d-f)).

Full sampler vs Mean sampler: Figure 3(f) shows the result of the full sampler (Algorithm 2), and the mean sampler
(approximating the inference by estimating Λ̄ = EΛ∼MGIG [Λ] as discussed in Section 4.3) on gene expression data.
Since the log losses are similar with both samplers, and the behavior is typical, we presented log loss results on the
other datasets only based on the mean sampler, which is around 100 times faster.

Comparison of inferred posterior distributions: To emphasize the importance of choosing the right measure
for comparison, e.g., log loss vs RMSE, we illustrate the inferred posterior distributions over several missing en-
tries/ratings in MovieLens obtained from MCMC and CMC in Figure 5. Note that the scales for CMC (red) and
MCMC (blue) are different. Overall, the posterior from CMC tends to be more conservative (not highly peaked), and
obtains lower log loss across a range of test points. Interestingly, as shown in Figure 5(a), MCMC can make mistakes
with high confidence, i.e., predicts 5 stars with a peaked posterior whereas the true rating is 3 stars. Such troublesome
behavior is correctly assessed with log loss, but not by RMSE since it does not consider the confidence in the predic-
tion. As shown in Figure 5(d), for some test points, both MCMC and CMC inferred similar posterior distributions
with a bias difference where the mean of CMC is closer to the true value.

Time Comparison: We have compared running time in both serial and in parallel over 1000 steps yielding to 200 and
1000 samples for MCMC and CMC, respectively. We implement the algorithms in Matlab. The computation time is
estimated on a PC with a 3.40 GHz Quad core CPU and 16.0G memory. The average run time results are reported in
Table 2. For Synthetic, SNP, and gene expression datasets, MCMC converges very slowly. For MovieLens dataset,
the running time of both are very close but note that MCMC requires more number of samples for convergence than
CMC (Figure 4).
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Figure 4: LL of CMC and MCMC for different sample size of MovieLens data in the log scale. LL of both CMC and
MCMC is decreasing by adding more samples. LL of MCMC is in magnitude 10 times more than CMC.
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Figure 5: Density of CMC and MCMC for several data input on MovieLens data. CMC provide distributions with
lower LL compared to MCMC e.g. in (a) LL of MCMC is -Inf whereas LL of CMC is -1.78.

6 Conclusion

We studied the MGIG distribution and provided certain key properties with a novel sampling technique from the
distribution and its connection with the latent factor models such as PMF or BPCA. With showing that the MGIG
distribution is unimodal and the mode can be obtained by solving an ARE, we proposed an new importance sampling
approach to infer the mean ofMGIG. The new sampler, unlike the existing sampler [32, 33], chooses the proposal
distribution to have the same mode as theMGIG. This characterization leads to a far more effective sampler than [32,
33] since the new sampler align the shape of the proposal to the target distribution. Although, theMGIG distribution
has been recently applied to Bayesian models as the prior for the covariance matrix, here, we introduced a novel
application of theMGIG in PMF or BPCA. We showed that the posterior distribution in PMF or BPCA with Gaussian
priors, has theMGIG distribution. This illustration, yields to a new CMC inference algorithm for PMF.
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Table 2: Time Comparison of CMC and MCMC on different datasets. At each step of MCMC, rows of U and V can
be sampled in parallel denoted by MCMC parallel. The running time is reported over 1000 steps for both methods.
Note that the effective number of samples of MCMC is less than 1000 and more steps is required to obtain enough
samples. The number of iterations for convergence of CMC is much less than 1000 (Figure 4).

Dataset Size MCMC (1000 steps, 200 samples) CMC (1000 steps, 1000 samples)
Serial Parallel Serial Parallel

Synthetic 100× 6,000 728s 404s 6s 4s
SNP 120×104,868 12,862s 5,859s 75s 22s
Gene Expression 591× 17,814 3,478s 2,278s 140s 90s
MovieLens 3,233× 6,040 2,350s 2,100s 5,387s 2,058s
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