Lecture Notes in Artificial Intelligence

9896

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada
Yuzuru Tanaka
Hokkaido University, Sapporo, Japan
Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann

DFKI and Saarland University, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/1244

Friedhelm Schwenker · Hazem M. Abbas Neamat El Gayar · Edmondo Trentin (Eds.)

Artificial Neural Networks in Pattern Recognition

7th IAPR TC3 Workshop, ANNPR 2016 Ulm, Germany, September 28–30, 2016 Proceedings

Editors

Friedhelm Schwenker Ulm University

Ulm Germany

Hazem M. Abbas Ain Shams University

Cairo Egypt Neamat El Gayar Cairo University

Giza Egypt

Edmondo Trentin Università di Siena

Siena Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic) Lecture Notes in Artificial Intelligence ISBN 978-3-319-46181-6 ISBN 978-3-319-46182-3 (eBook) DOI 10.1007/978-3-319-46182-3

Library of Congress Control Number: 2016950420

LNCS Sublibrary: SL7 - Artificial Intelligence

© Springer International Publishing AG 2016

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This volume contains the papers presented at the 7th IAPR TC3 Workshop on Artificial Neural Networks in Pattern Recognition (ANNPR 2016), held at Ulm University, Ulm, Germany, during September 28–30, 2016. ANNPR 2016 followed the success of the ANNPR workshops of 2003 (Florence), 2006 (Ulm), 2008 (Paris), 2010 (Cairo), 2012 (Trento), and 2014 (Montreal). The series of ANNPR workshops has served as a major forum for international researchers and practitioners from the communities of pattern recognition and machine learning based on artificial neural networks.

The Program Committee of the ANNPR 2016 workshop selected 25 papers out of 32 for the scientific program, organized in regular oral presentations. The workshop is enriched by two IAPR invited sessions: A Spiking Neural Network for Personalized Modelling of Electrogastogrophy (EGG) given by Prof. Nikola Kasabov, Auckland University of Technology, New Zealand and Learning Sequential Data with the Help of Linear Systems presented by Prof. Alessandro Sperduti, University of Padua, Italy.

This workshop would not have been possible without the help of many people and organizations. First of all, we are grateful to all the authors who submitted their contributions to the workshop. We thank the members of the Program Committee and the additional reviewers for performing the difficult task of selecting the best papers from a large number of high-quality submissions. We hope that readers of this volume will enjoy it and get inspired from its contributions. ANNPR 2016 was supported by the International Association for Pattern Recognition (IAPR), by the IAPR Technical Committee on Neural Networks and Computational Intelligence (TC3), by the University of Ulm, Germany, and the Transregional Collaborative Research Center SFB/TRR 62 Companion-Technology for Cognitive Technical Systems. Special thanks to the people responsible for local organization, in particular to Markus Kächele, Viktor Kessler, Sascha Meudt, and Patrick Thiam. Finally, we wish to express our gratitude to Springer for publishing our workshop proceedings within their LNCS/LNAI series.

July 2016

Friedhelm Schwenker Hazem M. Abbas Neamat El Gayar Edmondo Trentin

Organization

Organization Committee

Friedhelm Schwenker
Hazem M. Abbas
Neamat El Gayar
Edmondo Trentin
Ulm University, Germany
Ain Shams University, Egypt
Cairo University, Egypt
Università di Siena, Italy

Program Committee

Shigeo Abe Kobe University, Japan Amir Atiya Cairo University, Egypt

Erwin M. Bakker Leiden Institute of Advanced Computer Science,

The Netherlands

Mohamed Bayoumi Queen's University, Canada Daniel Braun Ulm University, Germany

Ludovic Denoyer Université Pierre et Marie Curie, France Mohamed M. Gaber Birmingham City University, UK

Eric Granger École de Technologie Supérieure, Canada

Mohamed Abdel Hady Microsoft, USA

Markus Hagenbuchner

Barbara Hammer

Hans A. Kestler

University of Wollongong, Australia
Bielefeld University, Germany

Ulm University, Germany

Jonghwa Kim

University of Augsburg, Germany
University of Florence, Italy
Marco Maggini
University of Siena, Italy
Nadia Mana

University of Siena, Italy
Fondazione Bruno Kessler, Italy

Heiko Neumann Ulm University, Germany Günther Palm Ulm University, Germany Luca Pancioni University of Siena, Italy

Stefan Scherer University of Southern California, USA
Eugene Semenkin Siberian State Aerospace University, Russia
Ah-Chung Tsoi Macau University of Science, SAR China

Zhi-Hua Zhou Nanjing University, China

Local Arrangements

Markus Kächele Viktor Kessler Sascha Meudt Patrick Thiam

Sponsoring Institutions

International Association for Pattern Recognition (IAPR) Technical Committee 3 (TC3) of the IAPR Ulm University, Ulm, Germany Transregional Collaborative Research Center SFB/TRR 62 Companion-Technology for Cognitive Technical Systems, Ulm University and Otto-von-Guericke University Magdeburg, Germany

Contents

Learning Sequential Data with the Help of Linear Systems	3
A Spiking Neural Network for Personalised Modelling of Electrogastrography (EGG)	18
Learning Algorithms and Architectures	
Improving Generalization Abilities of Maximal Average Margin Classifiers Shigeo Abe	29
Finding Small Sets of Random Fourier Features for Shift-Invariant Kernel Approximation	42
Incremental Construction of Low-Dimensional Data Representations	55
Soft-Constrained Nonparametric Density Estimation with Artificial Neural Networks	68
Density Based Clustering via Dominant Sets	80
Co-training with Credal Models	92
Interpretable Classifiers in Precision Medicine: Feature Selection and Multi-class Categorization	105
On the Evaluation of Tensor-Based Representations for Optimum-Path Forest Classification	117
On the Harmony Search Using Quaternions	126

Learning Parameters in Deep Belief Networks Through Firefly Algorithm Gustavo Rosa, João Papa, Kelton Costa, Leandro Passos, Clayton Pereira, and Xin-She Yang	138
Towards Effective Classification of Imbalanced Data with Convolutional Neural Networks	150
On CPU Performance Optimization of Restricted Boltzmann Machine and Convolutional RBM	163
Comparing Incremental Learning Strategies for Convolutional Neural Networks	175
Approximation of Graph Edit Distance by Means of a Utility Matrix	185
Applications	
Time Series Classification in Reservoir- and Model-Space: A Comparison Witali Aswolinskiy, René Felix Reinhart, and Jochen Steil	197
Objectness Scoring and Detection Proposals in Forward-Looking Sonar Images with Convolutional Neural Networks	209
Background Categorization for Automatic Animal Detection in Aerial Videos Using Neural Networks	220
Predictive Segmentation Using Multichannel Neural Networks in Arabic OCR System	233
Quad-Tree Based Image Segmentation and Feature Extraction to Recognize Online Handwritten Bangla Characters	246
A Hybrid Recurrent Neural Network/Dynamic Probabilistic Graphical Model Predictor of the Disulfide Bonding State of Cysteines from the Primary Structure of Proteins	257

ΧI

Contents