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Abstract. Although Graphics Processing Units (GPUs) seem to cur-
rently be the best platform to train machine learning models, most
research laboratories are still only equipped with standard CPU sys-
tems. In this paper, we investigate multiple techniques to speedup the
training of Restricted Boltzmann Machine (RBM) models and Convolu-
tional RBM (CRBM) models on CPU with the Contrastive Divergence
(CD) algorithm. Experimentally, we show that the proposed techniques
can reduce the training time by up to 30 times for RBM and up to 12
times for CRBM, on a data set of handwritten digits.

1 Introduction

Although most of the recent research has shown that learning on Graphics
Processing Units (GPUs) is generally more efficient than training on Central
Processing Units (CPUs) [13,14,20], especially for Convolutional Neural Net-
works (CNNs) [7,9,16], GPUs are not accessible everywhere. Some researchers
may not have access to them and some laboratories may not want to upgrade
their CPU clusters to GPU clusters. Therefore, it remains important to be able
to train neural networks in reasonable time on machines equipped only with
CPUs.

Restricted Boltzmann Machines (RBMs) are old models [19], that resurged
recently to initialize the weights of an Artificial Neural Network (ANN) [4] or
to extract features from samples [2]. Later on, the model was extended with the
Convolutional RBM (CRBM) [11]. Performance optimization of these models
was investigated on GPUs only [8,15].

In the present paper, we present several techniques to reduce the training
time of RBM and CRBM models. Techniques such as CPU vectorization, usage
of BLAS kernels and reduction of convolutions to other functions are explored.
To evaluate the performance, several networks are trained on 60,000 images of
handwritten digits from the MNIST data set.

The rest of this paper is organized as follows. The system setup for the
experiments is presented in Sect. 2. Section 3 presents techniques to speed up an
RBM while optimizations for CRBM are detailed in Sect. 4. Section 5 covers the
training of a DBN. Finally, conclusions are drawn in Sect. 6.
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2 System Setup

The experiments have been computed on a Gentoo Linux machine with 12Go
of RAM running an Intel® Core " 17-2600 with a frequency of 3.40 GHz. The
tests were written in C++ using our own Deep Learning Library (DLL)! and
Expression Templates Library (ETL)? libraries. The programs were compiled
with GNU Compiler Collection (GCC) 4.9. Vector operations are vectorized
using AVX. Intel® Math Kernel Library (MKL) is used as the BLAS implemen-
tation.

The experiments are conducted on the MNIST data set [10]. It contains
grayscale images of handwritten digits, normalized to a size of 28 x 28 pixels.
Each experiment is done on the 60,000 training images for 5 epochs and the
average time per epoch is used as the final result.

3 Restricted Boltzmann Machine

A Restricted Boltzmann Machine (RBM) [19] is a generative stochastic Arti-
ficial Neural Network (ANN), developed to learn the probability distribution
of some input. Training an RBM using the algorithm for general Boltzmann
Machines [3] is very slow. Hinton et al. proposed a new technique, Contrastive
Divergence (CD) [4], depicted in Fig. 1. It is quite similar to the Stochastic Gra-
dient Descent method, used to train regular ANNs. It approximates the Log-
Likelihood gradients by minimizing the reconstruction error, thus training the
model into an autoencoder. The algorithm performs a certain number of steps
of Gibbs sampling (CD-n). When the RBM is used as a feature extractor or as
a way of pretraining a Deep Belief Network [6], CD-1 is generally sufficient [5].

The original RBM model was designed with binary visible and binary hidden
units (also called a Bernoulli RBM). Several different types of units were since
developed (for instance Gaussian, ReLu or Softmax) [5]. This research focuses
on binary units, but the conclusions stand for all general types of units. Indeed,
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Fig. 1. Graphical representation of the contrastive divergence algorithm. The algorithm
CD-k stops at t =k. Each iteration performs a full Gibbs step.
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only the activation functions would change. The probability activations of visible
and hidden units can be computed as follows:

p(h; = 1v) = o(c; + ZviWi,j> (1)

n
pvi = 1lh) = (b + > h;Wi ;) (2)
J
The states of the units are obtained by sampling the activation probabilities.
For binary units, Bernoulli sampling is performed to obtain the states:

3)

1 if p; > Unif(0, 1)
Si =
/ 0 otherwise

(4)

1 if p; > Unif(0, 1)
S; =
' 0 otherwise

From an implementation point of view, an RBM is made of a vector v of m
visible units, a vector h of n hidden units, a matrix W of weights connecting the
visible and the hidden units, a vector b of m visible biases and a vector ¢ of n
hidden biases. In practice, the weights are represented as single-precision floating
point numbers rather than double-precision. Indeed, some single-precision com-
putations can be as much as twice faster than their double-precision counter-
parts. Moreover, the precision is generally more than sufficient for CD training.

Algorithm 1. Standard CD-1 algorithm (one sample)
vo = training sample
ho = sample hidden activations from wvg
v1 = sample visible activations from hg
h1 = sample hidden activations from v
Wpos = ® ho
Wheg =11 ® hy
VW = €(Wpos — Wheg)
Vb = e(vo — v1)
Ve = e(h() - h1)

Algorithm 1 describes the CD-1 algorithm for one sample. The same proce-
dure is done for each sample of the data set and is repeated for as many epochs as
necessary. In practice, it is important to note that the hidden activations should
be computed directly from the visible activation probabilities rather than from
the states [5]. Therefore, it is never necessary to compute the states of the visible
units during training. Moreover, the last update of the hidden unit is only used
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to compute the positive gradients, in which case the probabilities are used rather
than the states. Therefore, it is not necessary to sample the states of the hidden
units for the last update.

In the algorithm and activation formulas, several computation routines
are well-known and can be optimized. The Basic Linear Algebra Subprogams
(BLAS) are a collection of small and highly optimized linear algebra routines.
In the activation formulas, the sums are simply vector-matrix multiplication
and matrix-vector multiplication. They can be implemented using the SGEMV
operation from BLAS. The outer products to compute the positive and negative
gradients can be implemented using the SGER routine. Finally, the computa-
tion of the visible and hidden biases gradients can be done with the SAXPY
operation. For evaluation, the following networks are trained:

— A: 784 visible units, 500 hidden units
B: 500 visible units, 500 hidden units
— C: 500 visible units, 2000 hidden units
D: 2000 visible units, 10 hidden units

Table 1. Training time for an epoch of RBM training, in seconds. The speedup is the
improvement gained by using BLAS kernels for linear algebra operations.

A B C D
Base 161.99 | 47.00 | 167.20 | 70.78
Base + BLAS | 141.91|43.03 | 114.18 | 36.12
Speedup 1.14| 1.09 1.46| 1.95

Table 1 shows the time, in seconds, necessary to train an epoch of the net-
works. Even if the computations are simple, BLAS operations can bring an
important speedup to CD training, compared to standard implementations of
these operations. For the tested networks, the speedup ranges from 1.09 to 1.95.
The MKL BLAS implementation is highly tuned for Intel processor and each
routine is especially optimized for cache and maximum throughput.

Experimentally, we find that more than 75% of the training time is spent
inside the BLAS library, 8 % in the sigmoid function and around 7 % in random
number generation. The sigmoid time could be optimized further by using an
approximation of the sigmoid function or a vectorized version of the exponential
function. Since this represents only a fraction of the total time, it would only
slightly improve the general training time.

3.1 Mini-Batch Training

In practice, CD is rarely performed one element at a time, but rather on a
mini-batch. The data set is split into several mini-batches of the same size. The
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Algorithm 2. Mini-batch CD-1 algorithm (one mini-batch)

for all vy € mini-batch do
ho = sample hidden activations from vg
v1 = sample visible activations from hg
h1 = sample hidden activations from v
Wpos ; Vo ® hO
Wheg Lo om

end for

VW = %(ans - Wneg)
Vb = %(1}0 — ’Ul)

VC = %(ho — hl)

gradients are computed for a complete batch before the weights are updated.
Algorithm 2 shows the updated version of CD-1 for mini-batch training.

In practice, this could be implemented by accumulating the gradients element
after element. However, it is better to compute the gradients independently for
each element of the mini-batch. This needs more memory to store the intermedi-
ary results for the complete mini-batch. However, this is only for a small portion
of the data set and has the advantage of allowing higher level optimizations of the
loop body. Each iteration being completely independent, this could seem like an
excellent candidate for parallelization. However, this is not the case. Depending
on the dimensions of the matrices, a small speedup can be obtained by computing
each iteration in parallel before aggregating the results sequentially. However,
since most of the time will be spent in memory-bound operations (matrix-vector
multiplication and outer product), there won’t be enough bandwidth for many
cores to process the data in parallel. A better optimization is to compute the
activations and states of the units for a complete mini-batch at once instead of
one sample at time. If we consider h as a [B,n] matrix and v as a [B, m] matrix,
they can be computed directly as follows?:

h = o(repmat(c, B) + v« W) (5)
v = o(repmat(b, B) + (W x hT)T) (6)

This has the great advantage of performing a single large matrix-matrix multi-
plication instead of multiple small vector-matrix multiplication. In practice, this is
much more efficient. In that case, the SGEMM operation of the BLAS library is used
to compute the activation probabilities. Moreover, if the matrices are big enough,
it is also possible to use a parallel version of the matrix-matrix multiplication algo-
rithm. Figure 2 shows the time necessary to train each network with different batch
sizes. It compares the base version with a hand-crafted matrix multiplication and
the version using BLAS. The parallel BLAS version is also included in the results.
On average the BLAS version is twice faster than the standard version and the
parallel version of BLAS reduces the time by another factor of two.

3 repmat vertically stacks the array B times.
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Fig. 2. Mini-batch performance

Generally, increasing the mini-batch size reduces the training time. However,
due to the small output dimension of the network D, the possible speedup is
greatly reduced and larger mini-batch do not provide any substantial improve-
ments. However, a too large mini-batch size may have negative impact on the
classification performance of the network since many gradients will be averaged.
On the other hand, a small batch size is generally leading to a more stable con-
vergence. The batch size must be chosen as a trade-off between training time and
classification performance. Moreover, a large mini-batch also increases the need
for the inputs to be shuffled prior to each epoch. For MNIST, mini-batch size of
up to 128 samples are still reasonable, but higher mini-batch are increasing the

Table 2. Final results for standard RBM training, in seconds.

A B C D
Base 161.99 | 47.00 | 167.20 | 70.78

Mini-Batch + BLAS + Threads 5.35| 3.94| 14.57| 4.39
Speedup 30.27111.92| 11.47|16.12
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overall training time, by decreasing the learning each epoch does. To conclude
this section, Table 2 compares the basic implementation and the final optimized
version with mini-batch (128 samples) and a threaded BLAS library. Depending
on the network, the optimized version is between 11 and 30 times faster.

4 Convolutional Restricted Boltzmann Machine

The original RBM model can be extended to the Convolutional Restricted
Boltzmann Machine (CRBM) [11]. The visible and hidden layers are connected
together by convolution, allowing the model to learn features shared among
all locations of the input, thus improving translation invariance of the model.
While this research focuses on two-dimensional CRBM, one-dimensional CRBM
are also possible, for instance for audio [12] and the model can be adapted for
three-dimensional inputs. Only square inputs and filters are described here for
the sake of simplicity, but the model is able to handle rectangular inputs and
filters.

A CRBM model has a matrix V' of C' x Ny x Ny, visible units. It has K groups
of Ng x Ny hidden units. There are C' x K convolutional filters of dimension
Nw x Ny (by convolutional properties Ny £ Ny — Ny + 1). There is a single
visible bias ¢ and a vector b of K hidden biases. The notation e, is used to denote
a valid convolution and ey is for a full convolution. A tilde over a matrix (fl)
is used to indicate that the matrix is flipped horizontally and vertically. For a
network with binary units, the probability activation are computed as follows:

P(hf:] = 1|v(:) = U((Z ch ®y Uc)ij + bk) (7)
Pk, =1h) = o((>_W*es h¥)i; +¢) (8)
k

A CRBM is trained similarly to an RBM, with an adapted version of formulas
to compute the positive and negative gradients:

WE? = o) o, I} 9)
WS = o} e, B} (10)

C

Training a CRBM requires a large number of convolutions for each epoch.
Indeed, for each sample, there would be 2K C valid convolutions for the gra-
dients, 2K C valid convolutions to compute the hidden activation probabilities
(done twice in CD) and KC full convolutions for the visible units. Contrary
to matrix multiplication, there is no general convolution reference implementa-
tion. The first optimization that can be applied is to vectorize the convolution
implementations. Modern processors are able to process several floating point
operations in one instruction. For instance, AVX instructions process 8 floats
at once, while SSE instructions process 4 floats once. While modern compilers
are able to vectorize simple code, vectorizing complex program must be done
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by hand. We vectorized the inner loop of the convolutions, with AVX for large
kernels and SSE for small kernels (smaller than 8 pixels). For evaluation, the
following networks are trained:

— A: 1 x 28 x 28 visible units, 40 9 x 9 filters
B: 40 x 20 x 20 visible units, 40 5 x 5 filters
— C: 40 x 16 x 16 visible units, 96 5 x 5 filters
— D: 96 x 12 x 12 visible units, 8 5 x 5 filters

Table 3 shows the time necessary to train the different networks and the
obtained speedup. Due to the small images and filters in the measured networks,
the speedups are only very interesting for the first layer of the network, with
larger kernel and images. Moreover, the two-dimensional property of the algo-
rithms adds overhead to the vectorized version, reducing the possible speedups.

Table 3. Results for Convolutional RBM training, in seconds.

A B C D
Base 380.37 | 3013.82 | 3947.46 | 338.16
Base + Vectorization | 198.21 | 2174.66 | 3358.76 | 295.83
Speedup 1.91 1.38 1.17 1.14

When training the model using mini-batch, it becomes interesting to compute
the gradients of each sample concurrently. For convolutions, there is no simple
technique to compute the gradients of a complete batch, therefore parallelization
inside batches is the best option. Figure 3 shows the results with different number
of threads, with a mini-batch of 64. The performance increases almost linearly
with the number of threads until four threads are used and then only slightly
improves with more threads, exhibiting memory-bound computation behaviour.
Since threads on the same core share the same cache, having more threads than
cores does not improve the performance substantially in this case.

wfa T e ExENg
3,000
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Fig. 3. Parallel performance
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4.1 Valid Convolution

As seen previously, training a CRBM requires four times more valid convolutions
than full convolutions. Thus, it is extremely important to make it as fast as
possible. By rearranging the image to be convolved, it is possible to reduce a
valid convolution to a vector-matrix multiplication [18]. The general algorithm
is presented in Algorithm 3.

Algorithm 3. Convolution C' = [ e, K with Matrix Multiplication
W' = reshape(W, [1, k1k2))
I' = matrix (k1 k2, cic2)
I' = im2col(K, [k1k2])
C=W'xTI

However, because of the memory-inefficient im2col operation, this is experi-
mentally slower than the vectorized version. Nevertheless, since the same image
is convolved with K filters, the overhead of im2col can be greatly mitigated,
by doing it only once for K convolutions. Moreover, the multiple vector-matrix
operations become a single matrix-matrix multiplication. Finally, since the com-
putation of the activation probabilities and the gradients operates on flipped
weights and that flipping is an involution, the computation can be done directly
on the original weights, saving several flipping operations. Table4 presents the
results obtained when using this optimization for all the valid convolutions on
the parallel version. On average, the training time is divided by two.

Experimentally, the difference in precision is found to be very small between
the different versions and the reference. On average, the average difference
between the vectorized version and the reference is in the order of 1e=® % and in
the order of 5e7® % for the reduction with matrix multiplication. No difference
has been observed when training a CRBM with different versions of the valid
convolution. This difference may vary between different BLAS implementations.

Table 4. Results for Convolutional RBM training, in seconds.

A B C D
Parallel 46.69 | 494.52 | 756.70 | 68.47
Parallel + Reduction | 28.45 | 241.79 | 336.56 | 40.12
Speedup 1.64 2.04 2.241 1.70

4.2 Full Convolution

While there are no standard implementation of the full convolution, it is possible
to reduce it to a another algorithm for which there exists efficient implementa-
tions. Using the convolution theorem, a full convolution can be reduced to a
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Fourier transform. Indeed, the convolution in the time domain is equal to the
pointwise multiplication in the frequency domain [1]. Since the image and the
kernel may not be of the same size, it is necessary to pad them with zeroes before
computing their transforms. Algorithm 4 shows the steps used to compute a full
convolution using a Fourier transform.

Algorithm 4. Convolution C' = I *; K with Fourier Transform

I' = pad(I)

K’ = pad(K)
C'=FI")-FI')
c=F1C"

In practice, this can be implemented using the Fast Fourier Transform (FFT).
There exists some standard and very efficient implementations of the FFT. While
it is not a part of BLAS, the MKL library provides an FFT implementation.

Unfortunately, this is not always faster than a properly vectorized convolu-
tion. Table5 shows the performance for different image and kernel sizes. The
FFT convolution is around 3 times slower for an 16 x 16 image and a kernel of
5 x 5, while it is almost 12 times faster for an image of 256 x 256 and a kernel of
31 x 31. This shows that using an FFT algorithm to perform the full convolution
can brings very large speedup to the training of a CRBM. However, it is only
really interesting for large models. Another optimization that can be done when
computing the full convolution by FFT is to precompute the Fourier transforms
of the images. Indeed, each image will be convolved several times with different
kernels, therefore only one transform per image is necessary. On the evaluated
networks, this does not bring any substantial performance improvements. Only
the network A has big enough images and kernels to profit from this, but this
only result in a speedup of an epoch by less than 1%.

Again, the difference in precision is found to be very small. On average,
the average difference for the vectorized version is found to be in the order of
le=*% and in the order of 3¢ ~®% for the FFT reduction. No difference has been
observed when training a CRBM with different versions of the full convolution.
The difference may vary between different FFT implementations.

Table 5. Performance of full convolution by FFT, in milliseconds

Image 12 x 12{16 x 16{16 x 16|28 x 28|50 x 50|128 x 128|128 x 128|256 x 256
Kernel 5x5 5x5 [9x9 |9 x 9 [17x1717x17 |31 x31 [31x31
Vectorized| 4.98 | 8.16 |20.89 |49.72 367.78 |2010 7139 30787
FFT 11.59 |24.49 [25.8 |46.38 [122.43 | 368.83 |1700 2598
Speedup | 0.42 | 0.33 | 0.83 | 1.07 3.00 5.45 4.19 11.85
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5 Deep Belief Network

A Deep Belief Network (DBN) is a network formed by stacking RBMs on top of
each other. It is pretrained by training each layer with Contrastive Divergence.
Once the first layer has been trained, its activation probabilities are computed
for each input sample and these values are taken as the input of the next layer,
and so on until the last layer of the network. A Convolutional DBN (CDBN) is
similar, except that it stacks CRBMs.

Since pretraining a DBN consists in training RBMs with CD, the same opti-
mizations discussed in previous sections apply. If there is enough memory, it
is important to keep the entire data set in memory as well as the intermedi-
ate results (the activation probabilities of the previous layer) during training to
maximize the performance. When this is not possible, the best course of action
is to keep a multiple of the mini-batch size of samples in memory (and their
intermediate output) for training. Ideally, computing the activation probabili-
ties of the previous layer should be done in a separate thread so that CD always
has data ready for training.

If the network is to be used for classification, it can then be fine-tuned using
standard algorithms like for instance Stochastic Gradient Descent, Conjugate
Gradient or Limited-Memory BFGS. Performance of these algorithms is out of
the scope of this paper and has already been studied [17].

6 Conclusion and Future Work

Several techniques were presented to speedup training of RBM and CRBM mod-
els, on a single-CPU system. By using these techniques, RBM’s training time
has been reduced by up to 30 times and CRBM’s training time has been reduced
by up to 12 times. This demonstrates that even on CPU, many techniques can
be used to substantially speedup the training of RBM models and train large
models within reasonable time.

Future work could go in several directions. Combining several full convolu-
tions together and using the FFT reduction could reduce its overhead and allow
better performance even for small kernels. The performance of the vectorized
convolution versions can also be improved further by vectorizing the convolu-
tion at the image level rather than just at the kernel level. Finally, once the large
operations are fully optimized, operations such as sigmoid or Bernoulli sampling
could also be considered for optimization.
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