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Exploring a mixed representation for encoding
Temporal Coherence

Jon Parkinson, Ubai Sandouk, and Ke Chen

School of Computer Science, University of Manchester
Oxford Road, Manchester, M13 9PL, UK

{jon.parkinson,ubai.sandouk,ke.chen}@manchester.ac.uk

Abstract. Guiding representation learning towards temporally stable
features improves object identity encoding from video. Existing models
have applied temporal coherence uniformly over all features based on
the assumption that optimal object identity encoding only requires tem-
porally stable components. We explore the effects of mixing temporally
coherent invariant features alongside variable features in a single repre-
sentation. Applying temporal coherence to different proportions of avail-
able features, we introduce a mixed representation autoencoder. Trained
on several datasets, model outputs were passed to an object classification
task to compare performance. Whilst the inclusion of temporal coherence
improved object identity recognition in all cases, the majority of tests
favoured a mixed representation.

Keywords: Representation Learning, Temporal Coherence, Object Recog-
nition

1 Introduction

Real world objects likely to appear in video exhibit a natural permanence over
time, a property known as temporal coherence. If an object is present in a given
frame, whilst it might undergo small changes in position and pose, it is likely
the same object will also appear in neighbouring frames [1]. By guiding rep-
resentation learning from video towards the discovery of temporally coherent
structure present in the raw image data, the capture of variance associated with
the identity of individual objects is improved [2][3][4].

Existing models applying temporal coherence regularization in unsupervised
representation learning have tended to apply the rule uniformly across all avail-
able features. This is based on the assumption that as the identity of objects
remains temporally coherent, encoding this information in an abstract represen-
tation only requires the discovery of input structure exhibiting similar properties.

To investigate whether this approach improves object identity encoding, we
explore the effects of discovering a mixture of temporally coherent and variable
features, all contained in a single representation. Section 3 introduces a mixed
autoencoder, based on a commonly used method for discovering the important
variance underlying visual data, the sparse autoencoder [5]. Sparse autoencoders
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have previously been adapted to encode temporal coherence [6], with the extra
regularization enforced across every feature. We trained a range of models on
three video datasets, applying temporal coherence regularisation over different
sized subsets of the total available features. We describe our experimental process
in Section 4.

Once trained, labelled examples were passed through each of the various
models, providing the input to a classifier trained to recognise object identity.
Temporally coherent representations have generally been used for encoding ob-
ject identity, so comparing the performance boost each model provides a su-
pervised classifier is an ideal test bed to evaluate performance. Our results are
presented in Section 4.3.

The best classification accuracy from the supervised task came from a rep-
resentation encoding temporal coherence in every test. Interestingly however,
the majority of cases favoured our mixed representation over the all-invariant
alternatives. A discussion of our results is provided in Section 5. This section is
followed by our final conclusions.

2 Background

There are generally two methods for discovering temporally coherent structure
from video. The first discovers variance changing as smoothly [7], also described
as slowly [8], as possible over time. This approach is used in Slow Feature Anal-
ysis (SFA). The whole video dataset is analysed, with the slowest changing vari-
ance extracted on the assumption this encodes important properties of an input,
whilst making sure the constant trivial solution is avoided. This approach has
had considerable impact, producing behaviour similar to cells present in early
areas of the visual cortex [9], and discovering features encoding object position
and pose alongside identity [10]. SFA does suffer from drawbacks however. For
complex problems, a non-linear expansion of an input is required, the details of
which are not known in advance. The two instances of SFA on possibly expanded
data can also render the algorithm computationally prohibitive.

The alternative approach manipulates the likelihood that an object present
in a single frame is likely to appear in neighbouring frames. Temporally coher-
ent structure is discovered by constraining network activations for each pair of
neighbouring frames to be as similar as possible on the assumption of their likely
semantic similarity. This method has improved object identity performance on
the benchmark COIL100 dataset [11], applying the temporal coherence to the
output of a Convolutional Neural Network [12], alongside sparsity in a deep
invariant architecture [13] and during pre-training and network output regular-
ization [14]. An architecture relatively similar in nature to ours is that used
by Goroshin et al. [6]. Temporal coherence is applied to sparse autoencoders,
as part of a convolutional architecture. Unlike our approach, regularization is
applied across every feature.

To be the best of our knowledge, there is only one implementation of temporal
coherence where regularization is not applied uniformly across all features. The
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Temporal Product Network (TPN) learns two sets of features simultaneously, one
encoding temporal coherence, the other discovering variable features [15]. This
work differs from ours as the two sets of features are seeking different aspects
from the input. The invariant features are designed to encode object identity,
with the variable set discovering object position. We are learning the two types
of features for the single purpose of object identity encoding.

3 Model Description

This section provides an overview of the models we have tested, with a full
description of the network cost function to be minimized during training. For
clarity, as features encoded with temporal coherence respond uniformly to small
changes in an input, they are referred to as invariant. Their temporally uncon-
strained counterparts are denoted as variable features. A model with temporal
coherence applied across all features will be described as all-invariant, with its
opposite, a plain sparse autoencoder known as invariant-free. Versions with a
mixture of invariant and variable features are called mixed-representation.

3.1 Overview

To investigate the effects of mixing invariant and variable features together in a
single representation, we required a model capable of extracting good quality fea-
tures from a visual dataset, in an unsupervised manner. The sparse autoencoder
[5] is a well studied model fitting these requirements. An input layer is passed
to a fully connected hidden layer, which is in turn passed to a fully connected
output layer of the same dimensionality as the input. During training, network
weights are adjusted via gradient descent to reconstruct the input as closely as
possible at the output layer. Reconstruction of each input during training guides
the representation to retain as much information present in the input as possible.
This has the added benefit of avoiding the trivial constant solution, which is es-
sential for temporal coherence to be applied successfully. Sparsity regularization
forces a dictionary of distinct commonly occurring features to form in the hidden
layer. Feature learning by this method is known to work well in unsupervised
vision problems [16]. Once training is complete, the output layer is removed,
with the new representation formed by the activations of all units in the hidden
layer.

Whilst sparse autoencoders have previously been adapted to encode tempo-
ral coherence, our investigation mixes invariant and variable features in a single
representation. Similar to existing methods, temporal coherence is applied by
minimizing the difference in feature vectors between consecutive frames for the
neurons encoding invariance. Instead of applying temporal coherence across all
hidden layer neurons, we only apply the regularization to a variable size sub-
set of the total available units. Remaining neurons are free to discover vari-
able information components. Sparsity is applied across the entire hidden layer,
making no distinction between invariant and variable neurons. To compare the
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mixed representation with existing architectures, we also trained all-invariant
and invariant-free versions of our model. A diagram of the network is shown in
Figure 1.

Fig. 1. Diagram of autoencoder architecture. An input xt of dimensionality M is passed
to a hidden layer, with dimensionality N (in this diagram, M = 4 and N = 5). The
hidden layer zt connects to an output of the same dimension as the input. Temporal
coherence regularization is applied across the invariant portion of the hidden layer ztInv

of dimensionality P ≤ N . In this case, P = 2. If P = 0, the network does not encode
temporal coherence, when P = N the representation is all-invariant.

3.2 Cost function

An autoencoder is a fully connected network with two components, the encoder
and decoder modules. For time-series data, an input at time t is given as xt ∈
RM , out of a total T frames. Inputs are passed to the autoencoder’s hidden layer
of neurons via the encoder section. Hidden layer neuron activations zt ∈ RN

are calculated using an affine transformation via the encoder weights WE ∈
RN×M and bias bE ∈ RN, followed by a suitable non-linearity f() to give zt =
f(WExt + bE). Similarly, the decoder section output activation values x̂t ∈ RM

are calculated using a similar process via the decoder weights WD ∈ RM×N and
bias bD ∈ RM to produce x̂t = f(WDzt + bD). For the non-linearity, we chose
the commonly used sigmoidal activation function [17].

The first term in the model cost function is the reconstruction term. By
constraining the difference between network input and output to be as small as
possible, information loss is avoided. As mentioned previously, this ensures the
trivial constant solution is avoided. The reconstruction term LRec is given as
follows, with θ representing the encoder and decoder weights and biases:

LRec(x
t, θ) =

T∑
t=1

‖xt − x̂t‖2 (1)
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We have imposed sparsity in the autoencoder using Kullback-Leibler (KL)
Divergence across the hidden layer activations. KL-Divergence is an approxima-
tion to L1-regularization known to perform well on vision problems [18]. During
training, the average activation of each hidden layer neuron is calculated over
all training examples as ρ̂n = 1

T

∑T
t z

t
n. The sigmoidal activation function con-

strains active and inactive neurons to generally have values very close to one and
zero respectively. This characteristic enables the KL-Divergence term to enforce
sparsity by constraining the average activation of each hidden layer neuron to
be as close to a desired value ρ. The sparsity term LSpar is calculated as:

LSpar(xt, θ) =

N∑
n=1

KL(ρ||ρ̂n) =

N∑
n=1

ρ log
ρ

ρ̂n
+ (1− ρ) log

1− ρ
1− ρ̂n

(2)

The invariant term LInv regularises hidden layer neurons with temporal co-
herence. The term is applied to the invariant subset of the total hidden layer
neurons zInv ∈ RP , where P ≤ N is an adjustable parameter setting the number
of invariant features. When P = 0 the network is an invariance-free sparse au-
toencoder with no additional temporal cost. When P = N , temporal coherence
is encoded in every hidden layer neuron, similar to the architecture described
in [6]. With values inbetween, a mixed representation of invariant and variable
features forms. Remaining neurons in the hidden layer are not regularized with
temporal coherence, and make up the variable features. It is important to note
that the invariant and variable neurons combine to make a single representa-
tion. Temporal coherence is enforced in the invariant neurons by minimizing the
difference in hidden layer activations for every pair of adjacent frames in the
training set:

LInv(xt, θ) =

T−1∑
t=1

‖ztInv − zt+1
Inv‖

2 (3)

Putting these components together, the complete cost function to be mini-
mized during training is given as:

L(xt, θ) =
T∑

t=1

‖xt − x̂t‖2 + α

T−1∑
t=1

‖ztInv − zt+1
Inv‖

2 + β

N∑
n=1

KL(ρ||ρ̂n) (4)

where the α and β values are hyperparameters used to control the influence of
the temporal coherence and sparsity terms respectively. Similar to when P = 0,
when the α parameter is set to zero, the network is a sparse autoencoder, with
no temporal coherence regularization.
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4 Evaluation of our models

4.1 Datasets

To evaluate the representation learning capacity of our different models, we
required datasets consisting of distinct objects moving through a visual field.
To keep things simple, we restricted our tests to videos of single objects moving
across a uniform blank background. Whilst the unsupervised architecture does
not require labelled data, it was necessary that datasets contained object identity
labels to allow the training of a supervised classifier acting as a performance
metric.

Toy-data Shapes Dataset Initial proof-of-concept work was carried out on
a toy dataset. The video consists of a sequence of five simple objects moving
through a 12 × 12 pixel visual field (see figure 2). For each sequence, a shape
is positioned at an edge of the visual field, moving in a perpendicular direction,
without changing direction or speed until it hits the opposite side. At this point,
the object moves one pixel in a perpendicular direction to its previous motion
before making the journey back across the visual field. This process is repeated
until an object has traversed the visual field in each of the four cardinal direc-
tions. Once an object has exhausted its motion, the next shape in the dataset
appears and the sequence starts again until all five shapes have appeared. Ob-
ject speed remains constant, and there is no rotation. Three sequences from this
dataset are shown in figure 3.

Fig. 2. The five simple objects used in the toy-data shapes dataset

COIL20-variant Dataset COIL20 is a well known benchmark dataset for
visual problems [11]. The dataset is comprised of 20 different labelled objects, in
sequences of 72 images each. Each sequence shows an object rotating on its axis
through 360◦, in 5◦ increments. Whilst not strictly a video, the images can be
shown in sequence to give a good approximation. As we wanted objects to be able
to move around the visual field, COIL20 in its existing form was not appropriate,
so we manipulated the dataset for our purposes. COIL20 was reduced from its
original 128 × 128 pixel size down to 24 × 24 images. For every shape, each 72
image sequence was placed in turn over a blank 48× 48 pixel background, with



Exploring a mixed representation for encoding Temporal Coherence 7

Fig. 3. Three sequences from the toy-data shapes dataset

the positioning and movement for each object directed by a random generator.
There is an 85% chance an object carries on moving in the same direction as
the previous frame, with reduced probability direction might change by either
±22.5◦, 45◦ or 67.5◦. Once an image reached an edge of the visual field, it was
sent back in the direction it arrived. This process was repeated 20 times for each
object producing 1440 examples for each different shape. Three sequences from
our COIL20-variant dataset are shown in figure 4.

Fig. 4. Three 12 frame example sequences from the COIL20-variant dataset

Fish Dataset For our final test, we wanted a dataset with increased image,
motion and rotation complexity. In their 2011 paper describing object recogni-
tion and pose detection using SFA, Franzius, Wilbert and Wiskott used a dataset
consisting of 3D models of fish. The fish rotate and move with variable speed and
direction [10]. After getting in touch with the authors, they kindly provided us
the code with which to create their fish dataset. The parameters used to control
the motion of the artificial fish are user provided. We kept to the same settings
described in the SFA paper, with a couple of exceptions. Firstly, we removed the
chance a fish might randomly switch to a different type of fish between frames.
This was done to ensure the dataset contained the same number of examples for
each fish. Video sequences were created with 2000 frames of each type of fish.
Secondly, to reduce the time taken to train our networks, we only used the first
15 out of the 25 available types of fish in our dataset. Images were resized from
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155 x 155 pixels to 48 x 48 pixels. Three example sequences of frames from this
dataset can be seen in figure 5.

Fig. 5. Three 8 frame sequences from the fish dataset.

4.2 Experimental Setting

Unsupervised Architecture Our experiments proceeded as follows. For each
dataset, the number of hidden layer neurons in the unsupervised architecture
was fixed by training networks with an increasing number of neurons. We set
the number of hidden layer neurons to be the network size at which the recon-
struction term ceased reducing. The number of hidden layer units trained on
the shapes dataset was fixed at 120 neurons, COIL20-variant at 400, and the
fish dataset at 600. For each experiment, a range of invariant to variable feature
splits for the mixed representations were picked. For the shapes dataset, five
different models were chosen, with the number of invariant neurons increasing
from 0 to 120 in increments of 30. All remaining neurons were trained without
the invariant term applied. For the COIL20-variant and fish dataset, increments
were set at 100 neurons, giving 5 and 7 different models respectively.

Due to the relatively small number of examples available in the shapes
dataset, 2200 in total, the unsupervised architecture was trained using all avail-
able examples. As the COIL20-variant and fish dataset contain significantly more
examples, we reduced the training set to half the available examples. To preserve
the temporal integrity of the datasets, examples were split up into runs of 50
frames, each run containing image sequences of a single object. For each test,
half the available runs for each object were picked at random for the training
set, with remaining examples providing a validation set.

Unsupervised training of each model was carried by minimizing the cost
function by gradient descent. Two measures were applied to determine training
stopping conditions. At increments of 100 epochs, training was halted and the
overall cost function and its individual terms were evaluated on the validation set.
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During each pause, a classifier was also trained to predict object identity using
a labelled training set, recording classification accuracy, also on the validation
set. Whilst we used a supervised measure for helping determine when to halt
training, we did not apply any supervised fine-tuning to guide network weights.

Suitable values for the α and β cost function hyperparameters were chosen
by performing a grid search and observing the evolution of the invariant and
sparsity terms in the cost function as training progressed.

Supervised Classifier Temporal coherence is generally used as a method for
encoding input variance associated with object identity. For this reason, we
passed labelled outputs from each of our various models to a supervised classi-
fier trained to recognise the individual shapes present in the videos. Although
we are using a supervised metric to test the performance of our unsupervised
architecture, the labelled data has no effect on the representations learned by
the various autoencoders.

For the supervised part of our experiments, we also wanted to observe whether
the quantity of labelled data made available to the object identity classification
task influenced which of the mixed representations produced the best results.
For the shapes dataset, we trained a classifier to recognise object identity using
one in every two, five and twenty labelled examples from the total available data.
For the COIL20-variant and fish datasets, six different classifiers were trained,
picking either every second, third, fifth, tenth, twentieth or fiftieth examples. All
remaining examples provided the testing set.

4.3 Results

The classification accuracy results from each dataset are presented in figures 6,
7 and 8. In each figure, the groups of bars indicate results conducted with the
same number of classifier training examples together, with the number indicated
on the x-axis. The bars making up each group indicate an increasing number
of invariant neurons as a percentage of total neurons available. The results dis-
played in each figure depict the highest classification accuracy recorded for that
particular setting, over any of the cost function hyperparameter values tested.
Each test was run four times. The results displayed in each graph represent av-
erage classification accuracy on a testing set, with error bars corresponding to
one standard deviation.

The most obvious thing standing out from each figure is the reduction in
classification accuracy as the amount of labelled data is reduced. As the quan-
tity of training data is reduced, a classifier has less information with which to
make its predictions, which correspondingly suffer. More significantly, it is a rep-
resentation encoding temporal coherence is some shape or form that produces
the highest classification accuracy every time. Across every test, regularizing for
temporal coherence has improved the capture of information related to object
identity.

From the point of view of our experiments, the most important result is the
performance observed from the mixed representations. For each dataset, when
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the quantity of labelled data passed to the classifier is at its largest, a mixed
representation always produced the highest classification accuracy. In the case
of our shapes and COIL20-variant datasets, optimal performance swings to the
invariant only representation when the amount of classifier data is at its lowest.
A split representation produces the best result every time for the fish dataset.
We have attributed this anomaly to the higher complexity of the images, motion
and rotation of objects in this dataset. The split representations producing the
best results are those where the proportion of invariant to variable features is
the smallest we tested. As mentioned, an invariant-free representation failed to
produce the best results from a classifier in any of our tests.

Table 1 gives the results gained when the classifiers are trained using half
the available data. Classification accuracy is recorded for the all-invariant and
invariant free models, and the best performance from a mixed representation,
with the proportion of invariant features indicated. As a final comparison, classi-
fication accuracy is also provided from when a classifier is trained using the raw
image data. In each of these cases, a mixed representation produced the best
performance.

Fig. 6. Classification accuracies for the shapes dataset. Groups of bars display average
classification accuracy, along with one standard deviation, from classifiers trained with
a set number of examples, the number of which is given on the x-axis. Each bar in a
group refers to a variant of the unsupervised architecture. Proportion of total features
that are invariant for each bar is provided in the legend. The same notation is used in
figures 7 and 8



Exploring a mixed representation for encoding Temporal Coherence 11

Fig. 7. Classification accuracies for the COIL20-Variant dataset.

Fig. 8. Classification accuracies for the Fish dataset.
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Table 1. Average object classification accuracy from each model when 50% of data is
passed to the classifier. For the mixed representation, values are given for the model
producing the highest classification accuracy, with the percentage of invariant neurons
that produced this result given. Classification accuracy from each dataset was also
recorded for the situation where the classifier is trained on the raw image data, with
no representation learning applied.

Dataset Raw Data
Best Mixed
(% invariant)

Sparse Only All Invariant

Shapes 30.16% 73.82% (25%) 69.38% 66.77%
COIL20-variant 34.06% 85.27% (25%) 84.38% 83.76%

Fish 57.29% 84.51% (16.67%) 83.21% 80.59%

5 Discussions

The goal of regularizing features with temporal coherence is to learn stable vari-
ance common to each pair of frames in video. Image-specific details are discarded
to facilitate the discovery of temporally coherent structure on the assumption
this encodes details related to object identity. Compared to an invariant-free rep-
resentation, the quantity of patterns collected for each object is reduced on the
basis that their classification quality is increased. A mixed-representation seeks
to combine image-specific details, distinguishing adjacent frames apart, along-
side temporally coherent information common over adjacent pairs of frames. A
larger quantity of patterns is produced for each object, whilst still encoding the
invariant structure related to object identity missing in an invariant-free repre-
sentation. A greater percentage of the input structure is captured, losing some
of the generalization present in an all-invariant representation.

When the quantity of labelled data is scarce, a classifier’s performance will
improve when the total pool of possible patterns for each object is reduced.
Similarly, if every feature in a labelled example contains information common to
semantically similar neighbours, a classifier will have a greater chance of learning
how to differentiate between objects. Conversely, when each example contains
image-specific details not applicable to other examples of the same object, this
will confuse a classifier when there is not enough labelled data available to build
a full picture of each object. When data is scarce, the generalized features learned
by an all-invariant representation improves a classifier’s chances of learning the
details required to distinguish between objects.

When the quantity of labelled data is increased, classification performance is
observed across every model tested, but the benefits of having an all-invariant
representation start to dampen. Encoding the structure common to neighbour-
ing examples of distinct objects, alongside a greater amount of image-specific
detail, enables a classifier to build a more complete picture of each object from a
mixed representation. Information discarded by an all-invariant representation,
confusing to a classifier when data is scarce, starts to become useful. When this
point is reached, object identity encoding benefits from having as much image-
specific data as possible, so long as a portion of features remain invariant. This
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can clearly be seen from our tests, as a mixed representation predominantly
composed of variable features performs optimally over every test where labelled
data is abundant.

Optimal performance was observed when a classifier was passed a representa-
tion encoding temporal coherence in some manner in all of our tests. Consistent
with previous work, extracting temporally stable aspects from video improves
the encoding of information related to object identity [12]. When labelled data
is plentiful, and a classifier is able to build a more complete picture of the struc-
ture underlying each distinct object, applying a mixed representation improves
object identity encoding.

5.1 Future Work

The findings of this work lead to quite a wide range of possibilities. Firstly,
we have applied our mixed-representation to a relatively simple single layered
sparse autoencoder. Temporal coherence has been successfully applied to a wide
range of models, including architecturally more complex deep networks. It would
be interesting to investigate whether or not applying a mixed-representation to
these existing models will boost object identity performance further.

Another route of study would be to consider more complex datasets. The
videos in our study were all artificially generated, and only contain a single object
at a time moving across a uniform background. Tests could be conducted to
observe how a mixed representation copes with more complex images, including
more than one object, and natural images.

Finally, whilst we have been capturing a mixture of invariant and variable
features, this study has only been concerned with encoding object identity. As
discussed in Section 2, there has been a small body of work applying temporal
coherence to discover the what and the where of objects [10][15]. As position and
motion of objects generally change over quicker time scales than object identity,
it is possible that our mixed representation also contains features associated with
these properties. This is the primary direction we are going to be looking for our
own future studies with this work.

6 Conclusions

We trained a range of sparse autoencoders, encoding temporal coherence over
different portions of the available hidden layer units. We can summarize our
findings as follows:

– Optimal performance across all tests involved an architecture encoding tem-
poral coherence across a portion of the available features.

– For the majority of tests, the greatest classification performance was achieved
when the classifier input received a representation mixing temporally coher-
ent features alongside ’variable’ counterparts.

– When a large amount of labelled data was available, a mixed representation
always produced the best encoding.
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We believe our work demonstrates there are situations where the previously
accepted method of applying temporal coherence uniformly across all features is
non-optimal. By discovering a mixed representation, consisting of both invariant
and variable neurons, object identity encoding can be improved.
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