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A Bayesian Network Model
for Interesting Itemsets

Jaroslav Fowkes (�) and Charles Sutton

School of Informatics, University of Edinburgh, Edinburgh, EH8 9AB, UK
{jfowkes,csutton}@inf.ed.ac.uk

Abstract. Mining itemsets that are the most interesting under a statis-
tical model of the underlying data is a commonly used and well-studied
technique for exploratory data analysis, with the most recent interest-
ingness models exhibiting state of the art performance. Continuing this
highly promising line of work, we propose the first, to the best of our
knowledge, generative model over itemsets, in the form of a Bayesian net-
work, and an associated novel measure of interestingness. Our model is
able to efficiently infer interesting itemsets directly from the transaction
database using structural EM, in which the E-step employs the greedy
approximation to weighted set cover. Our approach is theoretically sim-
ple, straightforward to implement, trivially parallelizable and retrieves
itemsets whose quality is comparable to, if not better than, existing state
of the art algorithms as we demonstrate on several real-world datasets.

1 Introduction

Itemset mining is one of the most important problems in data mining, with
applications including market basket analysis, mining data streams and mining
bugs in source code [1]. Early work on itemset mining focused on algorithms that
identify all itemsets which meet a given criterion for pattern quality, such as all
frequent itemsets whose support is above a user-specified threshold. Although
appealing algorithmically, the list of frequent itemsets suffers from pattern ex-
plosion, i.e., is typically long, highly redundant and difficult to understand [1].
In an attempt to address this problem, more recent work focuses on mining in-
teresting itemsets, smaller sets of high-quality, non-redundant itemsets that can
be examined by a data analyst to get an overview of the data. Several different
approaches have been proposed for this problem. Some of the most successful
recent approaches, such as MTV [19], KRIMP [28] and SLIM [26] are based on
the minimum description length (MDL) principle, meaning that they define an
encoding scheme for compressing the database based on a set of itemsets, and
search for the itemsets that best compress the data. These methods have been
shown to lead to much less redundant pattern sets than frequent itemset mining.

In this paper, we introduce an alternative, but closely related, viewpoint
on interesting itemset mining methods, by starting with a probabilistic model
of the data rather than a compression scheme. We define a generative model
of the data, that is, a probability distribution over the database, in the form



of a Bayesian network model, based on the interesting itemsets. To infer the
interesting items, we use a probabilistic learning approach that directly infers
the itemsets that best explain the underlying data. Our method, which we call
the Interesting Itemset Miner (IIM)1, is to the best of our knowledge, the first
generative model for interesting itemset mining.

Interestingly, our viewpoint has a close connection to MDL-based approaches
for mining itemsets that best compress the data (Section 3.9). Every probability
distribution implicitly defines an optimal compression algorithm, and conversely
every compression scheme implicitly corresponds to a probabilistic model. Ex-
plicitly taking the probabilistic modelling perspective rather than an MDL per-
spective has two advantages. First, focusing on the probability distribution re-
lieves us from specifying the many book-keeping details required by a lossless
code. Second, the probabilistic modelling perspective allows us to exploit pow-
erful methods for probabilistic inference, learning, and optimization, such as
submodular optimization and structural expectation maximization (EM).

The collection of interesting itemsets under IIM can be inferred efficiently
using a structural EM framework [9]. One can think of our model as a proba-
bilistic relative of some of the early work on itemset mining that formulates the
task of finding interesting patterns as a covering problem [11,28], except that in
our work, the set cover problem is used to identify itemsets that cover a trans-
action with maximum probability. The set cover problem arises naturally within
the E step of the EM algorithm. On real-world datasets we find that the inter-
esting itemsets seem to capture meaningful domain structure, e.g. representing
phrases such as anomaly detection in a corpus of research papers, or regions such
as western US states in geographical data. Notably, we find that IIM returns a
much more diverse list of itemsets than current state of the art algorithms (Ta-
ble 2), which seem to be of similar quality. Overall, our results suggest that the
interesting itemsets found by IIM are suitable for manual examination during
exploratory data analysis.

2 Related Work

Itemset mining was first introduced by Agrawal and Srikant [2], along with the
Apriori algorithm, in the context of market basket analysis which led to a number
of other algorithms for frequent itemset mining including Eclat and FPGrowth.
Frequent itemset mining suffers from pattern explosion: a huge number of highly
redundant frequent itemsets are retrieved if the given minimum support thresh-
old is too low. One way to address this is to mine compact representations of
frequent itemsets such as maximal frequent, closed frequent and non-derivable
itemsets with efficient algorithms such as CHARM [31]. However, even mining
such compact representations does not fully resolve the problem of pattern ex-
plosion (see Chapter 2 of [1] for a survey of frequent itemset mining algorithms).

An orthogonal research direction has been to mine tiles instead of itemsets,
i.e., subsets of rows and columns of the database viewed as binary transaction
1 https://github.com/mast-group/itemset-mining

https://github.com/mast-group/itemset-mining


by item matrices. The analogous approach is then to mine large tiles, i.e., sub-
matrices with only 1s whose area is greater than a given minimum area threshold.
The Tiling algorithm [11] is an example of an efficient implementation that uses
the greedy algorithm for set cover. Note that there is a correspondence between
tiles and itemsets: every large tile is a closed frequent itemset and thus algorithms
for large tile mining also suffer from pattern explosion to some extent.

In an attempt to tackle this problem, modern approaches to itemset mining
have used the minimum description length (MDL) principle to find the set of
itemsets that best summarize the database. MTV [20] uses MDL coupled with
a maximum entropy (MaxEnt) model to mine the most informative itemsets.
MTV mines the set of top itemsets with the highest likelihood under the model
via an efficient convex bound that allows many candidate itemsets to be pruned
and employs a method for more efficiently inferring the model itself. Due to the
partitioning constraints necessary to keep computation feasible, MTV typically
only finds in the order of tens of itemsets, whereas IIM has no such restriction.

KRIMP [28] employs MDL to find the subset of frequent itemsets that yields
the best lossless compression of the database. While in principle this could be
formulated as a set cover problem, the authors employ a fast heuristic that does
not allow the itemsets to overlap (unlike IIM) even though one might expect that
doing so could lead to better compression. In contrast, IIM employs a set cover
framework to identify a set of itemsets that cover a transaction with highest
probability. The main drawback of KRIMP is the need to mine a set of frequent
itemsets in the first instance, which is addressed by the SLIM algorithm [26], an
extension of KRIMP that mines itemsets directly from the database, iteratively
joining co-occurring itemsets such that compression is maximised.

The MaxEnt model can also be extended to tiles, here known as the Rasch
model, and, unlike in the itemset case, inference takes polynomial time. Kon-
tonasios and De Bie [16] use the Rasch model to find the most surprising set
of noisy tiles (i.e., sub-matrices with predominantly 1s but some 0s) by com-
puting the likelihood of tile entries covered by the set. The inference problem
then takes the form of weighted budgeted maximum set cover, which can again
be efficiently solved using the greedy algorithm. The problem of Boolean matrix
factorization can be viewed as finding a set of frequent noisy tiles which form a
low-rank approximation to the data [22].

The MINI algorithm [10] finds the itemsets with the highest surprisal under
statistical independence models of items and transactions from a precomputed
set of closed frequent itemsets. OPUS Miner [29] is a branch and bound algorithm
for mining the top self-sufficient itemsets, i.e., those whose frequency cannot be
explained solely by the frequency of either their subsets or of their supersets.

In contrast to previous work, IIM maintains a generative model, in the form
of a Bayesian network, directly over itemsets as opposed to indirectly over items.
Existing Bayesian network models for itemset mining [14,15] have had limited
success as modelling dependencies between the items makes inference for larger
datasets prohibitive. In IIM inference takes the form of a weighted set cover
problem, which can be solved efficiently using the greedy algorithm (Section 3.3).



The structure of IIM’s statistical model is similar to existing models in the
literature such as Rephil ([24], §26.5.4) for topic modelling and QMR-DT [25]
for medical diagnosis. Rephil is a multi-level graphical model used in Google’s
AdSense system. QMR-DT is a bi-partite graphical model used for inferring
significant diseases based on medical findings. However, the main contribution
of our paper is to show that a binary latent variable model can be useful for
selecting itemsets for exploratory data analysis.

3 Interesting Itemset Mining

In this section we will formulate the problem of identifying a set of interesting
itemsets that are useful for explaining a database of transactions. First we will
define some preliminary concepts and notation. An item i is an element of the
universe U = {1, 2, . . . , n} that indexes database attributes. A transaction X is
a subset of the universe U and an itemset S is simply a set of items i. The set
of interesting itemsets I we wish to determine is therefore a subset of the power
set (set of all possible subsets) of the universe. Further, we say that an itemset
S is supported by a transaction X if S ⊆ X.

3.1 Problem Formulation

Our aim in this work is to infer a set of interesting itemsets I from a database
of transactions. By interesting, we mean a set of itemsets that will best help
a human analyst to understand the important properties of the database, that
is, interesting itemsets should reflect the important probabilistic dependencies
among items, while being sufficiently concise and non-redundant that they can
be examined manually. These criteria are inherently qualitative, reflecting the
fact that the goal of data mining is to build human insight and understanding.
In this work, we formalize interestingness as those itemsets that best explain the
transaction database under a statistical model of itemsets. Specifically we will
use a generative model, i.e., a model that starts with a set of interesting itemsets
I and from this set generates the transaction database. Our goal is then to infer
the most likely generating set I under our chosen generative model. We want the
model to be as simple as possible yet powerful enough to capture correlations
between transaction items. A simple such model is to iteratively sample itemsets
S from I and let their union form a transaction X. Sampling S from I uniformly
would be uninformative, but if we associate each interesting itemset S ∈ I with
a probability πS , we can sample the indicator variable zS ∼ Bernoulli(πS) and
include S in X if zS = 1. We formally define this generative model next.

3.2 Bayesian Network Model

We propose a simple directed graphical model for generating a database of trans-
actions X(1), . . . , X(m) from a set I of interesting itemsets. The parameters of
our model are Bernoulli probabilities πS for each interesting itemset S ∈ I. The
generative story for our model is, independently for each transaction X:



1. For each itemset S ∈ I, decide independently whether to include S in the
transaction, i.e., sample

zS ∼ Bernoulli(πS).

2. Set the transaction to be the set of items in all the itemsets selected above:

X =
⋃

S|zS=1

S.

Note that the model allows individual items to be generated multiple times from
different itemsets, e.g. eggs could be generated both as part of a breakfast itemset
{bacon, eggs} and as as part of a cake itemset {flour, sugar, eggs}.

Now given a set of itemsets I, let z,π denote the vectors of zS , πS for all
S ∈ I. Assuming z,π are fully determined, it is evident from the generative
model that the probability of generating a transaction X is

p(X, z|π) =
{ ∏

S∈I π
zS

S (1− πS)1−zS if X =
⋃

zS=1 S,
0 otherwise

. (1)

3.3 Inference

Assuming the parameters π in the model are known, we can infer z for a specific
transaction X by maximizing the posterior distribution p(z|X,π) over z:

max
z

∏
S∈I

πzS

S (1− πS)1−zS s.t. X =
⋃

S|zS=1

S. (2)

Taking logs and rewriting (2) in a more standard form we obtain

min
z

∑
S∈I

zS (− ln(πS)) + (1− zS) (− ln(1− πS))

s.t.
∑

S|i∈S

zS ≥ 1 ∀ i ∈ X, zS ∈ {0, 1} ∀S ∈ I
(3)

which is (up to a penalty term) the weighted set-cover problem (see e.g. [17],
§16.1) with weights wS ∈ R+ given by wS := − ln(πS). This is an NP-hard
problem in general and so impractical to solve directly in practice. It is important
to note that the weighted set cover problem is a special case of minimizing a linear
function subject to a submodular constraint,2 which we formulate as follows (cf.
[30]). Given the set of interesting itemsets T := {S ∈ I |S ⊆ X} that support
the transaction, a real-valued weight wS for each itemset S ∈ T and a non-
decreasing submodular function f : 2T → R, the aim is to find a covering C ⊂ T
of minimum total weight, i.e., such that f(C) = f(T ) and

∑
S∈C wS is minimized.

2 Note that the posterior p(z|X) would not be submodular if we were to use a noisy-OR
model for the conditional probabilities.



Algorithm 1 Hard-EM
Input: Set of itemsets I and initial probability estimates π(0)

k ← 0
do
k ← k + 1
E-step: ∀X(j) solve (3) to get z(j)

S ∀S ∈ Tj

M-step: π
(k)
S ← 1

m

∑m

j=1 z
(j)
S ∀S ∈ I

while ‖π(k−1) − π(k)‖ > ε
Remove from I itemsets S with πS = 0
return I,π(k)

For weighted set cover we simply define f(C) to be the number of items in C,
i.e., f(C) := |∪S∈CS|. Note that f(T ) = |X| by construction.

We can then approximately solve the weighted set cover problem (3) using the
greedy approximation algorithm for submodular functions. The greedy algorithm
builds a covering C by repeatedly choosing an itemset S that minimizes the
weight wS divided by the number of items in S not yet covered by the covering.
In order to minimize CPU time spent solving the weighted set cover problem,
we cache the itemsets and coverings for each transaction as needed.

It has been shown [4] that the greedy algorithm achieves a ln|X| + 1 ap-
proximation ratio to the weighted set cover problem and moreover the following
inapproximability theorem shows that this ratio is essentially the best possible.
Theorem 1 (Feige [7]). There is no (1− o(1)) ln|X|-approximation algorithm
to the weighted set cover problem unless NP ⊆ DTIME(|X|O(log log|X|)), i.e., un-
less NP has slightly superpolynomial time algorithms.
The runtime complexity of the greedy algorithm is O(|X||T |), however by main-
taining a priority queue this can be improved to O(|X| log|T |) (see e.g. [5]).
Note that there is also an O(|X||T |)-runtime primal-dual approximation algo-
rithm [3], however this has an approximation order of f = maxi|{S | i ∈ S}|, i.e.,
the frequency of the most frequent element, which would be worse in our case.

3.4 Learning
Given a set of itemsets I, consider now the case where both variables z,π in
the model are unknown. In this case we can use the hard EM algorithm [6] for
parameter estimation with latent variables. The hard EM algorithm in our case
is merely a simple layer on top of the inference algorithm (3). Suppose there are
m transactions X(1), . . . , X(m) with supporting sets of itemsets T (1), . . . , T (m),
then the hard EM algorithm is given in Algorithm 1. To initialize π, a natural
choice is simply the support (i.e., relative frequency) of each itemset in I.

3.5 Inferring new itemsets
We infer new itemsets using structural EM [9], i.e., we add a candidate itemset S′
to I if doing so improves the optimal value p of the problem (3) averaged across



Algorithm 2 Structural-EM (one iteration)
Input: Itemsets I, probabilities π, optima p(j) of (3) ∀X(j)

Set profit p← 1
m

∑m

j=1 p
(j)

do
Generate candidate S′ using Candidate-Gen
I ← I ∪ {S′}, πS′ ← 1
E-step: ∀X(j) solve (3) to get z(j)

S ∀S ∈ Tj

M-step: π′S ← 1
m

∑m

j=1 z
(j)
S ∀S ∈ I

∀X(j), solve (3) using π′S , z
(j)
S ∀S ∈ Tj to get the optimum p(j)

Set new profit p′ ← 1
m

∑m

j=1 p
(j)

I ← I \ {S′}
while p′ ≤ p {until one good candidate found}
I ← I ∪ {S′}
return I,π′

transactions. Interestingly, there is an implicit regularization effect here. Observe
from (3) that when a new candidate S′ is added to the model, a corresponding
term ln(1−πS′) is added to the log-likelihood of all transactions that S′ does not
support. For large databases, this amounts to a significant penalty on candidates.

To get an estimate of maximum benefit to including candidate S′, we must
carefully choose an initial value of πS′ that is not too low, to avoid getting
stuck in a local optimum. To infer a good πS′ , we force the candidate S′ to
explain all transactions it supports by initializing πS′ = 1 and update πS′ with
the probability corresponding to its actual usage once we have inferred all the
coverings. Given a set of itemsets I and corresponding probabilities π along with
transactions X(1), . . . , X(m), each iteration of the structural EM algorithm is is
given in Algorithm 2 above.

In practice, we cache the set of candidates that have been rejected by the
Structural-EM function to avoid reconsidering them.

3.6 Candidate generation

The Structural-EM algorithm (Algorithm 2) requires a method to generate
new candidate itemsets S′ that are to be considered for inclusion in the set of
interesting itemsets I. One possibility would be to use the Apriori algorithm to
recursively suggest larger itemsets starting from singletons, however preliminary
experiments found this was not the most efficient method. For this reason we
take a slightly different approach and recursively combine the interesting item-
sets in I with the highest support first (Algorithm 3). In this way our candidate
generation algorithm is more likely to propose viable candidate itemsets earlier
and in practice we find that this heuristic works well. We did try pruning poten-
tial itemset pairs to join using a χ2-test, however this substantially slowed down
the algorithm and barely improved the model likelihood.

In order to determine the supports of the itemsets to be combined, we store
the transaction database in a Memory-Efficient Itemset Tree (MEI-Tree) [8]



Algorithm 3 Candidate-Gen
Input: Itemsets I, cached supports σ, queue length q

if @ priority queue Q for I then
Initialize σ-ordered priority queue Q
Sort I by decreasing itemset support using σ
for all distinct pairs S1, S2 ∈ I, highest ranked first do

Generate candidate S′ = S1 ∪ S2
Cache support of S′ in σ and add S′ to Q
if |Q| = q break

end for
end if
Pull highest-ranked candidate S′ from Q
return S′

Algorithm 4 IIM (Interesting Itemset Miner)
Input: Database of transactions X(1), . . . , X(m)

Initialize I with singletons, π with their supports
Build MEI-Tree from transaction database
while not converged do
Add itemsets to I,π using Structural-EM
Optimize parameters for I,π using Hard-EM

end while
return I,π

and query the tree for the support of a given itemset. A MEI-Tree stores
itemsets in a tree structure according to their prefixes in a memory efficient
manner. To minimize the memory usage of the MEI-Tree further, we first sort
the items in order of decreasing support (as in the FPGrowth algorithm) as
this often results in a sparser tree [13]. Note that a MEI-Tree is essentially an
FP-tree [13] with node-compression and without node-links for nodes containing
the same item. An itemset support query on the MEI-Tree efficiently searches
the tree for all occurrences of the given itemset and adds up their supports
(see Figure 4 in [8] for the actual algorithm). With the wide availability of
100GB+ shared memory systems, it is reasonable to expect the MEI-Tree to
fit into memory for all but the largest of datasets. The queue length parameter
in the Candidate-Gen algorithm effectively imposes a limit on the number of
iterations the algorithm can spend suggesting candidate itemsets.

3.7 Mining Interesting Itemsets

Our complete interesting itemset mining (IIM) algorithm is given in Algorithm 4.
Note that the Hard-EM parameter optimization step need not be performed
at every iteration, in fact it is more efficient to suggest several candidate item-
sets before optimizing the parameters. As all operations on transactions in our



algorithm are trivially parallelizable, we perform the E and M -steps in both the
hard and structural EM algorithms in parallel.

3.8 Interestingness Measure

Now that we have inferred the model variables z,π, we are able to use them to
rank the retrieved itemsets in I. There are two natural rankings one can employ,
and both have their strengths and weaknesses. The obvious approach is to rank
each itemset S ∈ I according to its probability under the model πS , however this
has the disadvantage of strongly favouring frequent itemsets over rare ones, an
issue we would like to avoid. Instead, we prefer to rank the retrieved itemsets ac-
cording to their interestingness under the model, that is the ratio of transactions
they explain to transactions they support. One can think of interestingness as a
measure of how necessary the itemset is to the model: the higher the interesting-
ness, the more supported transactions the itemset explains. Thus interestingness
provides a more balanced measure than probability, at the expense of missing
some frequent itemsets that only explain some of the transactions they support.
We define interestingness formally as follows.

Definition 1. The interestingness of an itemset S ∈ I retrieved by IIM (Algo-
rithm 4) is defined as

int(S) =
∑m

j=1 z
(j)
S

supp(S)
and ranges from 0 (least interesting) to 1 (most interesting).

Any ties in the ranking can be broken using the itemset probability πS .

3.9 Correspondence to existing models

There is a close connection between probabilistic models and the MDL principle
[18]. Given a probabilistic model p(X|π, I) of a single transaction, by Shannon’s
theorem the optimal code for the model will encode X using approximately
− log2 p(X|π, I) bits. So by finding a set of itemsets that maximizes the proba-
bility of the data, we are also finding itemsets that minimize description length.
Conversely, any encoding scheme implicitly defines a probabilistic model: given
an encoding scheme E that assigns each transaction X to a string of L(X) bits,
we can define p(X|E) ∝ 2−L(X), and then E is an optimal code for p(X|E).
Interpreting previous MDL-based itemset mining methods in terms of their im-
plicit probabilistic models provides interesting insights into these methods.

MTV uses a MaxEnt distribution over itemsets S ∈ I, which for a transaction
X can be written (cf. [20]):

p(X) = π0
∏
S∈I

π
1X (S)
S

where the indicator function 1X(S) = 1 if X supports S and 0 otherwise. Thus if
an itemset is present in the MaxEnt model it must be used to explain a supported



transaction, contrast this with IIM (1) where there is a latent variable z(j)
S for

each transaction X(j) that infers if an itemset is used to explain the transaction.
KRIMP by contrast, uses an itemset independence model, which for an item-

set S ∈ I is given by (cf. [28]):

p(S) =
m∑

j=1
z

(j)
S

/ ∑
I∈I

m∑
k=1

z
(k)
I

where the z(j)
S , and therefore itemset coverings for X(j), are determined using

a heuristic approximation. That is, unlike IIM, the itemset coverings are not
chosen to maximise the probability under the statistical model. Instead, for each
transaction X, frequent itemsets S ∈ I are chosen in order of decreasing size
and support and added to the covering if they improve the compression, until all
elements of X are covered. Additionally, itemsets in the covering are not allowed
to overlap, in contrast to IIM which does allow overlap if it is deemed necessary.

SLIM uses the same approach as KRIMP but iteratively finds the candidate
itemsets S directly from the dataset. It employs a greedy heuristic to do this:
starting with a set of singleton itemsets I, pairwise combinations of itemsets in I
are considered as candidate itemsets S in order of highest estimated compression
gain. IIM uses a very similar heuristic that iteratively extends itemsets by the
most frequent itemset in its candidate generation step (Section 3.6).

However, IIM is different from these methods in that they all contain an
explicit penalty term for the description length of the itemset database, which
corresponds to a prior distribution p(I) over itemsets. We did not find in practice
that an explicit prior distribution was necessary but it would be possible to
trivially incorporate it. Also, if we view IIM as an MDL-type method, not only
the presence of an itemset, but also its absence is explicitly encoded (in the form
of (1− πS)1−z

(j)
S in (1)). As a result, there is an implicit penalty for adding too

many patterns to the model and one does not need to use a code table which
would serve as an explicit penalty for greater model complexity.

One can also think of IIM as a probabilistic tiling method: each interesting
itemset S ∈ I can be thought of as a binary submatrix of transactions for which
zS = 1 by items in S, where the choice of items and transactions in the tile
are inferred directly from IIM’s statistical model. That is, IIM formulates the
inference problem (3) as a weighted set cover for each transaction where the
weights correspond to itemset probabilities. This is in contrast to existing tiling
methods: Geerts et al. [11] find k tiles covering the largest number of database
entries and is thus an instance of maximum coverage. Kontonasios and De Bie
[16] extend this to inferring a covering of noisy tiles using budgeted maximum
coverage, that is, finding a covering that maximizes the sum of the surprisal
of each tile, under a MaxEnt model constrained by expected row and column
margins, subject to the sum of the description lengths of each tile being smaller
than a given budget.
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4 Numerical Experiments

In this section we perform a comprehensive qualitative and quantitative evalua-
tion of IIM. On synthetic datasets we show that IIM returns a list of itemsets that
is largely non-redundant, contains few spurious correlations and scales linearly
with the number of transactions. On a set of real-world datasets we show that
IIM finds itemsets that are much less redundant than state of the art methods,
while being of similar quality.
Datasets We use five real-world datasets in our numerical evaluation (Table 1).
The plants dataset [27] is a list of plant species and the U.S. or Canadian states
where they occur. The mammals dataset [23] consists of presence records of
European mammals in 50×50 km geographical areas. The retail dataset consists
of anonymized market basket data from a Belgian retail store [12]. The ICDM
dataset [16] is a list of ICDM paper abstracts where each item is a stemmed word,
excluding stop-words. The Uganda dataset consists of Facebook messages taken
from a set of public Uganda-based pages with substantial topical discussion over
a period of three months. Each transaction in the dataset is an English language
message and each item is a stemmed English word from the message.
IIM Results We ran IIM on each dataset for 1, 000 iterations with a prior-
ity queue size of 100, 000 candidates. The runtime and number of non-singleton
itemsets returned is given in Table 1 (right). We also investigated the scaling of
IIM as the number of transactions in the database increases, using the model
trained on the plants dataset from Section 4.1 to generate synthetic transaction
databases of various sizes. We then ran IIM for 100 iterations on these databases
and one can see in Figure 2 that the scaling is linear as expected. Our prototype
implementation can process one million transactions in 30 seconds on 64 cores
each iteration, so there is reason to hope that a more highly tuned implemen-

3 Each curve is the 11-point interpolated precision i.e., the interpolated precision at
11 equally spaced recall points between 0 and 1 (inclusive), see [21], §8.4 for details.



tation could scale to even larger datasets. All experiments were performed on a
machine with 64 AMD Opteron 6376 CPUs and 256GB of RAM.
Evaluation Criteria We will evaluate IIM along with MTV, SLIM, KRIMP
and CHARM with χ2-test ranking according to the following criteria:

1. Spuriousness – to assess the degree of spurious correlation in the mined set
of itemsets.

2. Redundancy – to measure how redundant the mined set of itemsets is.
3. Interpretability – to informally assess how meaningful and relevant the mined

itemsets actually are.

Note that we chose not to compare to the tiling methods from [11,16] as they
have been shown to underperform on the ICDM dataset [20].

4.1 Itemset Spuriousness

The set-cover formulation of the IIM algorithm (3) naturally favours adding
itemsets to the model whose items co-occur in the transaction database. One
would therefore expect IIM to largely avoid suggesting itemsets of uncorrelated
items and so generate more meaningful itemsets. To verify this is the case and
validate our inference procedure, we check if IIM is able to recover the itemsets
it used generate a synthetic database. To obtain a realistic synthetic database,
we sampled 10, 000 transactions from the IIM generative model trained on the
plants dataset. We were then able to measure the precision and recall for each
algorithm, i.e., the fraction of mined itemsets that are generating and the fraction
of generating itemsets that are mined, respectively. We used a minimum support
of 0.0575 for all algorithms (except IIM) as used in [20] for the plants dataset.
Figure 1 shows the precision-recall curve for each algorithm using the top-k
mined itemsets (according to each algorithm’s ranking) as a threshold. One can
clearly see that IIM was able to mine about 50% of the generating itemsets and
almost all the itemsets mined were generating. This not only provides a good
validation of IIM’s inference procedure and underlying generative model but also
demonstrates that IIM returns few spurious itemsets. For comparison, SLIM
and KRIMP exhibited very similar behaviour to IIM whereas MTV returned a

Table 1. Summary of the real datasets
used and IIM results after 1, 000 iterations.
† excluding singleton itemsets.
Dataset Items Trans. |I|† Runtime

ICDM 4, 976 859 798 163 min
Mammals 194 2, 670 359 22 min
Plants 70 34, 781 259 27 min
Retail 16, 470 88, 162 957 941 min
Uganda 33, 278 124, 566 928 1086 min

Table 2. IID for the top 50 non-singleton
itemsets returned by the algorithms. *re-
turned less than 50 non-singleton itemsets.

ICDM Mam. Plant Retail Ugan.

IIM 4.00 7.42 4.80 3.26 3.78
MTV 3.14 *5.50 *5.00 2.52 *1.60
SLIM 2.12 *1.76 *1.77 1.44 2.08
KRIMP 2.56 1.94 1.88 1.34 2.26
CHARM 1.42 1.44 1.50 1.32 1.72



very small set of generating itemsets. The set of top itemsets mined by CHARM
contained many itemsets that were not generating. It is not our intention to draw
conclusions about the performance of the other algorithms as this experimental
setup naturally favours IIM. Instead, we compare the itemsets from IIM with
those from MTV, SLIM and KRIMP on real-world data in the next sections.

4.2 Itemset Redundancy

We now turn our attention to evaluating whether IIM returns a less redundant
list of itemsets than the other algorithms on real-world datasets. A suitable
measure of redundancy for a single itemset is the minimum symmetric difference
between it and the other itemsets in the list. Averaging this across all itemsets in
the list, we obtain the average inter-itemset distance (IID). We therefore ran all
the algorithms on the datasets in Table 1. This enabled us to calculate, for each
dataset, the IID of the top 50 non-singleton itemsets, which we report in Table 2.
For CHARM, we took the top 50 non-singleton itemsets ranked according to χ2

from the top 100, 000 frequent itemsets it returned (as the χ2 calculation would
be prohibitively slow otherwise). One can clearly see that the top IIM itemsets
have a larger IID on average, and are therefore less redundant, than the KRIMP,
SLIM or CHARM itemsets. The top CHARM χ2-ranked itemsets are the most
redundant as expected. On all datasets, the IIM itemsets are less redundant
than those mined by the other methods, with only one exception. On the Plants
dataset, MTV is slightly less redundant than IIM, but this is because MTV is
unable to return 50 items on this dataset, instead returning only 21.

4.3 Itemset Interpretability

For the datasets in Table 1 we can directly interpret the mined itemsets and
informally assess how meaningful and relevant they are.
ICDM Dataset We compare the top ten non-singleton itemsets mined by the
algorithms in Table 3 (excluding KRIMP whose itemsets are similar for space
reasons). The mined patterns are all very informative, containing technical con-
cepts such as support vector machine and common phrases such as pattern dis-
covery. The IIM itemsets suggest the stemmer used to process the dataset could
be improved, as we retrieve {parameter, parameters} and {sequenc, sequential}.
Plants and Mammals Datasets For both datasets, all algorithms find
itemsets that are spatially coherent, but as we showed in Table 2, those returned
by IIM are far less redundant. Our novel interestingness measure enables IIM
to rank correlated itemsets above singletons and rare itemsets above frequent
ones, in contrast to the other algorithms. For example, for the plants dataset,
the top itemset retrieved by IIM is {Puerto Rico, Virgin Islands} whereas MTV
returns {Puerto Rico}, not associating it with the Virgin Islands (which are
adjacent) until the 20th ranked itemset. For the mammals dataset, the top two
non-singleton IIM itemsets are a group of four mammals that coexist in Scotland
and Ireland and a group of ten mammals that coexist on Sweden’s border with



Table 3. Top ten non-singleton ICDM itemsets as found by IIM, MTV and SLIM.
IIM MTV SLIM

associ rule experiment result inform model
local global synthetic real cluster algorithm

support vector machin svm real datasets larg effici
parameter parameters pattern discov perform set

anomali detect associ rule mine propos problem
sequenc sequential frequent pattern mine algorithm method set

linear discriminant analysi train classifi associ rule
synthetic real life address problem problem result

background knowledg classifi class approach base method
semi supervised machin learn base method set

Table 4. Top six non-singleton Uganda itemsets for each algorithm.
IIM MTV SLIM KRIMP

soul, rest, peace heal, jesus, amen !, ? whi, ?
chris, brown god, amen 2, 4 ?, !
bebe, cool 2, 4 whi, ? 2, 4
airtel, red whi, ? god, amen wat, ?
everi, thing god, heal da, dat time, !
time, wast 2, ! heal, jesus, amen soul, rest, peace

Norway. By contrast, the top four SLIM and KRIMP itemsets list some of the
most common mammals in Europe (see the supplementary material for details).
Uganda Dataset The top six non-singleton itemsets found by the algorithms
are shown in Table 4; the IIM itemsets provide much more information about the
topics of the messages than those from the other algorithms. Figure 3 (left) plots
the mentions of each of the top IIM itemsets per day. As one can see, usage of
the top itemsets displays temporal structure (and exhibits spikes of popularity),
even though our model does not explicitly capture this. Of particular interest are
the large spikes of {soul, rest, peac} corresponding to notable deaths: wealthy
businessman James Mulwana on the 15th January, President Museveni’s father
on the 22nd February and six school students in a traffic accident on the 29th
March. Also of interest are the 285 mentions of {airtel, red} on New Year’s Eve
corresponding to mobile provider Airtel’s Red Christmas competition for 10K
worth of airtime. The spike of {bebe, cool} on the 15th January corresponds
to the Ugandan musician’s wedding announcement and the spike on the 24th
January of {chris, brown} refers to many enthusiastic mentions of the popular
American singer that day. The last two itemsets capture common phrases.

In comparison, the top-six MTV itemsets are plotted in Figure 3 (right).
One can see that the itemsets {heal, jesus, amen};{god, amen} and {god, heal}
substantially overlap and are strongly correlated with each other, sharing a large
spike on the 8th February and a smaller spike on the 11th March. The remaining
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Fig. 3. Mentions per day of the top six non-singleton IIM (left) and MTV (right)
itemsets from the Uganda messages dataset over three months.

itemsets exhibit no interesting spikes as one would expect. The top six SLIM and
KRIMP itemsets in Table 4 all displayed random time evolution, as one would
expect, except for the religious ones we have already encountered.

5 Conclusions

We presented a generative model that directly infers itemsets that best explain a
transaction database along with a novel model-derived measure of interestingness
and demonstrated the efficacy of our approach on both synthetic and real-world
databases. In future we would like to extend our approach to directly inferring
the association rules implied by the itemsets and parallelize our approach to
large clusters so that we can efficiently scale to much larger databases.
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