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Abstract. In feature selection algorithms, “stability” is the sensitivity
of the chosen feature set to variations in the supplied training data. As
such it can be seen as an analogous concept to the statistical variance
of a predictor. However unlike variance, there is no unique definition of
stability, with numerous proposed measures over 15 years of literature. In
this paper, instead of defining a new measure, we start from an axiomatic
point of view and identify what properties would be desirable. Somewhat
surprisingly, we find that the simple Pearson’s correlation coefficient has
all necessary properties, yet has somehow been overlooked in favour of
more complex alternatives. Finally, we illustrate how the use of this mea-
sure in practice can provide better interpretability and more confidence
in the model selection process. The data and software related to this
paper are available at https://github.com/nogueirs/ECML2016.
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1 Introduction

High-dimensional datasets can be very expensive in terms of computational
resources and of data collection. Predictive models in this situation often suffer
from the curse of dimensionality and tend to overfit the data. For these reasons,
feature selection (FS) has become an ubiquitous challenge that aims at selecting
a “useful” set of features [8].

Stability of FS is defined as the sensitivity of the FS procedure to small
perturbations in the training set. This issue is of course extremely relevant
with small training samples, e.g. in bioinformatics applications - if the alter-
ation/exclusion of just one training example results in a very different choice
of biomarkers, we cannot justifiably say the FS is doing a reliable job. In early
cancer detection, stability of the identified markers is a strong indicator of repro-
ducible research [6,12] and therefore selecting a stable set of markers is said to
be equally important as their predictive power [7].

The study of stability poses several problems such as: What impacts stability?
How can we make FS procedures more stable? How can we quantify it? A large
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part of the literature is dedicated to the later, which is the focus of this paper.
Indeed, at a literature search conducted at the time of writing, we identified at
least 10 different measures used to quantify stability [4,8,10,11,13,14,16,17,19,
21]. The existence of so many different measures without known properties may
lead to an incorrect interpretation of the stability values obtained.

As described by [8], FS procedures can have 3 types of outputs: a weighting
on the features also called scoring (e.g. ReliefF), a ranking on the features (e.g.
ranking by mutual information of the features with the target class) or a feature
set (e.g. any wrapper approach). A weighting can be mapped into a ranking, and
by applying a threshold on a ranking, a ranking can be mapped into a feature
set; but the reverse is clearly not possible. For this reason, there exist stability
measures for each type of output. In this paper, we focus on FS procedures that
return a feature set.

An Example. Imagine we have d = 5 features to choose from. We can model
the output feature set of the FS procedure by a binary vector s of length 5, where
a 1 at the f th position means the f th feature has been selected and a 0 means
it has not been selected. For instance, the vector

[
1 1 1 0 0

]
means that features

1–3 have been selected and features 4–5 have not been selected. Now imagine
we apply two distinct FS procedures P1 and P2 to M = 3 different samples of
the data and that we get the following output:

A1 =

⎡

⎣
s1
s2
s3

⎤

⎦ =

⎡

⎣
1 1 1 0 0
1 1 1 0 0
1 1 1 0 0

⎤

⎦ A2 =

⎡

⎣
1 1 1 0 0
1 0 1 1 0
1 0 1 0 0

⎤

⎦

⎫
⎬

⎭
M = 3 feature sets (1)

where the rows of A1 and A2 represent the feature sets respectively returned by
P1 and P2. All the feature sets in A1 are identical, therefore there is no varia-
tion in the output of the procedure. Each column of the matrix A1 represents
the selection of each one of the 5 features. The observed frequency of the first
three features is equal to 1 while the one of the two last features is equal to 0.
This situation corresponds to a fully stable selection. Now let us look at A2. In
that situation, we can see that there is some variation in the output of the FS
procedure since the feature sets in A2 are different. If we look at the second and
fourth columns of A2 corresponding to the selection of the second and fourth
feature over the 3 feature sets, we can see that they are selected with a frequency
equal to p̂2 = p̂4 = 1

3 , which shows some instability in the FS.
Quantifying the stability of FS consists in defining a function Φ̂ that takes

the output A of the FS procedure as an input and returns a stability value. It
is important to note that this is an estimate of a quantity, as the true stability
is a random variable. We present the general framework to quantify stability in
Sect. 2. Coming from an axiomatic point of view, we derive a set of properties
that we argue necessary for a stability measure and show that none of the existing
measures have all desired properties in Sect. 3. In Sect. 4, we propose the use
of the sample Pearson’s correlation coefficient showing that it has all required
properties and we provide an interpretation of the quantity estimated using this
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measure. Finally, we illustrate the use of stability in the context of FS by a L1-
regularized logistic regression and show how when coupled with the error of the
model, it can help select a regularizing parameter.

2 Background

2.1 General Framework

To quantify the stability of FS, the following steps are carried out [1]:

1. Take M perturbed versions of the original dataset D (e.g. by using a resam-
pling technique [3] such as bootstrap or noise injection [2]).

2. Apply the FS procedure to each one of the M samples obtained. This gives
a sequence A = [s1, ..., sM ]T of M feature sets.

3. Define a function Φ̂ : {0, 1}M×d → R taking the sequence of feature sets A as
an input and measuring the stability of the feature sets in A.

The main challenge here lies on the definition of an appropriate function Φ̂
that measures the stability in the choice of features in A. Before looking into the
approaches taken in the literature to define such a function Φ̂, we first establish
the following notations that will be used in the remainder of the paper. We can
denote the elements of the binary matrix A representing the M feature sets as
follows:

A =

⎡

⎢
⎣

s1
...

sM

⎤

⎥
⎦ =

⎛

⎜
⎜
⎜
⎝

x1,1 x1,2 · · · x1,d

x2,1 x2,2 · · · x2,d

...
...

. . .
...

xM,1 xM,2 · · · xM,d

⎞

⎟
⎟
⎟
⎠

↑ ↑ ↑
X1 X2 Xd

– For all f ∈ {1, ..., d}, the selection of the f th feature is modelled by a Bernoulli
variable1 Xf with unknown parameter pf . Therefore, each column of the
matrix A can be seen as a realisation of the variable Xf , from which we
will assume they are random samples.

– For all f in {1, ..., d}, p̂f = 1
M

∑M
i=1 xi,f is the observed frequency of the fth

feature and is the maximum likelihood estimator of pf .
– For all i in {1, ...,M}, ki = |si| is the cardinality of feature set si (i.e. the

number of features in si). When all feature sets in A are of identical cardinality,
we will simply denote the cardinality of the sets by k.

– For all (i, j) in {1, ...,M}2, ri,j denotes the size of the intersection between
feature sets si and sj (i.e. the number of features they have in common).

1 We therefore have a set of d correlated Bernoulli variables (X1, ..., Xd).
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2.2 Quantifying Stability

The main approach that can be found in the literature is the similarity-based
approach. It consists in defining the stability as the average pairwise simi-
larities between the feature sets in A [8]. Let φ : {0, 1}d × {0, 1}d → R be a
function that takes as an input two feature sets si and sj and returns a similarity
value between these two sets. Then the stability Φ̂(A) is defined as2:

Φ̂(A) =
1

M(M − 1)

M∑

i=1

M∑

j=1
j �=i

φ(si, sj).

This approach has been very popular in the literature and many similarity mea-
sures φ have been proposed to that end. Popular examples of similarity measures
are the Jaccard index [8] defined as follows:

φJaccard(si, sj) =
|si ∩ sj |
|si ∪ sj | =

ri,j
ki + kj − ri,j

.

For instance, if we take back the examples given in Eq. 1, using the Jaccard index
we get the stability values of:

Φ̂Jaccard(A1) =
1
3

(φJaccard(s1, s2) + φJaccard(s1, s3) + φJaccard(s2, s3)) = 1

Φ̂Jaccard(A2) =
1
3

(
2
4

+
2
3

+
2
3

)
=

11
18

� 0.61.

As expected, we get a smaller stability value in the second case.
Nevertheless, as we further discuss in Sect. 3, this similarity measure has been

shown to provide stability estimates Φ̂ that are biased by the cardinality of the
feature sets [11]. Based on this observation, Kuncheva [11] identifies a set of
desirable properties and introduces a new similarity measure φKuncheva between
two feature sets si and sj of identical cardinality as follows:

φKuncheva(si, sj) =
ri,j − E∇[ri,j ]

max(ri,j) − E∇[ri,j ]
=

ri,j − k2

d

k − k2

d

,

where E∇[ri,j ] is a correcting term equal to the expected value of ri,j when the FS
procedure randomly selects ki and kj features from the d available features. As
the random intersection of two sets of ki and kj objects follows a hypergeometric
distribution, this term is known to be equal to kikj

d which is equal to k2

d here
since ki = kj = k. This measure has been very popular in the literature because
of its known properties. Nevertheless, because it is only defined for feature sets
si and sj of identical cardinality, it can only be used to measure the stability of
FS algorithms that are guaranteed to select a constant number of features. As

2 φ is not necessarily symmetric.
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we have illustrated in example (1), the output of an FS procedure is not always
guaranteed to be of constant cardinality. Examples of such FS procedures are in
feature selection by hypothesis testing [15]. For this reason, several attempts at
extending this measure to feature sets of varying cardinality have been made in
the literature, somehow losing some of the important properties. Even though
most similarity measures used to measure stability are increasing functions of
the size of the intersection between the feature sets, they have shown to lack of
some other required properties.

Other approaches have been taken in the literature to define a function Φ̂,
without going through the definition of a similarity measure. A popular measure
in this category is Somol’s measure CWrel [16] (also called Relative Weighted
Consistency Measure). Its definition is a direct function of the observed frequen-
cies of selection of each feature p̂f . This is the only measure in this category that
is not biased by the cardinality of the feature sets in A and holds the property
of correction for chance.

Due to the multitude of stability measures, it is necessary to discriminate
between them with principled reasons which is the purpose of the next section.

3 Required Properties of a FS Stability Measure

In this section, we identify and argue for 4 properties which all stability mea-
sures should possess. These properties we will argue are necessary for a sensible
measure of stability and if missing even one, a measure will behave nonsensically
in certain situations. We will later demonstrate that from 10 stability measures
published and widely used in the literature, none of them possesses all these
properties.

Property 1: Fully Defined

Imagine we have an FS procedure: Procedure P . Procedure P sometimes returns
4 features, but sometimes 5, so the returned set size varies. It would seem sensible
to have a stability measure which accounts for this. Unfortunately not all do -
Kŕızek’s and Kuncheva’s measures [10,11] are undefined in this scenario.

Property 2: Upper/Lower Bounds

For useful interpretation of a stability measure and comparison across problems,
the range of values of a stability measure should be finite. Imagine we wanted
to evaluate the stability of an FS procedure and that we got a value of 0.9. How
can we interpret this value? If we know that the stability values can take values
in [0, 1], then this corresponds to a fairly high stability value as it is close to its
maximum 1. Let us imagine now that we have a stability value that can take
values in (−∞,+∞). A value of 0.9 is not meaningful any more.
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Fig. 1. Illustration of Property 3. Demonstration that Lustgarten’s measure violates
Property 3a [LEFT] by giving the stability when all feature sets in A are identical
against k for d = 10. Demonstration that Wald’s measure and CWrel violate Property
3b [RIGHT]. Features [1, ..., k] are selected half of the time and feature [1, ..., k− 1] are
selected the other half of the time. Stability values against k for d = 10 and M = 100.

Property 3:

(a) Deterministic Selection → Maximum Stability Imagine that Proce-
dure P selects the same k features every time, regardless of the supplied
data. This is a completely stable method, so it would seem sensible that
any stability measure should reflect this, returning its maximum value. Sur-
prisingly, this is not always the case. Figure 1 [LEFT] shows the stability
value using Lustgarten’s measure [13] when for different values of k. The
result clearly varies with k. That is, if Procedure P1 were to repeatedly
select features 1–4 and Procedure P2 then repeatedly selects features 1–5:
this measure judges P1 and P2 to have different degrees of stability, even
though they are both completely deterministic procedures.

(b) Maximum Stability → Deterministic Selection The converse to the
above should also hold. If a measure has a maximum possible value C,
it should only return that value when Procedure P is deterministic. For
example, imagine Procedure P selects features 1–4 half the time, and 1–5
the rest of the time. Wald’s measure and CWrel return a value of 1 in this
scenario – their maximum possible value, even though clearly there is some
variation in the feature sets. Figure 1 [RIGHT] illustrates this.

Property 4: Correction for Chance

This was first noted by Kuncheva [11]. This ensures that when the FS is random,
the expected value of the stability estimate is constant, which we have set here
to 0 by convention. Imagine that a procedure P1 randomly selects 5 features
and that a procedure P2 randomly selects 6 features, the stability value should
be the same. As illustrated by Fig. 2, this is not the case for all measures.
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Fig. 2. Demonstration that Hamming, Jaccard, POG and Dice violate Property 4.
Random selection of k features with probability 50 % and of k − 1 and k + 1 features
with probability 25 % each. Stability against k for d = 10 and M = 100.

Table 1. Properties of Stability Measures

Summary

We provide a formal description of the required properties and sum up the
properties of the different existing stability measures3 in Table 1. We can observe
that none of the measures satisfy all four desired properties.

1. Fully defined. Φ̂ is defined for any sequence A of feature sets.
2. Bounds. Φ̂ is bounded by constants.
3. Maximum. Φ̂ reaches its maximum ⇐⇒ All feature sets in A are identical.
4. Correction for chance. E∇[Φ̂(A)] = 0 when the selection is random.

3 Sketches of proofs are given in the supplementary material available online at www.
cs.man.ac.uk/∼nogueirs/files/supplementary-material-ECML-2016.pdf.

www.cs.man.ac.uk/~nogueirs/files/supplementary-material-ECML-2016.pdf
www.cs.man.ac.uk/~nogueirs/files/supplementary-material-ECML-2016.pdf
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4 The Sample Pearson’s Correlation Coefficient

In this section, we first demonstrate that the stability measure using the sample
Pearson’s correlation coefficient4 as a similarity measure satisfies all 4 properties.
The sample Pearson’s correlation coefficient between two feature sets si and sj
is by definition:

φPearson(si, sj) =
1
d

∑d
f=1(xi,f − x̄i,.)(xj,f − x̄j,.)

√
1
d

∑d
f=1(xi,f − x̄i,.)2

√
1
d

∑d
f=1(xj,f − x̄j,.)2

,

where ∀i ∈ {1, ...,M}, x̄i,. = 1
d

∑d
f=1 xi,f = ki

d .
As other similarity measures, we can point out that φPearson(si, sj) is an

increasing function of the size of the intersection of the selected features ri,j
between the feature sets si and sj . Moreover, the sample Pearson correlation
coefficient is already the similarity measure used when the FS outputs a scoring
on the features [8], even though it has never been used or studied in the context
of feature sets. The use of Pearson’s correlation coefficient is therefore going
towards a unification of the assessment of stability of FS.

The sample Pearson’s correlation also subsumes other measures when the
cardinality of the feature sets is constant, as stated by Theorem 2. This result
is quite surprising, knowing that coming from an axiomatic point of view on a
set of desirable properties, Kuncheva defined a measure that is indeed a specific
case of the well-known sample Pearson’s correlation coefficient φPearson.

Theorem 1. For all (i, j) ∈ {1, ...,M}2, the sample Pearson’s correlation coef-
ficient can be re-written:

φPearson(si, sj) =
ri,j − E∇[ri,j ]

d υiυj
=

ri,j − kikj

d

d υiυj
, (2)

where ∀i ∈ {1, ...,M}, υi =
√

ki

d (1 − ki

d ). Therefore it possesses the property of
correction for chance.

Proof. The proof is provided in the supplementary material.

Theorem 2. When k is constant, the stability using Pearson’s correlation is
equal to some other measures, that is:

Φ̂Pearson = Φ̂Kuncheva = Φ̂Wald = Φ̂nPOG.

Proof. Straightforward using Theorem 1 and the definition of the other similarity
measures given in the supplementary material.

4 Also called the Phi coefficient in this case since we are dealing with binary vectors.
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4.1 Required Properties

Property 1: Fully Defined. As most of the other similarity measures, we can
see in Eq. 2 that the given expression presents indeterminate forms for ki = 0,
kj = 0, ki = d and kj = d. Because these indeterminate forms correspond
to situations in which either all features or none of them are selected, these
indeterminate forms are not critical in the context of feature selection since the
main aim of FS is to identify a non-empty strict subset of relevant features taken
from the available features. Nevertheless, for completeness, following the works
on the correlation coefficient in [5], we set φPearson to 0 when:

– ki = 0 and kj �= 0 or vice-versa;
– ki = d and kj �= d or vice-versa.

When ki = kj = 0 or ki = kj = d, then the feature sets are identical (either
empty set ∅ or full set Ω) and in that case, we set φPearson to be equal to 1 so it
meets the property of maximum. Therefore, the resulting stability Φ̂Pearson has
the property of being fully defined.

Property 2: Bounds. φPearson is known to take values between −1 and 1: the
similarity between two sets is minimal (i.e. equal to −1) when the two sets are
fully anti-correlated (i.e. when si and sj are complementary sets) and maximal
(equal to 1) when the two sets are fully correlated (i.e. identical). Since Φ̂Pearson

is the average value of φPearson over all the possible pairs in A, Φ̂Pearson will
also be in the interval −1 and 1 and is therefore bounded by constants.

Theorem 3. The stability estimate Φ̂Pearson is asymptotically in the interval
[0, 1] as M approaches infinity.

Proof. The proof is provided in the supplementary material.
The asymptotic bounds on the stability estimates make the stability values

obtained more interpretable. Indeed, knowing how the stability values behave
as M increases allows us to understand better how to interpret these values.
Theorem 3 tackles the misconception according to which negative stability val-
ues correspond to FS algorithms worse than random: asymptotically, any FS
procedure will have a positive estimated stability.

Property 3: Maximum. When si = sj , we have φPearson(si, sj) = 1 and
therefore Φ̂Pearson = 1 when all the feature sets in A are identical. Conversely,
φPearson(si, sj) = 1 implies si = sj , which gives us that Φ̂Pearson = 1 implies all
sets in A are identical.

Property 4: Correction for Chance. This property is given by Theorem 1.
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(a) Scenario 1: Φ̂ = 1 (b) Scenario 2: Φ̂ = 0.58 (c) Scenario 3: Φ̂ = 0

Fig. 3. The parameters p̂f of the random variables Xf in 3 scenarios for d = 15

4.2 Interpreting Stability

In this section, we aim at providing an interpretation of the stability value when
using the sample Pearson’s correlation. For simplicity, we focus on the case where
the FS selects a constant number of features k. Hereafter, Φ̂ will denote Φ̂Pearson.
By phrasing the concept of stability in this way, it highlights an important point
- that we are estimating a quantity. The stability is a random variable, from
which we have a sample of size M .

Let V̂ ar(Xf ) = M
M−1 p̂f (1 − p̂f ) be the unbiased sample variance of the vari-

able Xf . When the cardinality of the feature sets is constant, we can re-write
the stability using the sample Pearson’s correlation coefficient as follows:

Φ̂Pearson = 1 − S

Smax
, (3)

where the average total variance S = 1
d

∑d
f=1 V̂ ar(Xf ) is a measure of the

variability in the choice of features and where Smax = k
d

(
1 − k

d

)
the maximal

value of S given that the FS procedure is selecting k features per feature set. In
this situation, Eq. 3 shows that the stability decreases monotonically with the
average variance of Xf .

Because V̂ ar(Xf ) = 0 whenever p̂f = 0 or p̂f = 1, the maximum stability
is achieved when all features are selected with an observed frequency equal to
0 or 1. Figure 3 illustrates how to interpret the value Φ̂ in 3 scenarios. Let us
assume we have an FS procedure selecting k = 6 features out of d = 15 features.
Scenario 1 illustrates the situation in which the FS algorithm always returns the
same feature set made of the first k features. In that situation, the probability of
selection of the k first features is equal to 1 and the one of the remaining features
is equal to 0, which gives S = 0 and therefore a stability Φ̂ equal to its maximal
value 1. Scenario 2 illustrates the case where the FS is not completely stable,
even though we can still distinguish two group of features. In that scenario, the
stability is equal to Φ̂ = 0.58. Scenario 3 is the limit case scenario in which the
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selection of the k features is random. In that scenario, the d features have a
frequency of selection all equal to p̂f = k

d = 6
15 . In that situation, the variance

V ar(Xf ) = k
d (1 − k

d ) = 0.24 of each of the random variables Xf is maximal.
This gives S = Smax and therefore Φ̂ = 0. These scenarios illustrate the need to
rescale the mean total variance by the one of a random FS procedure and give
a useful interpretation of the estimated stability using Pearson’s correlation.

5 Experiments

In the previous section we argued for an axiomatic treatment of stability
measures—and demonstrated that the simple solution of using Pearson’s cor-
relation coefficient allows for all desirable properties.

In this section, we illustrate how stability can be used in practice to select
a regularizing parameter in the context of feature selection by a L1-regularized
regression. We show how without sacrificing a significant amount in terms of
error, a regularizing parameter corresponding to a higher stability can be chosen.
On the artificial dataset considered, we show how an increase in stability can
help discarding the use of irrelevant features in the final model.

5.1 Description of Dataset

We use a synthetic dataset [9] – a binary classification problem, with 2000
instances and d = 100 features, where only the first 50 features are relevant
to the target class. Instances of the positive class are i.i.d. drawn from a normal
distribution with mean μ+ = (1, ..., 1

︸ ︷︷ ︸
50

, 0, ..., 0
︸ ︷︷ ︸

50

) and covariance matrix:

Σ =
[
Σ∗

50×50 050×50

050×50 I50×50

]

where Σ∗
50×50 is the matrix with ones on the diagonal and ρ, a parameter taken

in [0, 1] controlling the degree of redundancy everywhere else. The mean for the
negative class is taken equal to μ− = (−1, ...,−1

︸ ︷︷ ︸
50

, 0, ..., 0
︸ ︷︷ ︸

50

). The larger the value

of ρ, the more the 50 relevant features will be correlated to each other.

5.2 Experimental Procedure and Results

We use L1-regularized logistic regression with 100 different regularizing para-
meters on the synthetic dataset for different degrees of redundancy ρ. The L1-
regularization results in some coefficients being forced to zero – any coefficients
left as non-zero after fitting the model are regarded as “selected” by the model.5

5 You can reproduce these experiments in Matlab with the code given at https://
github.com/nogueirs/ECML2016.

https://github.com/nogueirs/ECML2016
https://github.com/nogueirs/ECML2016
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Fig. 4. Results for ρ = 0. Each point on the line corresponds to a different regularizing
parameter λ. We can see that both high stability and low error are reached for λ =
4.12 × 10−4.

Our experimental procedure is as follows. We take the 2000 samples and
divide into 1000 for model selection (the regularizing parameter λ) and 1000 for
selection of the final set of features. The model selection set can be used simply
to optimize error, or to optimize error/stability simultaneously – the experiments
will demonstrate that the latter provides a lower false positive rate in the final
selection of features.

For each regularizing parameter λ, we take M = 100 bootstrap samples to
train our models. We then compute the stability Φ̂ and the out-of-bag (OOB)
estimate of the error6 using the coefficients returned.

Figure 4 shows the OOB error [LEFT] and the stability [RIGHT] versus the
regularization parameter λ for a degree of redundancy ρ = 0 (i.e. the relevant
features are independent from each other). On this case, picking up a value of λ
that minimizes the OOB error is also the value of λ that maximizes the stability.
Indeed for λ = 4.12× 10−4, we get an error of 0.30 and a stability of 0.98, which
means the same features are picked up on nearly all bootstrap samples.

Let us now take a degree of redundancy ρ = 0.3. In a normal situation,
we would choose the regularizing parameter that minimizes the error which is
λ = 0.009, shown in the left of Fig. 5. The right of the same figure shows the
pareto optimal front, the trade-off of the two objectives – if we sacrifice some
error, we can drastically increase stability.

Figure 6 gives the observed frequencies of selection p̂f of each feature over
the M = 100 bootstraps for λ = 0.009 [LEFT] and λ = 0.023 [RIGHT]. We
can see on the right figure that nearly all irrelevant features have a frequency of
selection of 0. Only two irrelevant features have a frequency of selection different
from 0 with p̂f = 0.01, which means they have been selected on one of the
100 bootstrap samples only. From looking at the values of p̂f for the value of
λ minimizing the error on the left, we cannot discriminate the set of relevant
features from the set of irrelevant ones by looking at the frequencies of selection.

6 Here, the error is taken to be the negative log-likelihood, a measure of goodness-of-fit
of the model. The lower the value, the better the model.



454 S. Nogueira and G. Brown

Fig. 5. If we optimize just OOB error [LEFT] we obtain λ = 0.009, but if we optimize
a trade-off [RIGHT] of error/stability, sacrificing a small amount of error we get λ =
0.023, and can significantly increase feature selection stability.

(a) λ = 0.009 (b) λ = 0.023

Fig. 6. The observed frequencies of selection p̂f for each feature for two values of λ in
the pareto front for ρ = 0.3. The Features on the left of the red vertical line correspond
to relevant features and the ones on the right to irrelevant ones. (Color figure online)

Even though λ = 0.023 does not provide a high stability value, we can see how
we can benefit from taking λ = 0.023 instead of λ = 0.009. The features used in
the model (the ones with a non-zero coefficient) are indeed relevant to the target
class. As explained in Sect. 4.2, the closer the observed frequencies are to 0 or 1,
the higher the stability value will be.

Final feature set chosen: The model selection procedure on the first 1000
examples has suggested λ = 0.009 and λ = 0.023. We can now use these on
the final 1000 holdout set to select a set of features, again with L1 logistic
regression, and compare the 2 feature sets returned. Table 2 shows the false
positives (irrelevant features that were falsely identified as relevant) and the
false negatives (relevant features that were missed), for three different degrees of
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Table 2. False positives and false negatives for different degrees of redundancy ρ

Redundancy λerror λφ

Low FP = 4, FN = 17 FP = 0, FN = 17

Medium FP = 7, FN = 24 FP = 0, FN = 25

High FP = 5, FN = 35 FP = 0, FN = 33

increasing redundancy. In all cases, the methodology involving stability reduces
the FP rate to zero, with no significant effect on FN rate.

This case study also shows that feature redundancy is a source of instability
of FS, as hypothesized by [8,9,18]. Similar results have been obtained for ρ = 0.5
and ρ = 0.8, with smaller stability values for the data points in the pareto front
as we increased the degree of redundancy ρ.

6 Conclusions and Future Work

There are many different measures to quantify stability in the literature – we
have argued for a set of properties that should be present in any measure, and
found that several existing measures are lacking in this respect. Instead, we
suggest the use of Pearson’s correlation as a similarity measure, in the process
showing that it is a generalization of the widely used Kuncheva index. We provide
an interpretation of the quantity estimated through the typical procedure and
illustrate its use in practice. We illustrate on synthetic datasets how stability
can be beneficial and provides more confidence in the feature set returned.

Depending on the type of application, we might want the stability measure
to take into account feature redundancy. Such measures attempt to evaluate the
stability of the information in the feature sets returned by the FS procedure
rather than the stability of the feature sets themselves [20,21]. These measures
are generalizations of POG, nPOG (called POGR and nPOGR [21]) and of the
Dice coefficient [19] and reduce to these when there is no redundancy between the
features. Because their simpler versions do not have the set of desired properties
as shown in Table 1, we leave this type of measures to future work.
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