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Abstract. Recent graph computation approaches have demonstrated that a sin-
gle PC can perform efficiently on billion-scale graphs. While these approaches
achieve scalability by optimizing I/O operations, they do not fully exploit the ca-
pabilities of modern hard drives and processors. To overcome their performance,
in this work, we introduce the Bimodal Block Processing (BBP), an innovation
that is able to boost the graph computation by minimizing the I/O cost even fur-
ther. With this strategy, we achieved the following contributions: (1) M-Flash,
the fastest graph computation framework to date; (2) a flexible and simple pro-
gramming model to easily implement popular and essential graph algorithms,
including the first single-machine billion-scale eigensolver; and (3) extensive ex-
periments on real graphs with up to 6.6 billion edges, demonstrating M-Flash’s
consistent and significant speedup.

Keywords: graph algorithms, graph processing, graph mining, complex net-
works

1 Introduction

Large graphs with billions of nodes and edges are increasingly common in many do-
mains and applications, such as in studies of social networks, transportation route net-
works, citation networks, and many others. Distributed frameworks (find a thorough
review in the work of Lu et al. [13]) have become popular choices for analyzing these
large graphs. However, distributed approaches may not always be the best option, be-
cause they can be expensive to build [11], and hard to maintain and optimize.

These potential challenges prompted researchers to create single-machine, billion-
scale graph computation frameworks that are well-suited to essential graph algorithms,
such as eigensolver, PageRank, connected components and many others. Examples are
GraphChi [11] and TurboGraph [5]. Frameworks in this category define sophisticated
processing schemes to overcome challenges induced by limited main memory and poor
locality of memory access observed in many graph algorithms. However, when studying
previous works, we noticed that despite their sophisticated schemes and novel program-
ming models, they do not optimize for disk operations and data locality, which are the
core of performance in graph processing frameworks.
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2. RELATED WORKS

In the context of single-node, billion-scale, graph processing frameworks, we
present M-Flash, a novel scalable framework that overcomes critical issues found in
existing works. The innovation of M-Flash confers it a performance many times faster
than the state of the art. More specifically, our contributions include:

1. M-Flash Framework & Methodology: we propose a novel framework named
M-Flash that achieves fast and scalable graph computation. M-Flash (https:
//github.com/M-Flash) introduces the Bimodal Block Processing, which sig-
nificantly boosts computation speed and reduces disk accesses by dividing a graph
and its node data into blocks (dense and sparse) to minimize the cost of I/O.

2. Programming Model: M-Flash provides a flexible and simple programming
model, which supports popular and essential graph algorithms, e.g., PageRank,
connected components, and the first single-machine eigensolver over billion-node
graphs, to name a few.

3. Extensive Experimental Evaluation: we compared M-Flash with state-of-the-art
frameworks using large graphs, the largest one having 6.6 billion edges (YahooWeb
https://webscope.sandbox.yahoo.com). M-Flash was consistently and sig-
nificantly faster than GraphChi [11], X-Stream [15], TurboGraph [5], MMap [12],
and GridGraph [19] across all graph sizes. Furthermore, it sustained high speed
even when memory was severely constrained, e.g., 6.4X faster than X-Stream,
when using 4GB of Random Access Memory (RAM).

2 Related Works

A typical approach to scalable graph processing is to develop a distributed framework.
This is the case of Gbase [7], Powergraph, Pregel, and others [13]. Among these ap-
proaches, Gbase is the most similar to M-Flash. Despite the fact that Gbase and M-Flash
use a block model, Gbase is distributed and lacks an adaptive edge processing scheme
to optimize its performance. Such scheme is the greatest innovation of M-Flash, con-
ferring to it the highest performance among existing approaches, as demonstrated in
Section 4.

Among the existing works designed for single-node processing, some of them are
restricted to SSDs. These works rely on the remarkable low-latency and improved I/O of
SSDs compared to magnetic disks. This is the case of TurboGraph [5], which relies on
random accesses to the edges — not well supported over magnetic disks. Our proposal,
M-Flash, avoids this drawback by avoiding random accesses.

GraphChi [11] was one of the first single-node approaches to avoid random
disk/edge accesses, improving the performance over mechanical disks. GraphChi par-
titions the graph on disk into units called shards, requiring a preprocessing step to sort
the data by source vertex. GraphChi uses a vertex-centric approach that requires a shard
to fit entirely in memory, including both the vertices in the shard and all their edges (in
and out). As we demonstrate, this fact makes GraphChi less efficient when compared
to our work. M-Flash requires only a subset of the vertex data to be stored in memory.

MMap [12] introduced an interesting approach based on OS-supported mapping
of disk data into memory (virtual memory). It allows graph data to be accessed as if
they were stored in unlimited memory, avoiding the need to manage data buffering. Our
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2. RELATED WORKS

Fig. 1. Organization of edges and vertices in M-Flash. Edges (left): example of a graph’s adja-
cency matrix (in light blue color) using 3 logical intervals (β = 3); G(p,q) is an edge block with
source vertices in interval I(p) and destination vertices in interval I(q); SP(p) is a source-partition
containing all blocks with source vertices in interval I(p);DP(q) is a destination-partition contain-
ing all blocks with destination vertices in interval I(q). Vertices (right): the data of the vertices
as k vectors (γ1 ... γk), each one divided into β logical segments.

framework uses memory mapping when processing edge blocks but, with an improved
engineering, M-Flash consistently outperforms MMap, as we demonstrate.

GridGraph [19] divides the graphs into blocks and processes the edges reusing the
vertices’ values loaded in main memory (in-vertices and out-vertices). Furthermore,
it uses a two-level hierarchical partitioning to increase the performance, dividing the
blocks into small regions that fit in cache. When comparing GridGraph with M-Flash,
both divide the graph using a similar approach with a two-level hierarchical optimiza-
tion to boost computation. However, M-Flash adds a bimodal partition model over the
block scheme to optimize even more the computation for sparse blocks in the graph.

GraphTwist [18] introduces a 3D cube representation of the graph to add support
for multigraphs. The cube representation divides the edges using three partitioning lev-
els: slice, strip, and dice. These representations are equivalent to the block representa-
tion (2D) of GridGraph and M-Flash, with the difference that it adds one more dimen-
sion (slice) to organize the edge metadata for multigraphs. The slice dimension filters
the edges’ metadata optimizing performance when not all the metadata is required for
computation. Additionally, GraphTwist introduces pruning techniques to remove some
slices and vertices that they do not consider relevant in the computation.

M-Flash also draws inspiration from the edge streaming approach introduced by
X-Stream’s processing model [15][4], improving it with fewer I/O operations for dense
regions of the graph. Edge streaming is a sort of stream processing referring to unre-
stricted data flows over a bounded amount of buffering. As we demonstrate, this leads
to optimized data transfer by means of less I/O and more processing per data transfer.
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3. M-FLASH

3 M-Flash

The design of M-Flash considers the fact that real graphs have a varying density of
edges; that is, a given graph contains dense regions with many more edges than other
regions that are sparse. In the development of M-Flash, and through experimentation
with existing works, we noticed that these dense and sparse regions could not be pro-
cessed in the same way. We also noticed that this was the reason why existing works
failed to achieve superior performance. To cope with this issue, we designed M-Flash to
work according to two distinct processing schemes: Dense Block Processing (DBP) and
Streaming Partition Processing (SPP). For full performance, M-Flash uses a theoretical
I/O cost-based scheme to decide the kind of processing to use in face of a given block,
which can be dense or sparse. The final approach, which combines DBP and SPP, was
named Bimodal Block Processing (BBP).

3.1 Graph Representation in M-Flash

A graph in M-Flash is a directed graph G = (V,E) with vertices v ∈ V labeled with
integers from 1 to |V |, and edges e = (source,destination), e ∈ E. Each vertex has
a set of attributes γ = {γ1,γ2, . . . ,γK}; edges also might have attributes for specific
processings.

Blocks in M-Flash: Given a graph G, we divide its vertices V into β intervals denoted
by I(p), where 1 ≤ p ≤ β . Note that I(p) ∩ I(p′) = ∅ for p 6= p′, and

⋃
p I(p) = V .

Consequently, as shown in Figure 1, the edges are divided into β 2 blocks. Each block
G(p,q) has a source node interval p and a destination node interval q, where 1≤ p,q≤
β . In Figure 1, for example, G(2,1) is the block that contains edges with source vertices
in the interval I(2) and destination vertices in the interval I(1). We call this on-disk
organization as partitioning. Since M-Flash works by alternating one entire block in
memory for each running thread, the value of β is automatically determined by the
following equation:

β =

⌈
φ(T +1) |V |

M

⌉
(1)

where the constant 1 refers to the need of one buffer to store the input vertex values that
are shared between threads (read-only), φ is the amount of data to represent each vertex,
T is the number of threads, |V | is the number of vertices, and M is the available RAM.
For example, 4 bytes of data per node, 2 threads, a graph with 2 billion nodes, and for 1
GB RAM, β = d(4×(2+1)×(2×109))/(230)e= 23, thus requiring 232 = 529 blocks.
The number of threads enters the equation because all the threads access the same block
to avoid multiple seeks on disk, and they use an exclusive memory buffer to store the
vertex data processed (one buffer per thread), so to prevent “race” conditions.

3.2 The M-Flash Processing Model

This section presents our proposed processing model. We first describe the two strate-
gies targeted at processing dense or sparse blocks. Next, we present the novel cost-based
optimization used to determine the best processing strategy.
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3. M-FLASH

G (3,3) 

Source I(2) 

Source I(1) 

Source I(3) 

Destination I(3) Destination I(2) Destination I(1) 

G (2,3) 

G (1,3) 

G (3,2) 

G (2,2) 

G (1,2) 

G (3,1) 

G (2,1) 

G (1,1) 

Fig. 2. M-Flash’s computation schedule for a graph with 3 intervals. Vertex intervals are rep-
resented by vertical (Source I) and horizontal (Destination I) vectors. Blocks are loaded into
memory, and processed in a vertical zigzag manner, indicated by the sequence of red, orange and
yellow arrows. This enables the reuse of input, as when going from G(3,1) to G(3,2), M-Flash
reuses source node interval I(3)), which reduces data transfer from disk to memory.

Dense Block Processing (DBP): Figure 2 illustrates the DBP; notice that vertex inter-
vals are represented by vertical (Source I) and horizontal (Destination I) vectors. After
partitioning the graph into blocks, we process them in a vertical zigzag order, as illus-
trated. There are three reasons for this order: (1) we store the computation results in
the destination vertices; so, we can “pin” a destination interval (e.g., I(1)) and process
all the vertices that are sources to this destination interval (see the red vertical arrow);
(2) using this order leads to fewer reads because the attributes of the destination ver-
tices (horizontal vectors in the illustration) only need to be read once, regardless of the
number of source intervals. (3) after reading all the blocks in a column, we take a “U
turn” (see the orange arrow) to benefit from the fact that the data associated with the
previously-read source interval is already in memory.

Within a block, besides loading the attributes of the source and des-
tination intervals of vertices into RAM, the corresponding edges e =
〈source,destination,edge properties〉 are sequentially read from disk, as explained in
Figure 3. These edges, then, are processed using a user-defined function so to achieve
the desired computation. After all blocks in a column are processed, the updated
attributes of the destination vertices are written to disk.
Streaming Partition Processing (SPP): The performance of DBP decreases for

graphs with sparse blocks; this is because, for a given block, we have to read more
data from the source intervals of vertices than from the very blocks of edges. In such
cases, SPP processes the graph using partitions instead of blocks. A graph partition is
a set of blocks sharing the same source node interval – a line in the logical partitioning,
or, similarly, a set of blocks sharing the same destination node interval – a column in
the logical partitioning. Formally, a source-partition SP(p) =

⋃
q G(p,q) contains all the
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3. M-FLASH

Fig. 3. Example of DBP I/O operations to process the dense block G(2,1).

Fig. 4. I/O operations for SPP taking SP(3) and DP(1) as ilustrative examples. Step 1: the edges of
source-partition SP(3) are sequentially read and combined with the values of their source vertices
from I(3). Next, edges are grouped by destination, and written to β files, one for each destination
partition. Step 2: the files corresponding to destination-partition DP(1) are sequentially processed
according to a given desired computation, with results written to destination vertices in I(1).

blocks with edges having source vertices in the interval I(p); a destination-partition
DP(q) =

⋃
p G(p,q) contains all the blocks with edges having destination vertices in the

interval I(q). For example, in Figure 1, SP(1) is the union of blocks G(1,1), G(1,2), and
G(1,3); meanwhile, DP(3) is the union of blocks G(1,3), G(2,3), and G(3,3). In a graph,
hence, there are β source-partitions and β destination-partitions.

Considering the graph organized into partitions, SPP takes two steps (see Figure 4).
In the first step, for a given source-partition SP(p), it loads the values of the vertices of
the corresponding interval I(p); next, it reads the edges of the partition SP(p) sequen-
tially from disk, storing them in a buffer together with their source-vertex values. At
this point, it sorts the buffer in memory, grouping the edges by destination. Finally, it
stores the edges on disk into β files, one for each of the β destination-partitions. This
processing is performed for each source-partition SP(p), 1 ≤ p ≤ β , so to iteratively
build the β destination-partitions.

In the second step, after processing the β source-partitions (each with β blocks),
it is possible to read the β files according to their destinations, so to logically “build”
β destination-partitions DP(q), 1 ≤ q ≤ β , each one containing edges together with
their source-vertex values. For each destination-partition DP(q), we read the vertices
of interval I(q); next, we sequentially read the edges, processing their values through a
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3. M-FLASH

user-defined function. This function uses the properties of the vertices and of the edges
to perform specific computations whose results will update the vertices. Finally, SPP
stores the updated vertices of interval I(q) back on disk.

Bimodal Block Processing (BBP): Schemes DBP and SPP improve the performance
in complementary circumstances. But, How can we decide which processing scheme to
use when we are given a graph block to process? To answer this question, we join DBP
and SPP into a single scheme – the Bimodal Block Processing (BBP). The combined
scheme uses the theoretical I/O cost model proposed by Aggarwal and Vitter [1] to
decide for SBP or SPP. In this model, the I/O cost of an algorithm is equal to the number
of disk blocks with size B transferred between disk and memory plus the number of non-
sequential reads (seeks). Since we use this model to choose the scheme with the smaller
cost, we need to algebraically determine the cost of each scheme, as follows.

For processing a graph G= {V,E}, DBP performs the following operations: it reads
the |V | vertices β times and it writes the |V | vertices once; it also reads the |E| edges
once – disk blocks of size B, vertices and edges with constant sizes omitted from the
equation for simplification. β 2 seeks are necessary because the edges are read sequen-
tially. Hence, the I/O cost for DBP is given by:

O (DBP(G)) = O

(
(β +1) |V |+ |E|

B
+β

2
)

(2)

In turn, SPP initially reads the |V | source vertices and the |E| edges; then, still in its
first step, it sorts (simple shuffling) the |E| edges grouping them by destination into a
set of edges and vertices |Ê|, writing them to disk. In its second step, it reads the Ê
edges/vertices to perform the update operation, writing |V | destination vertices back to
disk. The I/O cost for SPP comes to be:

O (SPP(G)) = O

(
2 |V |+ |E|+2

∣∣Ê∣∣
B

+β

)
(3)

Equations 2 and 3 define the I/O cost for one processing iteration over the whole graph
G. However, in order to decide in relation to the graph blocks, we are interested in the
costs of Equations 2 and 3 divided by the number of graph blocks β 2. The result, after
the appropriate algebra, reduces to Equations 4 and 5.

O
(

DBP
(

G(p,q)
))

= O

(
ϑφ (1+1/β )+ξ ψ

B

)
(4)

O
(

SPP
(

G(p,q)
))

= O

(
2ϑφ/β +2ξ (φ +ψ)+ξ ψ

B

)
(5)

where ξ is the number of edges in G(p,q), ϑ is the number of vertices in the interval,
and φ and ψ are, respectively, the number of bytes to represent a vertex and an edge e.
Once we have the costs per graph block of DBP and SPP, we can decide between one
and the other by simply analyzing the ratio SPP/DBP:

O

(
SPP
DBP

)
= O

(
1
β
+

2ξ

ϑ

[
1+

ψ

φ

])
(6)
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3. M-FLASH

Algorithm 1 MAlgorithm: Algorithm Interface for coding in M-Flash
initialize (Vertex v)
process (Vertex u, Vertex v, EdgeData data)
gather (Accum v 1, Accum v 2, Accum v out)
apply (Vertex v)

Algorithm 2 PageRank in M-Flash
degree(v): = out degree for Vertex v
initialize(v): v.value = 0
process(u, v, data): v.value += u.value/ degree(u)
gather(v 1, v 2, v out): v out = v 1 + v 2
apply(v): v.value = 0.15 + 0.85 * v.value

This ratio leads to the final decision equation:

BlockType
(

G(p,q)
)
=

{
sparse, i f O

(
SPP
DBP

)
< 1

dense, otherwise
(7)

We apply Equation 6 to select the best option according to Equation 7. With this
scheme, BBP is able to select the best processing scheme for each graph block. In
Section 4, we demonstrate that this procedure yields a performance superior than the
current state-of-the-art frameworks.

3.3 Programming Model in M-Flash

The M-Flash’s computational model, which we named MAlgorithm (short for Matrix
Algorithm Interface) is shown in Algorithm 1. Since MAlgorithm is a vertex-centric
model, it stores computation results in the destination vertices, allowing for a vast set
of iterative computations, such as PageRank, Random Walk with Restart, Weakly Con-
nected Components, Sparse Matrix Vector Multiplication, Eigensolver, and Diameter
Estimation.

The MAlgorithm interface has four operations: initialize, process, gather, and ap-
ply. The initialize operation, optionally, loads the initial value of each destination ver-
tex; the process operation receives and processes the data from incoming edges (neigh-
bors) – this is where the desired processing occurs; the gather operation joins the results
from the multiple threads so to consolidate a single result; finally, the apply operation
is able to perform finalizing operations, such as normalization – apply is optional.

3.4 System Design & Implementation

M-Flash starts by preprocessing an input graph dividing the edges into β partitions and
counting the number of edges per logical block (β 2 blocks), at the same time that the
blocks are classified as sparse or dense using Equation 7. Note that M-Flash does not
sort the edges during preprocessing, it simply divides them into β 2 blocks, β 2 � |V |.
In a second preprocessing, M-Flash processes the graph according to the organization
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4. EVALUATION

Algorithm 3 Algorithm M-Flash
Input: Graph G(V,E) and vertex attributes γ

Input: user-defined MAlgorithm program
Input: memory size M and number of iterations iter
Output: vector v with vertex results
1: set φ from γ attributes, and β using equation 1. ϑ = |V |/β

2: execute graph preprocessing and partitioning
3: for i = 1 to iter do
4: execute the first step of SPP (Figure 4) to process the sparse source-partitions
5: for q = 1 to β do
6: load vertex values of destination interval I(q)

7: initialize I(q) of v using MAlgorithm.initialize
8: if there is a sparse destination-partition associated with I(q) then
9: for each edge

10: invoke MAlgorithm.process storing results in vector v
11: if q is odd then
12: partition-order = {1 to β}
13: else
14: partition-order = {β to 1}
15: for p = {partition-order} do
16: if G(p,q) is dense then
17: load vertex values of source interval I(p)

18: for each edge in G(p,q)

19: invoke MAlgorithm.process storing results in vector v
20: invoke MAlgorithm.gather for I(q) of v
21: invoke MAlgorithm.apply for I(q) of v
22: store interval I(q) of vector v

given by the concept of source-partition as seen in Section 3.2. At this point, blocks
are only a logical organization, while partitions are physical. The source-partitions are
read and, whenever a dense block is found, the corresponding edges are extracted from
the partition and a file is created for this block in preparation for DBP; the remaining
edges in the source-partition will be ready for processing using SPP. Notice that, after
the second preprocessing, the logical blocks classified as dense, are materialized into
physical files. The total I/O cost for preprocessing is 4|E|

B , where B is the size of each
block transferred between disk and memory. Algorithm 3 shows the pseudo-code of
M-Flash.

4 Evaluation

We compare M-Flash (https://github.com/M-Flash) with multiple state-of-the-
art approaches: GraphChi, TurboGraph, X-Stream, MMap, and GridGraph. For a fair
comparison, we used the experimental setups recommended by the respective authors.
GridGraph did not publish nor share its code, so the comparison is based on the re-
sults reported in its publication. We omit the comparison with GraphTwist because it
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is not accessible and its published results are based on a hardware that is less powerful
than ours. We use four graphs at different scales (See Table 1), and we compare the
runtimes of all approaches for two well-known essential algorithms PageRank (Sub-
section 4.2) and Weakly Connected Components (Subsection 4.3). To demonstrate how
M-Flash generalizes to more algorithms, we implemented the Lanczos algorithm (with
selective orthogonalization), which is one of the most computationally efficient ap-
proaches to computing eigenvalues and eigenvectors [8] (Subsection 4.4). To the best
of our knowledge, M-Flash provides the first design and implementation of Lanczos
that can handle graphs with more than one billion nodes. Next, in Subsection 4.5, we
show that M-Flash maintains its high speed even when the machine has little RAM (in-
cluding extreme cases, like 4GB), in contrast to the other methods. Finally, through a
theoretical analysis of I/O, we show the reasons for the performance increase using the
BBP strategy (Subsection 4.6).

4.1 Experimental Setup

All experiments ran on a standard personal computer equipped with a four-core Intel
i7-4500U CPU (3 GHz), 16 GB RAM, and 1 TB 540-MB/s (max) SSD disk. Note that
M-Flash does not require an SSD to run, which is not the case for all frameworks, like
TurboGraph. We used an SSD, nevertheless, to make sure that all methods can perform
at their best. Table 1 shows the datasets used in our experiments. GraphChi, X-Stream,
MMap, and M-Flash ran on Linux Ubuntu 14.04 (x64). TurboGraph ran on Windows
(x64). All the reported times correspond to the average time of three cold runs, that is,
with all caches and buffers purged between runs to avoid any potential advantage due
to caching or buffering.

Table 1. Graph datasets used in our experiments.

Graph Nodes Edges Size

LiveJournal [2] 4,847,571 68,993,773 Small
Twitter [10] 41,652,230 1,468,365,182 Medium
YahooWeb 1,413,511,391 6,636,600,779 Large
R-Mat (Synthetic graph) 4,000,000,000 12,000,000,000 Large

4.2 PageRank

Table 2 presents the PageRank runtime of all the methods, as discussed next.
LiveJournal (small graph): Since the whole graph fits in RAM, all approaches fin-

ish in seconds. Still, M-Flash was the fastest, up to 6X faster than GraphChi, 3X than
MMap, and 2X than X-Stream.

Twitter (medium graph): The edges of this graph do not fit in RAM (it requires
11.3GB) but its node vectors do. M-Flash had a similar performance if compared to
MMap, however, MMap is not a generic framework, rather it is based on dedicated
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4. EVALUATION

GraphChi X-Stream TurboGraph MMap GridGraph M-Flash

PageRank
LiveJournal (10 iter.) 33.1 10.5 7.9 18.2 6.4 5.3
Twitter (10 iter.) 1,199 962 241 186 269 173
YahooWeb (1 iter.) 642 668 628 1,245 235.95 195
R-Mat (1 iter.) 2,145 1,360 - - - 745

Connected Components
LiveJournal (Union Find) 3.2 5.7 4.4 10.7 4.4 1.3
Twitter (Union Find) 70 1,038 128 45 287 25
YahooWeb (WCC - 1 iter.) 668 889 - - - 125
R-Mat (WCC - 1 iter.) 3,334 2,167.63 - - - 663.17

Table 2. Runtime (in seconds) with 8GB of RAM. The symbol “-” indicates that the correspond-
ing system failed to process the graph or the information is not available in the respective papers.

implementations, one for each algorithm. Still, M-Flash was faster. In comparison to
GraphChi and X-Stream, the related works that offer generic programming models,
M-Flash was the fastest, 5.5X and 7X faster, respectively.

YahooWeb (large graph): For this billion-node graph, neither its edges nor its node
vectors fit in RAM; this challenging situation is where M-Flash has notably outper-
formed the other methods. The results of table 2 confirm this claim, showing that M-
Flash provides a speed that is 3X to 6.3X faster that those of the other approaches.

R-Mat (Synthetic large graph): For our big graph, we compared only GraphChi,
X-Stream, and M-Flash because TurboGraph and MMap require indexes or auxiliary
files that exceed our current disk capacity. GridGraph was not considered in the com-
parison because its paper does not provide information about R-Mat graphs with a sim-
ilar scale. Table 2 shows that M-Flash is 2X and 3X faster that X-Stream and GraphChi
respectively.

4.3 Weakly Connected Components (WCC)

When there is enough memory to store all the vertex data, the Union Find algorithm
[16] is the best option to find all the WCCs in one single iteration. Otherwise, with
memory limitations, an iterative algorithm produces identical solutions. Hence, in this
round of experiments, we use Algorithm Union Find to solve WCC for the small and
medium graphs, whose vertices fit in memory; and we use an iterative algorithm for the
YahooWeb graph.

Table 2 shows the runtimes for the LiveJournal and Twitter graphs with 8GB RAM;
all approaches use Union Find, except X-Stream. This is because of the way that X-
Stream is implemented, which handles only iterative algorithms.

In the WCC problem, M-Flash is again the fastest method with respect to the entire
experiment: for the LiveJournal graph, M-Flash is 3x faster than GraphChi, 4.3X than
X-Stream, 3.3X than TurboGraph, and 8.2X than MMap. For the Twitter graph, M-
Flash’s speed is 2.8X faster than GraphChi, 41X than X-Stream, 5X than TurboGraph,
2X than MMap, and 11.5X than GridGraph.
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4. EVALUATION

In the results of the YahooWeb graph, one can see that M-Flash was significantly
faster than GraphChi, and X-Stream. Similarly to the PageRank results, M-Flash is
pronouncedly faster: 5.3X faster than GraphChi, and 7.1X than X-Stream.

4.4 Spectral Analysis using the Lanczos Algorithm

Eigenvalues and eigenvectors are at the heart of numerous algorithms, such as singular
value decomposition (SVD) [3], spectral clustering, triangle counting [17], and tensor
decomposition [9]. Hence, due to its importance, we demonstrate M-Flash over the
Lanczos algorithm, a state-of-the-art method for eigen computation. We implemented
it using method Selective Orthogonalization (LSO). To the best of our knowledge, M-
Flash provides the first design and implementation that can handle Lanczos for graphs
with more than one billion nodes. Different from the competing works, M-Flash pro-
vides functions for basic vector operations using secondary memory. Therefore, for the
YahooWeb graph, we are not able to compare it with the other frameworks using only
8GB of memory.

To compute the top 20 eigenvectors and eigenvalues of the YahooWeb graph, one
iteration of LSO over M-Flash takes 737s when using 8GB of RAM. For a comparative
panorama, to the best of our knowledge, the closest comparable result of this compu-
tation comes from the HEigen system [6], at 150s for one iteration; note however that,
it was for a much smaller graph with 282 million edges (23X fewer edges), using a
70-machine Hadoop cluster, while our experiment with M-Flash used a single personal
computer and a much larger graph.

4.5 Effect of Memory Size

Since the amount of memory strongly affects the computation speed of single-node
graph processing frameworks, here, we study the effect of memory size. Figure 5 sum-
marizes how all approaches perform under 4GB, 8GB, and 16GB of RAM when run-
ning one iteration of PageRank over the YahooWeb graph. M-Flash continues to run at
the highest speed even when the machine has very little RAM, 4GB in this case. Other
methods tend to slow down. In special, MMap does not perform well due to thrashing, a
situation when the machine spends a lot of time on mapping disk-resident data to RAM
or unmapping data from RAM, slowing down the overall computation. For 8GB and
16GB, respectively, M-Flash outperforms all the competitors for the most challenging
graph, the YahooWeb. Notice that all the methods, but for M-Flash and X-Stream, are
strongly influenced by restrictions in memory size; according to our analyses, this is
due to the higher number of data transfers needed by the other methods when not all
the data fit in the memory. Despite that X-Stream worked efficiently for any memory
setting, it still has worse performance if compared to M-Flash because it demands three
full disk scans in every case – actually, the innovations of M-Flash, as presented in
Section 3, were designed to overcome such problem.

4.6 Theoretical (I/O) Analysis
Following, we show the theoretical scalability of M-Flash when we reduce the avail-
able memory at the same time that we demonstrate why the performance of M-Flash
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4. EVALUATION

Fig. 5. Runtime comparison for PageRank over the YahooWeb graph. M-Flash is significantly
faster than all the state-of-the-art competitors for three different memory settings, 4GB, 8GB,
and 16GB.

improves when we combine DBP and SPP into BBP, instead of using DBP or SPP alone.
Here, we use a measure that we named t-cost; 1 unit of t-cost corresponds to three op-
erations, one reading of the vertices, one writing of the vertices, and one reading of the
edges. In terms of computational complexity, t-cost is defined as follows:

t-cost(G(E,V )) = 2 |V |+ |E| (8)

Notice that this cost considers that reading and writing the vertices have the same cost;
this is because the evaluation is given in terms of computational complexity. For more
details, please refer to the work of McSherry et al. [14], who draws the basis of this
kind of analysis.

We measure the t-cost metric to analyze the theoretical scalability for processing
schemes DBP only, SPP only, and BBP. We perform these analyses using MatLab sim-
ulations that were validated empirically. We considered the characteristics of the three
datasets used so far, LiveJournal, Twitter, and YahooWeb. For each case, we calculated
the t-cost (y-axis) as a function of the available memory (x-axis), which, as we have
seen, is the main constraint for graph processing frameworks.

Figure 6 shows that, for all the graphs, DBP-only processing is the least efficient
when memory is reduced; however, when we combine DBP (for dense region process-
ing) and SPP (for sparse region processing) into BBP, we benefit from the best of both
worlds. The result corresponds to the best performance, as seen in the charts. Figure 7
shows the same simulated analysis – t-cost (y-axis) in function of the available memory
(x-axis), but now with an extra variable: the density of hypothetical graphs, which is
assumed to be uniform in each analysis. Each plot, from (a) to (d) considers a different
density in terms of average vertex degree, respectively, 3, 5, 10, and 30. In each plot,
there are two curves, one corresponding to DBP-only, and one for SPP-only; and, in
dark blue, we depict the behavior of M-Flash according to combination BBP. Notice
that, as the amount of memory increases, so does the performance of DBP, which takes
less and less time to process the whole graph (decreasing curve). SPP, in turn, has a
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4. EVALUATION

Fig. 6. I/O cost using DBP, SPP, and BBP for LiveJournal, Twitter and YahooWeb Graphs using
different memory sizes. BBP model always performs fewer I/O operations on disk for all memory
configurations.

Fig. 7. I/O cost using DBP, SPP, and BBP for a graph with average degree (density) k =
{3,5,10,30}, where |E| ≈ k|V |, and varying amount of memory

steady performance, as it is not affected by the amount of memory (light blue line).
In dark blue, one can see the performance of BBP; that is, which kind of processing
will be chosen by Equation 7 at each circumstance. For sparse graphs, Figures 7(a) and
7(b), SPP answers for the greater amount of processing; while the opposite is observed
in denser graphs, Figures 7(c) and 7(d), when DBP defines almost the entire dark blue
line of the plot.

These results show that the graph processing must take into account the density of
the graph at each moment (block) so to choose the best strategy. It also explains why
M-Flash improves the state of the art. It is important to note that no former algorithm
considered the fact that most graphs present varying density of edges (dense regions
with many more edges than other regions that are sparse). Ignoring this fact leads to
a decreased performance in the form of a higher number of data transfers between
memory and disk, as we empirically verified in the former sections.
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4.7 Preprocessing Time

Table 3 shows the preprocessing times for each graph using 8GB of RAM. As one can
see, M-Flash has a competitive preprocessing runtime. It reads and writes two times the
entire graph on disk, which is the third best performance, after MMap and X-Stream.
GridGraph and GraphTwist, in turn, demand a preprocessing that divides the graph us-
ing blocks in a way similar to M-Flash. We did not compare preprocessing with these
frameworks because, as already discussed, we do not have their source code. Despite the
extra preprocessing time required by M-Flash – if compared to MMap and X-Stream,
the total processing time (preprocessing + processing with only one iteration) for algo-
rithms PageRank and WCC over the YahooWeb graph, is of 1,460s and 1,390s, still,
29% and 4% better than the total time of MMap and X-Stream respectively. Note that
the algorithms are iterative and M-Flash needs only one iteration to overcome its com-
petitors.

Table 3. Preprocessing time (seconds).

LiveJournal Twitter YahooWeb R-Mat

GraphChi 23 511 2,781 7,440
X-Stream 5 131 865 2,553
TurboGraph 18 582 4,694 -
MMap 17 372 636 -
M-Flash 10 206 1,265 4,837

5 Conclusions

We proposed M-Flash, a single-machine, billion-scale graph computation framework
that uses a block partition model to optimize the disk I/O. M-Flash uses an innovative
design that takes into account the variable density of edges observed in the different
blocks of a graph. Its design uses Dense Block Processing (DBP) when the block is
dense, and Streaming Partition Processing (SPP) when the block is sparse. In order to
take advantage of both worlds, it uses the combination of DBP and SPP according to
the Bimodal Block Processing (BBP) scheme, which is able to analytically determine
whether a block is dense or sparse, so to trigger the appropriate processing. To date, our
proposal is the first framework that considers a bimodal approach for I/O minimization,
a fact that, as we demonstrated, granted M-Flash the best performance compared to the
state of the art (GraphChi, X-Stream, TurboGraph, MMap, and GridGraph); notably,
even when memory is severely limited.

The findings observed in the design of M-Flash are a step further in determining an
ultimate graph processing paradigm. We expect the research in this field to consider the
criterion of block density as a mandatory feature in any such framework, consistently
advancing the research on high-performance processing.
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