Skip to main content

Quantitative Attack Tree Analysis: Stochastic Bounds and Numerical Analysis

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 9987))

Abstract

This paper presents an efficient numerical analysis of the time dependence of the attacker’s success in an attack tree. The leaves of the attack tree associated with the basic attack steps are annotated with finite discrete probability distributions. By a bottom-up approach, the output distributions of the gates, and finally the output distribution at the root of the attack tree is computed. The algorithmic complexities of the gate functions depend on the number of bins of the input distributions. Since the number of bins may increase rapidly due to the successive applications of the gate function, we aim to control the sizes of the input distributions. By using the stochastic ordering and the stochastic monotonicity, we analyze the underlying attack tree by constructing the reduced-size upper and lower distributions. Thus at the root of the attack tree, we compute the bounding distributions of the time when the system would be compromised. The main advantage of this approach is the possibility to have a tradeoff between the accuracy of the bounds and the algorithmic complexity. For a given time t, we can compute the bounds on the probability for the attacker’s success at time t. The time-dependent behavior of attacks is important to have insights on the security of the system and to develop effective countermeasures.

This work was partially supported by grant ANR MARMOTE (ANR-12-MONU-0019).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aït-Salaht, F., Castel-Taleb, H., Fourneau, J.-M., Pekergin, N.: Stochastic bounds and histograms for network performance analysis. In: Balsamo, M.S., Knottenbelt, W.J., Marin, A. (eds.) EPEW 2013. LNCS, vol. 8168, pp. 13–27. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  2. Arnold, F., Hermanns, H., Pulungan, R., Stoelinga, M.: Time-dependent analysis of attacks. In: Abadi, M., Kremer, S. (eds.) POST 2014 (ETAPS 2014). LNCS, vol. 8414, pp. 285–305. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  3. Fourneau, J.M., Pekergin, N.: A numerical analysis of dynamic fault trees based on stochastic bounds. In: Campos, J., Haverkort, B.R. (eds.) QEST 2015. LNCS, vol. 9259, pp. 176–191. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  4. Jhawar, R., Kordy, B., Mauw, S., Radomirović, S., Trujillo-Rasua, R.: Attack trees with sequential conjunction. In: Federrath, H., Gollmann, D., Chakravarthy, S.R. (eds.) SEC 2015. IFIP AICT, vol. 455, pp. 339–353. Springer, Heidelberg (2015). doi:10.1007/978-3-319-18467-8_23

    Chapter  Google Scholar 

  5. Kordy, B., Piètre-Cambacédès, L., Schweitzer, P.: DAG-based attack and defense modeling: don’t miss the forest for the attack trees. Comput. Sci. Rev. 13–14, 1–38 (2014)

    Article  MATH  Google Scholar 

  6. Muller, A., Stoyan, D.: Comparison Methods for Stochastic Models and Risks. Wiley, New York (2002)

    MATH  Google Scholar 

  7. Nielsen, J.R.: Evaluating information assurance control effectiveness on an air force supervisory control and data. Master’s thesis, Air Force Institute of Technology (2011)

    Google Scholar 

  8. Piètre-Cambacédès, L., Bouissou, M.: Attack and defense modeling with BDMP. In: Kotenko, I., Skormin, V. (eds.) MMM-ACNS 2010. LNCS, vol. 6258, pp. 86–101. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Piètre-Cambacédès, L., Bouissou, M.: Cross-fertilization between safety and security engineering. Rel. Eng. Sys. Safety 110, 110–126 (2013)

    Article  Google Scholar 

  10. Schneier, B.: Attack trees: modeling security threats. Dr. Dobbs J. Softw. Tools 24(12), 21–29 (1999)

    Google Scholar 

  11. Siwar Kriaa, L.P., Bouissou, M.: Modeling the stuxnet attack with BDMP: towards more formal risk assessments. In: 2012 7th International Conference on Risks and Security of Internet and Systems (CRiSIS), Cork, Ireland, 10–12 October 2012, pp. 1–8. IEEE (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nihal Pekergin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Pekergin, N., Tan, S., Fourneau, JM. (2016). Quantitative Attack Tree Analysis: Stochastic Bounds and Numerical Analysis. In: Kordy, B., Ekstedt, M., Kim, D. (eds) Graphical Models for Security. GraMSec 2016. Lecture Notes in Computer Science(), vol 9987. Springer, Cham. https://doi.org/10.1007/978-3-319-46263-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46263-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46262-2

  • Online ISBN: 978-3-319-46263-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics