Skip to main content

Conchord: An Application for Generating Musical Harmony by Navigating in the Tonal Interval Space

  • Conference paper
  • First Online:
Music, Mind, and Embodiment (CMMR 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9617))

Included in the following conference series:

Abstract

We present Conchord, a system for real-time automatic generation of musical harmony through navigation in a novel 12-dimensional Tonal Interval Space. In this tonal space, angular and Euclidean distances among vectors representing multi-level pitch configurations equate with music theory principles, and vector norms acts as an indicator of consonance. Building upon these attributes, users can intuitively and dynamically define a collection of chords based on their relation to a tonal center (or key) and their consonance level. Furthermore, two algorithmic strategies grounded in principles from function and root-motion harmonic theories allow the generation of chord progressions characteristic of Western tonal music.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    Sheppard [36] and Kruskal [37] first used this method, which has been extensively applied to visualise representations of multidimensional pitch structures [38, 39]. Briefly, nonmetric MDS attempts to transform a set of n-dimensional vectors, expressed by their distance in the item-item matrix, into a spatial representation that exposes the interrelationships among a set of input cases. We use the smacof library [40] from the statistical analysis package ‘R’ to compute dimensionality reduction using a nonmetric MDS algorithm. More specifically, we use the function smacofSym, with ‘ordinal’ type and ‘primary’ ties.

References

  1. Rowe, R.: Machine Musicianship. MIT Press, Cambridge (2001)

    Google Scholar 

  2. Wiggins, G.A.: Automated generation of musical harmony: what’s missing. In: Proceedings of the International Joint Conference in Artificial Intelligence (1999)

    Google Scholar 

  3. Rohrmeier, M.: A generative grammar approach to diatonic harmonic structure. In: Proceedings of the 4th Sound and Music Computing Conference, pp. 97–100 (2007)

    Google Scholar 

  4. Pachet, F.: The MusES system: an environment for experimenting with knowledge representation techniques in tonal harmony. In: 1st Brazilian Symposium on Computer Music, pp. 195–201 (1994)

    Google Scholar 

  5. Phon-Amnuaisuk, S., Tuson, A., Wiggins, G.: Evolving musical harmonisation. In: Dobnikar, A., Steele, N.C., Pearson, D.W., Albrecht, R.F. (eds.) Artificial Neural Nets and Genetic Algorithms, pp. 229–234. Springer, Vienna (1999)

    Chapter  Google Scholar 

  6. Navarro, M., Caetano, M., Bernardes, G., de Castro, L.N., Corchado, J.M.: Automatic generation of chord progressions with an artificial immune system. In: Johnson, C., Carballal, A., Correia, J. (eds.) EvoMUSART 2015. LNCS, vol. 9027, pp. 175–186. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  7. Pachet, F., Roy, P.: Formulating constraint satisfaction problems on part-whole relations: the case of automatic musical harmonization. In: ECAI 98 Workshop on Constraints for Artistic Applications, pp. 1–11 (1998)

    Google Scholar 

  8. Gang, D., Lehmann, D., Wagner, N.: Harmonizing melodies in real-time: the connectionist approach. In: Proceedings of the International Computer Music Association, Thessaloniki, Greece, pp. 27–31 (1997)

    Google Scholar 

  9. Manaris, B., Johnson, D., Vassilandonakis, Y.: Harmonic navigator: a gesture-driven, corpus-based approach to music analysis, composition, and performance. In: Proceedings of the 9th AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, pp. 67–74 (2013)

    Google Scholar 

  10. Eigenfeldt, A., Pasquier, P.: Realtime generation of harmonic progressions using controlled markov selection. In: Proceedings of ICCC-X-Computational Creativity Conference, pp. 16–25 (2010)

    Google Scholar 

  11. Cohn, R.: Neo-riemannian operations, parsimonious trichords, and their “tonnetz” representations. J. Music Theory 41(1), 1–66 (1997)

    Article  Google Scholar 

  12. Cohn, R.: Introduction to neo-riemannian theory: a survey and a historical perspective. J. Music Theory 42(2), 167–180 (1998)

    Article  Google Scholar 

  13. Chew, E.: Towards a mathematical model of tonality. Ph.D. dissertation, MIT (2000)

    Google Scholar 

  14. Chew, E., Chen, Y.: Determining context-defining windows: pitch spelling using the spiral array. In: Proceedings of the International Society for Music Information Retrieval Conference (2003)

    Google Scholar 

  15. Harte, C., Sandler, M., Gasser, M.: Detecting harmonic change in musical audio. In: Proceedings of the 1st ACM Workshop on Audio and Music Computing Multimedia, pp. 21–26. ACM, New York (2006)

    Google Scholar 

  16. Bernardes, G., Cocharro, D., Guedes, C., Davies, M.E.P.: Harmony generation driven by a perceptually motivated tonal interval space. In: ACM Computers in Entertainment. ACM, New York (2015, in press)

    Google Scholar 

  17. Behringer, R., Elliot, J.: Linking physical space with the Riemann Tonnetz for exploration of western tonality. In: Hermida, J., Ferrero, M. (eds.) Music Education. Nova Science Publishers Inc, Hauppauge (2009)

    Google Scholar 

  18. Bigo, L., Garcia, J., Spicher, A., Mackay, W.E.: PaperTonnetz: music composition with interactive paper. In: Proceedings of the 9th Sound and Music Computing Conference, pp. 219–225 (2012)

    Google Scholar 

  19. Gatzsche, G., Mehnert, M., Stöcklmeier, C.: Interaction with tonal pitch spaces. In: 8th International Conference on New Interfaces for Musical Expression, Genova, Italy, pp. 325–330 (2008)

    Google Scholar 

  20. Krumhansl, C.L., Kessler, E.J.: Tracing the dynamic changes in perceived tonal organization in a spatial representation of musical keys. Psychol. Rev. 89, 334–368 (1982)

    Article  Google Scholar 

  21. Chuan, C.-H., Chew, E.: A hybrid system for automatic generation of style-specific accompaniment. In: Proceedings of the 4th International Joint Workshop on Computational Creativity, pp. 57–64. Goldsmiths, University of London (2007)

    Google Scholar 

  22. Pure Data. http://puredata.info

  23. Max. https://cycling74.com

  24. Bernardes, G., Cocharro, D., Guedes, C., Davies, M.E.P.: Conchord: an application for generating musical harmony by navigating in a perceptually motivated tonal interval space. In: Proceedings of the 11th International Symposium on Computer Music Modeling and Retrieval (CMMR), pp. 71–86 (2015)

    Google Scholar 

  25. Riemann, H.: Vereinfachte Harmonielehre. Augener, London (1893)

    Google Scholar 

  26. Schoenberg, A.: Structural Functions of Harmony, 2nd edn. W. W. Norton Inc., New York (1969). [1954], (Revised by Stein, L.)

    Google Scholar 

  27. Malmberg, C.F.: The Perception of consonance and dissonance. Psychol. Monogr. 25(2), 93–133 (1918)

    Article  Google Scholar 

  28. Kameoka, A., Kuriyagawa, M.: Consonance theory. Part I: consonance of dyads. J. Acoust. Soc. Am. 45, 1451–1459 (1969)

    Article  Google Scholar 

  29. Hutchinson, W., Knopoff, L.: The acoustic component of Western consonance. Interface 10(2), 129–149 (1979)

    Google Scholar 

  30. Roberts, L.A.: Consonance judgements of musical chords by musicians and untrained listeners. Acta Acustica United Acustica 62(2), 163–171 (1986)

    Google Scholar 

  31. Cook, N.D.: Harmony, Perspective, and Triadic Cognition. Cambridge University Press, New York (2012)

    Google Scholar 

  32. Rameau, J.-P.: Traité de l’Harmonie. Ballard, Paris (1722). Treatise on Harmony (trans: Gossett, P.) Dover, New York (1971)

    Google Scholar 

  33. Tymoczko, D.: Progressions Fondamentales, Fonctions, Degrés: Une Grammaire de l’Harmonie Tonale Élémentaire. Musurgia: Analyse et Pratique Musicales 10(3–4), 35–64 (2003)

    Google Scholar 

  34. Agmon, E.: Functional harmony revisited: a prototype-theoretic approach. Music Theory Spectr. 17(2), 196–214 (1995)

    Article  Google Scholar 

  35. Meeus, N.: Toward a post-Schoenbergian grammar of tonal and pre-tonal harmonic progressions. Music Theory Online 6(1) (2000)

    Google Scholar 

  36. Shepard, R.N.: Structural representations of musical pitch. In: Deutsch, D. (ed.) The Psychology of Music, pp. 335–353. Academic Press, New York (1982)

    Google Scholar 

  37. Kruskal, J.B.: Nonmetric multidimensional scaling: a numerical method. Psychometrika 29, 28–42 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  38. Krumhansl, C.L., Kessler, E.J.: Tracing the dynamic changes in perceived tonal organization in a spatial representation of musical keys. Psychol. Rev. 89, 334–368 (1982)

    Article  Google Scholar 

  39. Lerdahl, F.: Tonal Pitch Space. Oxford University Press, New York (2001)

    Google Scholar 

  40. De Leeuw, J., Mair, P.: Multidimensional scaling using majorization: SMACOF in R. J. Stat. Softw. 31(3), 1–30 (2009)

    Article  Google Scholar 

  41. Schonbrun, M.: The Everything Music Theory: Take Your Understanding of Music to the Next Level. Adams Media, Avon (2011)

    Google Scholar 

  42. Huron, D.: Tone and voice: a derivation of the rules of voice-leading from perceptual principles. Music Percept. 19(1), 1–64 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This research is financed by National Funds through the FCT - Fundação para a Ciência e a Tecnologia within post-doctoral grants SFRH/BPD/109457/2015 and SFRH/BPD/88722/2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilberto Bernardes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Bernardes, G., Cocharro, D., Guedes, C., Davies, M.E.P. (2016). Conchord: An Application for Generating Musical Harmony by Navigating in the Tonal Interval Space. In: Kronland-Martinet, R., Aramaki, M., Ystad, S. (eds) Music, Mind, and Embodiment. CMMR 2015. Lecture Notes in Computer Science(), vol 9617. Springer, Cham. https://doi.org/10.1007/978-3-319-46282-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46282-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46281-3

  • Online ISBN: 978-3-319-46282-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics