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Abstract. One of the key benefits of Cloud computing is elasticity, the
ability of the system infrastructure to adapt to the workload changes
by automatically adjusting the resources on-demand. Horizontal scaling
refers to the method of adding or removing resources from the resource
pool. As such it is appealing to enterprises who seek to migrate their
legacy systems as it requires no application rewrite or refactoring. Ver-
tical scaling approach offers a mechanism to maintain continuous per-
formance while reducing resource cost through reconfiguration of the
resource. The challenge is, however, in being able to automatically iden-
tify the right size of the target resource such as a VM or a container.
Moreover, choice of scalability policies is not intuitive due to application
complexity, topology and variability in system performance parameters
that need to be considered.

This paper presents a transformation model, FitScale, which provides
scalability with minimum price of resources. The paper describes the
framework that employs the application functional and operational prop-
erties to recommend the target sizing and scalability policies. We eval-
uate proposed approach in an on-premise and cloud environments, with
a dataset of 2023 servers hosting 6737 applications. The experimental
results show about 5 times cost reduction with minimum performance
impact.
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1 Introduction

Application development in the cloud typically follows the micro-services style,
an approach where applications are built from the composition of smaller
atomic services, each one running independently in the cloud and communi-
cating through REST APIs. Microservices [15] are designed to represent distinct
business functions, and are deployed independently’.

A question that often comes up is how existing applications, developed in
the “traditional” style, and running on previous generation systems can take
advantage of cloud platforms, or even become native to the cloud themselves.

! http://martinfowler.com/articles/microservices.html.
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The latter would imply a significant transformation of the application archi-
tecture, including a breakdown of many application sub-components into inde-
pendently running micro-services. The benefits are many and significant: agility
for development and deployment; reduced cost in OS/middleware management,
ability for applications to leverage cloud native services.

When considering transformation of legacy applications to Cloud environ-
ments there are a number of choices available. On one end of the spectrum is the
plain migration (the so called “lift and shift”), which moves the application into
one functional entity such as, a server [9] or a container [16] to mimic a micro-
service architecture. On the other end of the spectrum is the full transformation
to a micro-services architecture (by refactoring and rewriting the application).
Given that the latter is both a time and resource-consuming task, a more rea-
sonable approach is to perform a like-to-like migration first (the application is
moved in its entirety to one or more virtual machines in the cloud in a way
that resembles its original topology). After the migration is completed, the more
involved transformation to a micro-services architecture can be performed in
increments over a period of time.

As legacy applications are often not built to be scalable in themselves, setting
the right scalability after migrating into clouds is still a delicate, time-consuming
process. There are a number of challenges in ensuring the scalability of legacy
applications during migration to Cloud:

— The root cause of why scalability is required is often unclear. For example, is
that due to cpu, memory, or network? If one of them is a bottleneck all the
time, then we may buy more of that resource and achieve both horizontal and
vertical scalability.

— Auto scaling policies should be defined well to meet performance expectation
based on the usage patterns at the source. For example, AWS has its own
policy syntax.

— “Like-to-like migration” to Cloud does not take advantage of the benefits
provided by Cloud such as elastic scalability.

— In most cases, it is hard to decide whether or not applications should be put
in a scaling group.

— It is hard to estimate the properties of initial resources.

— It is challenging to identify the right scaling policy.

In this paper we discuss an approach to migrating applications to the cloud
to meet scalability requirements using elastic compute services in the cloud.
Elasticity can be achieved through carefully selected policies to meet application
demands.

There are three key objectives that drive design of our approach to policy-
based scalability: (a) minimize the cost of the resources during scalability, (b)
ensure high-performance is maintained, with low-to-no degradation impact and
(c) maintain stability of the application through correctly chosen right initial
size (thus avoiding the slow-downs during scaling). This in itself is a challenging
endeavor as policies are automatically selected and fixed, and any subsequent
changes require reconfiguration.
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This paper makes the following three contributions:

— TheFitScale framework for application transformation to Cloud with consid-
eration for scaling requirements

— Method for pattern discovery for application topology and performance

— Method for target sizing and scaling policy assignment

2 Background and Motivation

Scaling horizontally (or scaling out/in) means adding more compute nodes to (or
removing nodes from) a system. As an example a Web server may be scaled out
from one compute node to three. As compute prices have dropped and perfor-
mance continues to increase, high-performance computing applications such as
seismic analysis and biotechnology workloads have adopted low-cost “commod-
ity” systems for tasks that once would have required supercomputers. System
architects may configure hundreds of small computers in a cluster to obtain
aggregate computing power that often exceeds that of computers based on a
single traditional processor. The development of high-performance interconnects
such as Gigabit Ethernet, InfiniBand and Myrinet further fueled this model.
Such growth has led to demand for software that allows efficient management
and maintenance of multiple nodes, as well as hardware such as shared data stor-
age with much higher I/O performance. Size scalability is the maximum number
of processors that a system can accommodate [5]. To scale vertically (or scale
up/down) means to add resources to (or remove resources from) a single node
in a system, typically involving the addition of CPUs or memory to a single
computer. Such vertical scaling of existing systems enables them to use virtual-
ization technology more effectively, as it provides more resources for the hosted
set of operating system and application modules to share. Taking advantage of
such resources is also referred to as “scaling up”, such as expanding the number
of Apache daemon processes currently running. Application scalability refers to
the improved performance of running applications on a scaled-up version of the
system.

There are tradeoffs between these two models. A larger numbers of computers
implies increased management complexity, as well as a more complex program-
ming model and issues such as throughput and latency between nodes; also,
some applications do not lend themselves to a distributed model. In the past,
the price difference between the two models has favored “scale up” computing
for those applications that fit its paradigm, but recent advances in virtualization
technology have blurred that advantage, since deploying a new virtual system
over a hypervisor (where possible) is often less expensive than actually buying
and installing a physical one. Configuring an existing idle system has always been
less expensive than buying, installing, and configuring a new one, regardless of
the model.

Still, reconfiguration is challenging for a number of reasons: unknown or
inaccurate information about source environment, ability to reason and make
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decisions about scalability for multi-tier applications, lack of automatic rule and
policy generation.

Figure 1 is a simple experiment that depicts cost benefits of allocating appli-
cations with the right size of compute resources. Given the request pattern
for 6 h, we show two different deployment cases. An application is deployed to
c4.xlarge virtual machine capable of 8 loads with 85 % threshold, and c4.large
virtual machine capable of 3 loads with 75% threshold. We use AWS prices
in the graph for the sake of reader’s familarity, but the same scenario can be
applied for other cloud providers. c4.zlarge costs $0.209 per hour, and c4.large
costs $0.105 per hour. Note that a partial hour of usage is also considered as a
full hour. Upward arrows mean scaling up applications on demand (adding an
instance), whereas downward arrows mean scaling down applications.

The reactive horizontal scaling is used, so when loads pass the threshold, a
new instance is added. The total number of hours used is 16 for c4.large, and
6 for cd.xlarge. Thus, the total cost of c4.large is $0.105 x 16 = $1.68, whereas
the total cost of cd.xlarge is $0.209 x 6 = $1.254. cd.xlarge provides 33 % less
operational cost in this case. Therefore, this corroborates determining the right
size is an important factor.

Figure 2 illustrates a simple web server response time with a linear increase of
the request rate. “No response” around 70 min incurs because of the provision-
ing delay, and zeroed memory without cached data when adding an additional
application. Therefore, not only minimizing cost, but also choosing the right
thresholds is critical to avoid a service level agreement (SLA) violation.

3 FitScale Framework

The FitScale framework integrates multiple, independent, workflow processes
that rely on a common data set. With access to source infrastructure or compiled
data, FitScale discovers the necessary data and converts unstructured data into
structured data such as matrices or comma separated values. Especially graphs
with large data points are summarized to help identify moving patterns in the
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analysis step. Once the data is converted into structured data, FitScale seeks
usage trends of critical resources which are performance bottlenecks, and creates
resource plans such as an initial virtual machine size and number of virtual
machines in a pool, and defines scaling policies that are appropriate to the target
clouds.

Figure 3 depicts the FitScale architecture for end-to-end migration automa-
tion. In Step D a user needs to collect information such as a server list with cre-
dentials, infrastructure API key from on-premise data centers, or to install agents
depending on the infrastructure discovery tool®. At Step @ a user inserts the col-
lected information to FitScale. Step @ FitScale launches a discovery process with
the provided information. This may take a couple of days or weeks depending on
the application usage patterns. If the usage patterns are stationary over a short
period of time, the discovery process stops and moves on to the next step. Oth-
erwise, it keeps watching the source infrastructure to find the stable application
usage patterns. The information collected in this stage are performance (resource
usage), application configurations, running processes, and network connectivity.
Step @ in the analysis step, FitScale seeks metrics such as request patterns,
resource usage patterns, variability (a rate of scaling up and down), and depen-
dency that are used in the modeling step. At Step & together with the target
information, FitScale optimizes the scalability with the objective to minimize
the cost. At step ® the final outputs are resource plans that decide on the size
of instances and scaling policies that define the timing of scalability.

FitScale Framework
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- Configurations - Variability with constraints - Scaling Policies
- Processes - Critical Resources
- Connectivity - Metrics
- Dependency
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Fig. 3. A FitScale framework concatenates multiple workflow processes to automati-
cally generate scalability plans.

4 Understanding Applications

The first step to understanding application configuration is to define what needs
to be discovered. Understanding applications is a complex process, as they run
on operating systems with various library dependencies, and operate across mul-
tiple network-connected servers. The process of inferencing how applications will

2 There are agent-based discovery tools [17] and agentless discovery tools (i.e., using
scripts) [1].
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operate in target Cloud environment relies on information about vertical (local)
and horizontal (remote) dependencies, and how resources such as, cpu, memory,
disk and network are utilized. In short, to be able to reason about applications
we require dependencies and resource usage data. The discovery and analysis
phases of the FitScale framework provide these insights about applications.

4.1 Discovery

The discovered data about the source environment needs to be mapped into
what are the scalability requirements of the target Cloud. Following are the key
data items required:

— resource allocation: cpu, memory, disk, network bandwidth

— resource usage: cpu (%), memory read/write (bytes), disk read/write (bytes),
network in/out (bytes)

— network connectivity

— operating system and application configurations

There are number of agent and agent-less tools for system information dis-
covery. In the FitScale framework, we use a script-based approach (agentless) to
uncover the necessary configuration and operational data. The shell is the easiest
and the most convenient way to program and run. For example, on Linux based
systems ./proc directory contains system attributes including process informa-
tion and system information. Many standardized tools can provide us with key
data. ps reports a snapshot of the current processes, df reports filesystem disk
space usage, nm lists symbols from object files, objdump displays detailed infor-
mation from object files, readelf displays information about ELF object files,
Ispci displays information about PCI buses in the system and devices connected
to them, Isof provides a list of all open files belonging to all active processes, ldd
prints the shared libraries required by each program or shared library specified
on the command line, strace traces system calls and signals, ltrace traces library
call, and netstat prints network connections, routing tables, interface statistics,
masquerade connections, and multicast memberships. On Windows-based sys-
tems vbscripts can be utilized to collect such data [8].

Servers are connected to each other through network interfaces. A web ser-
vice may need web applications, databases, file systems, or memory cache servers
in the backend. This distributed (micro-service) architecture needs to be taken
into consideration to capture the propagation of application processes. The inter-
server attributes can help make decisions on simultaneous scalability. To collect
the inter-server data, we can look at the network statistics derived from netstat
information, gather network ports used for communication, and infer perfor-
mance propagation impact between servers [12].

4.2 Pattern Analysis

Using the data about source infrastructure FitScale provides the following
insights:



FitScale: Scalability of Legacy Applications Through Migration to Cloud 129

1. Which resources are bottlenecks? (this helps find key metrics that impact on
performance).

2. How variable the processing (request) trend (pattern) is? (the answer helps
decide the size of virtual machines).

3. How fast the processing trend increases or decreases? (the answer helps deter-
mine the increasing or decreasing rate and timing of virtual machines).

4. Where are request sources from (geographical analysis based on the connec-
tions)? (the answer helps decide how/where global scalability is requred).

5. How is a multi-tier application distributed? (the answer helps find how much
load propagation impacts when loads increase).

In addition, we can easily derive simple insights. For example, the ques-
tions like how many (virtual) CPU cores/memory/disk/network bandwidth are
assigned or how many virtual machines are used in the source are rather straight-
forward computations.
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Fig. 4. Sample CPU usage graph (synthetic) to illustrate how to analyze data in
FitScale.

The answers are quantified, and translated into scalability decisions to create
scalability policies or determine the size of target resources. Figure 4 illustrates a
sample graph y = f(z) that shows a certain trend (pattern) along the x-axis and
y-axis to explain how the answers to the questions can be made from the data
(resource usage) observation. Note that we do not use this graph to formulate an
optimization problem, but use its properties to draw useful information. Since the
usage graph fluctuates in a very short time period, we use the moving average,
a form of average which has been adjusted to allow for smoothing of a time
series. Moving average smoothing is a smoothing technique used to make the
long term trends of a time series clearer [3]. We use a simple moving average
technique denoted as % Z?:_Ol Tp—i, where n is the averaging window size, and
M is current time. The following numbers correspond to the questions earlier.

1. To find which resources are bottlenecks, we look at the overall resource
usage of CPU, memory, disk, and network when user requests arrive in appli-
cations. Given a fixed period of time 7" with the n;lmber of requests per second

_ o™i

r;, each resource usage is calculated as u(t) = ST where m is a resource
i=0 "1
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usage (%) per second (i.e., measurement unit), and ¢ is a resource type. In other
words, u(t) is an average resource usage (%) per request, and this is a metric to
decide which resources are potential bottlenecks.

2. The variability can be interpreted as a rate of scaling up and down, so
the high variability means there are more adding/removing servers. The vari-
ability of the graph does not need to be statistically analyzed since we only
need to know how much the graph is fluctuating based on the maximum per-
formance line of a target virtual machine [4]. The variablity of this graph f is

[ETTGE10N - , -
v(f,t) = 2=55—, where [(t) is the maximum load of the instance type ¢, an

operator £ represents an increasing intersection when load increases, H is the
total number of monitoring hours. In Fig. 4, the middle line (at load 4) represents
the maximum performance line with one instance type, and the total time H is
6. Therefore, v(f,t) = 2, meaning that in a time unit (1h), the resource usage
surpasses the maximum performance line 0.5 times.

3. The speed of increasing or descreasing load decides the change rate of
the number of virtual machines and also the timing of when to scale up or
down. We measure the moving speed by calculating the slope of the change
between critical ranges. The critical ranges mean the lines above/below of the
maximum performance line and left/right of the crossing-point. In Fig.4, the
critical ranges are defined as 25% above (load 5) and below (load 3) of the
maximum performance line (load 4), and 0.5h left/right. The slope of slope

triangles (red line with €) shows the speed of increasing loads. Therefore, the
2 sin(8)

average speed is s(f,t) = =0 where n is the number of crossings with
x . it Yo — g
[{z|f(z) = U(t)}], and sin(0) = P20 = \/(12_;/12)211(1/2_%)2. Likewise, the

decreasing loads can be calculated the same way.

4. The geographical distribution of request sources provides a useful infor-
mation on how/where the scalability should happen. For example, some vendors
allow to scale up the number of virtual machines across multiple data centers
based on the geographical requirements. In this case, we can locate additional
servers close to where requests are generated. The source network addresses of
requests provide geographical distribution.

5. A multi-tier (distributed) application consists of applications that com-
municate each other to process a request and generate a response. For example,
a web server talks to a database server to retrieve information. This directional
dependency is important because the scalability is done in just one tier, mean-
ing the scaling up of the web server does not necessarily lead to the scaling
up of the database. Therefore, we have to consider the impact of other tiers
when we design scalability policies. The application dependency is the same as
the network dependency, thus the network connectivity between applications is
captured.

Note that FitScale takes heed of dependency among connected servers
because often the connected servers need to scale together and the backend
server (not scaling elastically) should be able to accommodate maximum loads
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from the frontend servers (scaling elastically). While the most of applications are
formed in a multi-tier architecture (for example, service oriented architecture,
and micro-services architecture), considering request flows in a scaling group
should not be obviated in order not to countervail the scalability configurations.

5 Understanding Clouds

Cloud providers offer different ways to scale applications elastically, and there-
fore it is important to understand the differences in scalability models. This
section describes scalability offerings by major cloud providers and how users
are charged.

5.1 Scalability

The first step towards elastic scalability is to monitor instances at the plat-
form level. Most cloud providers provide average metrics for every 5min, and
optionally more fine-grained monitoring with additional charges. CloudWatch,
AzureWatch, and Nimsoft are examples. The monitored metrics are checked
against policies in every monitoring period. Once one of user-defined policies is
triggered from the monitoring engine, the actions defined by the policies initiate
scalability processes (add or remove instances). When adding instances, cloud
providers automatically attach the new instances to a load balancer to forward
requests to them.

Table 1 shows some scalability examples of major cloud providers. There are
two ways to provision instances when thresholds are surpassed: on-demand and
pool-based. The on-demand provisioning adds instances by replicating a running
instance when needed. This approach is cost efficient and does not have (state)
synchronization problem, but is expected to be slow. On the other hand, the
pool-based provisioning pre-previsions instances and uses them when needed
(usually keep them in stopped mode). This approach expects fast addition of
instances, but renders waste of resources and may result in synchronization prob-
lem because it is replicated when an application is initially created.

5.2 Scalability Cost

Cloud providers charge users either hourly or monthly for running instances,
called the pay-as-you-go model. Prices for the scalability are varied. In fact,
users are not charged by the scalability function itself, but by the number of used
instances. A unit of charging a running instance for scalability is only per-hour,
and a partial hour of usage is also charged the same as a full hour. Intuitively,
frequent scaling up and down can charge more than just running more instances
without elastic scalability for the same period of time. Therefore, it is imperative
to find an optimal scaling model that can provide a minimum price and sustain
performance.
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Table 1. Cloud providers have different scalability metrics and provisioning strategy.
The queue length metric scales based on how many messages are waiting in the queue.

Cloud Scaling metrics Actions Provisioning
provider strategy
SoftLayer (IBM) | CPU percentage, Private network Add/remove/set scale | On-demand

incoming/outgoing (Mbps), Public
network incoming/outgoing (Mbps)

group by
quantity /percentage

AWS (Amazon)

CPU utilization (%), Disk reads (Bytes),

Disk read operations (Operations),
Disk writes (Bytes), Disk write
operations (Operations), Network
in/out (Bytes)

Add/remove/set scale
group by
quantity /percentage

On-demand

GCP (Google)

CPU utilization (%), HTTP(S) load
balancing serving capacity (%),

Cloud Monitoring metrics (80 metrics

in https://cloud.google.com/

monitoring/api/metrics) also network

load balancing (for other protocols
such as SMTP) is applicable
preprovisioned managed instance
group

Add/remove/set scale
group by
quantity /percentage

Pool-based

Azure
(Microsoft)

CPU (%), Queue length

Add/remove/set scale
group by
quantity /percentage

Pool-based

6 Scaling Model

The two main objectives are (1) finding the right resource size that minimizes
cost and guarantees performance and (2) creating policies based on the obser-
vation from the discovery and pattern analysis in order to scale at the right
moment with the right size. Specifically, the outputs of the model are:

— Instance size: using an auto scaling function usually does not involve any
pricing unless augmenting monitoring capabilities, but the instance (resource)
size is directly related to the final cost, so it is important to define the right

size.

— Maximum number of instances: instances are either pre-provisioned in the
resource pool or provisioning on the fly with the maximum capacity definition.
— Scaling policy: depending on the performance (cpu, memory, disk, network),
we need to scale up/down the service. The properties that need to be found
are threshold (%), watching time (minutes) above the threshold, and scaling
size unit (# of instances or % of the scaling group).

We have input information from the discovery and the pattern analysis from
Sect. 4: bottleneck resources, upper-bound/lower-bound loads, load variability,
the speed of increasing/descreasing, geographical distribution, and dependency.

To achieve the two main goals mentioned earlier, we need to find the minimum
cost while guaranteeing performance, which can be translated into the question
of how we set up a scalability configuration at the target cloud because the size of
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instance and the scalability policies directly affect the operational expenditure.
First of all, we need to define how we calculate the cost. The cost function is

M(f,t) |d'|

= 3 3wty di(t) + plt) * H, (1)

=0 5=0

where f is the observed function for a particular bottlenek resource type (for
example, cpu, memory, disk, or network) with the number of data points D, t is
the target instance type (for example, c4.large with cpu, memory, disk, network),
M(f,t) is the maximum number of instances of type ¢ used in the function f,
|d| is the number of segments for d¢, p(¢) is the price of the type ¢, and H is the
total number of monitoring hours. The time complexity to find the cost for each
instance type is bounded by the data points of the graph because it goes through
all data points to find crossing points. Thus, the time complexity is O(D). The
objective function to minimize cost for scalability is:

argmin C(f,t)

teT
st feF, and (2)

M(f,t) x L(t) = U(f),

where the cost function C(f,¢) is defined in Eq. (1), T is the list of all instance
types, F is the list of observed functions with resource types, L(¢) is the load of
the instance type ¢, and U(f) is the uppper bound. The time complexity to find
the best ¢ is O(|T| - D).

Now that we know the size of the target instance with the type ¢ from Eq. (2),
and the maximum number of instances, we need to define policies. As shown in
Table 1, scalability policies need threshold (%), watching time (minutes) above
the threshold, and scaling size unit (# of instances or % of the scaling group).
Furthermore, we can configure the availability zone for geographical distribution.
The threshold determines when we start triggering the resource usage alarm to
further make decisions on scaling up and down. It is often defined as a percentage
of the total resource capacity. For example, if CPU utilization goes over 80 %,
we can count down to see whether the load sustains for pre-defined sustaining
time.

We derive the threshold according to how fast loads reach the maximum
capacity of the instance and how long it takes to provision an instance. While the
increasing speed is defined in Sect. 4.2 with a parameter 6, the average (increas-
ing) time to reach the maximum performance line from the threshold is noted

20| hypotenus xcos (6} . . .
as 7t = Zi= ypo‘;f‘us cos07) where |9*] is the total number of increasing

loads, and hypotenus is the slope of the slope triangle, \/(xo —x1)%+ (yo —y1)2
Therefore, the average (increasing) time should be within boundary of the pro-
visioning time. The condition is noted as

> B(t), (3)
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where B(t) is provisioning time (or booting time for the pool-based provisioning
strategy) of the instance type ¢t. However, since in reality, some workloads may
increase too fast to meet this condition, we predictively provision instances even
when small increase incurs. This means that FitScale sets a very low threshold
and a short watching time. There are prior arts that use the predictive and
autonomous scalability [6,11], so we do not focus on the predictive methods in
this paper.

When the threshold is set, we need to configure the watching time starting
when loads cross upward the threshold. The watching time is reset when loads
cross downward the threshold. The watching time should also satisfy Eq. (3) in
order to trigger to spin up more instances for increasing loads.

Toscale up/down, we define a scaling size as either the number of instances or the
percentage of the scaling group. We use the average number of expected instances
from the pattern analysis. We count the added number of instances appended to the
scaling group every time loads increase, then find the expected (average) number
of instances added each time, and use that number as a scaling size.

If users are international, data centers distributed across globe can help serve
requests better when applications are deployed close to users. Availability zones
can be used to define geographical locations where the scalability is required.
FitScale simply recommends potential data centers that can be included in the
availability zones based on the network address of users.

7 Evaluation

Note that we do not intend to compare cloud platform performance of cloud
providers since there are many prior arts to compare performance [10, 13]. Instead,
we focus on how transformation with appropriate scalability can help applications
make use of scalability provided by clouds. We first case study applications of a real
enterprise (on-premise) data center to analyze discovered data (Sect.7.1). Then,
we run experiments on the real cloud provider with the outcome from FitScale
(Sect. 7.2). Lastly, we perform cost and performance analysis (Sect. 7.3).

7.1 Case Study: Legacy Data Center

We study a real (on-premise) data center with 2023 servers (physical and vir-
tual), running 6737 applications to see some of pointers made in previous sec-
tions. Figureb depicts a cumulative density function of normalized resource
usage to show how resources are used. CPU seems to be the most under-
utilized resource and only about average 6 % is used. This is mainly because
the CPU is a time sharing resource, which can go down to 0% when it is
not used. We have observed that CPU is heavily used in a certain period of
time during day and night (up to 100 %). Disk is also under-utilized because
users often reserve space for future uses. However, memory is well utilized
because lots of cache data are stored both from applications and from operating
systems.
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Fig. 5. CDF with resource usage

Resource AVG STD MIN | MAX

CPU (%) 6.598 |17.653 |0 100
Network in (KB) |111851/172954 |0 869880
Network out (KB)|89543 |166628 |0 829791
Disk read (KB) 53814 2149716 |0 502722620
Disk write (KB) 53209 | 895461 |0 395700840

shows CPU/disk is under-utilized,
but memory is well utilized.

Additionally, Table2 shows some resource metrics (used in scalability poli-
cies) and some statistical results. As mentioned, CPU has low average number,
but maximum usage shows that CPU is used heavily in a certain time period.
Network and disk are also consistently used (average), and saturated in a certain
period of time (maximum).

As previously shown in Table 1, cloud providers have different scaling met-
rics that can be used as a monitoring/triggering metric. It is worthwhile to
identify what resource type is the most bottlenecked in the real data center.
Figure 6(a) illustrates ratios of bottleneck resource types. Even though average
CPU is unterutilized as depicted in Fig. 5, more than 43 % of servers have CPU
as a bottleneck. The next highest bottleneck is the network as 17 %, and only
9% of servers have disk as a bottleneck. The combination of resource types
show some insights that C+N (CPU+Net) has high correlation, meaning when
the network traffic increases, CPU load increases together. The rest of servers
(about 30 %) not shown in any of bottleneck do not have any load changes.

While global companies maintain on-premise data centers across conti-
nents, it is important to decide how to scale out across geo-distributed loca-
tions. The geo-locations can be configured with scalability policies, and it is
important to see where requests come from. Geographical distributions show
where requests originate, which can determine the need for geographical scal-
ability. Figure 6(b) depicts the datasets have most of requests from European
countries (Italy, German), and some US.
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Fig. 6. Experimental results from legacy data center.
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Fig. 7. Provisioning time of VMs Fig. 8. Scaling experiment in the real
in cloud providers (CP = Cloud cloud.
Provider).

Business applications run as a multi-tier application spanning multiple
servers with functional separation. In this multi-tier application, the high load
may be propagated along server dependencies, thus it is important to figure out
topological dependencies among servers. Figure 6(c) shows a statistical summary
with CDF to show the number of components (instances) and depths (layers) of
multi-tier applications. 98 % of multi-tier applications have less than 10 servers,
and its depth is less than 7. The average number of components is 3, and the
maximum is 105 with depth 1 (this was a monitoring server). The average num-
ber of depth is 2 and the maximum was 8.

7.2 Study in the Wild

As explained in Sect. 4, provisioning time may countervail benefits of elastic
scalability due to slow responsiveness, and this is shown in Fig. 2. Therefore,
FitScale takes into consideration the provisioning time when making policies.
Figure 7 shows provisioning time of cloud providers, which spins up a small
virtual machine with 2 CPUs, 4 GB memory, and 25 GB local disk. This corrob-
orates the provisioning time is an important factor to consider in order to avoid
any performance violation.

We repeat the same experiment as in Fig. 2 to see whether FitScale creates a
good scalability policy for increasing loads. A simple web server with a database
access in the backend is deployed in the cloud, and httperf is used to generate
HTTP requests [14]. Figure 8 illustrates how well FitScale can create a scalability
policy based on the source observation. The main difference between the two
experiments is the level of threshold, which differentiates the provisioning time
of each case.

7.3 Study in Laboratory

To expand the experiments to more diverse topologies than just two nodes, we
take common topologies from the observation of the on-premise data center.
Since 85 % of multi-tier applications consists of less than 5 servers as shown in
Fig.6(c), we consider up to 5 servers in each multi-tier application.
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Figure 9 shows 5 common topologies observed from the on-premise data cen-
ter. Black circles are able to scale horizontally and white circles are only able to
scale vertically, meaning only resource size (# of CPUs, memory, etc.) can be
adjusted due to application limitations.

We take multi-tier applications’ patterns
(topology, resource allocation/usage) from the l i A Q g/\l
on-premise data center dataset (Sect.7.1) to
3 T4 T5

simulate the scalability. The experiment is ' T2

done in the Xen hypervisor in the local pig 9. Five common topologies of
machine with 24 cores (Xeon CPU X5650 multi-tier applications.

2.67GHz) and 32GB memory. The sample

request pattern (12h) in Fig. 10(a) is from the dataset, and it is already smoothed
with 5min moving average. We compare FitScale with like-to-like (LTL) case,
and aim to validate cost benefits and performance violation.

FitScale picks virtual machines based on the minimum cost as shown in
Eq. (1). Figure 10(b) shows a ralative cost of each topology that sets FitScale
as a baseline. In all cases, LTL needs 5 times more operational expenditure and
this continues to increase over time (note that we only look at 12h). Reducing
instance costs could result in a performance violation, but as shown in Fig. 10(c),
the violation is minimum. We observe that performance violations occur because
of initial memory caching (application behavior), not because of scalability
policies.
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(a) Request graph (12 hours). (b) Cost benefits. (c) Performance violations.

Fig. 10. Performance evaluation with sample traffic by comparing with like-to-like
(LTL) migration.

8 Related Works

Gallant et al. [5] survey relate work on scalability and propose a classifica-
tion of elasticity methods based on four characteristics: scope (infrastructure
or application), policy (manual or automatic, reactive or predictive), purpose
(performance, cost, energy, capacity) and method (replication, redimensioning
or migration). In the context of application scalability they note PaaS platforms,
such as Aneka [2], where new container instances are executed to handle increase
in the demand. In contrast, in Microsoft Azure, user defines resources used by
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applications. Hasan et al. [7] reasons that the current autoscaling policies con-
sider resources from three separate domains, compute, storage and network, are
acquired or released on-demand without regard to each other. Moreover, net-
work resources are typically not auto-scaled. They propose a mechanism for
an integrated auto-scaling system overcoming the above mentioned limitations.
Vaquero et al. [18] present the survey of scalability techniques from PaaS and
TaaS perspective. They observe that the Cloud benefits are centered around
scalability of resources, and this is chiefly achieved by employing a set of service
provider defined rules (that may be customized). Most of the prior art focuses
on auto-scaling mechanisms, and our work addresses the gap in transforming the
application to a scalable functional unit (such as container).

9 Conclusion

We looked at the problem of workload migration from a legacy environment to
the cloud, and specifically the challenge of automatically identifying the right
level of scalability, while at the same time minimizing the operational expen-
diture. This paper introduces the FitScale framework, develops a method for
pattern discovery in application topologies and performance, and develops a
method for target sizing and scaling policy assignment. FitScale reasons about
functional and operational properties of applications, and derives the target siz-
ing recommendation, coupled with the scalability policies. We evaluated FitScale
in an on-premise data center with a dataset of 2023 servers/6737 applications.
The experimental results show about 5 times cost reduction with minimum
performance impact. As the scalability needs to continue to adapt to chang-
ing demands, our future work will focus on identifying how to predict future
demands and deliver adequate recommendations.
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