Skip to main content

Dynamic Trust Management Framework for Robotic Multi-Agent Systems

  • Conference paper
  • First Online:
Internet of Things, Smart Spaces, and Next Generation Networks and Systems (ruSMART 2016, NEW2AN 2016)

Abstract

A lot of research attention has recently been dedicated to multi-agent systems, such as autonomous robots that demonstrate proactive and dynamic problem-solving behavior. Over the recent decades, there has been enormous development in various agent technologies, which enabled efficient provisioning of useful and convenient services across a multitude of fields. In many of these services, it is required that information security is guaranteed reliably. Unless there are certain guarantees, such services might observe significant deployment issues. In this paper, a novel trust management framework for multi-agent systems is developed that focuses on access control and node reputation management. It is further analyzed by utilizing a compromised device attack, which proves its suitability for practical utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See: NOAA National Ocean Service: How much of the ocean have we explored? 2014. http://oceanservice.noaa.gov/facts/exploration.html.

  2. 2.

    See: Autonomous Fire Guard (AFG) concept. 2009. http://www.yankodesign.com/2009/08/21/firefighters-best-friend/.

  3. 3.

    See: The National Interagency Fire Center (NIFC): Incident Management Situation Report. 2016. http://www.nifc.gov/nicc/sitreprt.pdf.

  4. 4.

    See: V-REP http://www.k-team.com/mobile-robotics-products/v-rep.

References

  1. Hernandez, L., Baladron, C., Aguiar, J.M., Carro, B., Sanchez-Esguevillas, A.J., Lloret, J., Chinarro, D., Gomez-Sanz, J.J., Cook, D.: A multi-agent system architecture for smart grid management and forecasting of energy demand in virtual power plants. IEEE Commun. Mag. 51(1), 106–113 (2013)

    Article  Google Scholar 

  2. Andreev, S., Larmo, A., Gerasimenko, M., Petrov, V., Galinina, O., Tirronen, T., Torsner, J., Koucheryavy, Y.: Efficient small data access for machine-type communications in LTE. In: Proceedings of the IEEE International Conference on Communications (ICC), pp. 3569–3574. IEEE (2013)

    Google Scholar 

  3. Cao, Y., Yu, W., Ren, W., Chen, G.: An overview of recent progress in the study of distributed multi-agent coordination. IEEE Trans. Ind. Inf. 9(1), 427–438 (2013)

    Article  Google Scholar 

  4. Militano, L., Fitzek, F., Iera, A., Molinaro, A.: On the beneficial effects of cooperative wireless peer-to-peer networking. In: Pupolin, S. (ed.) Wireless Communications 2007 CNIT Thyrrenian Symposium, pp. 97–109. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Petrov, V., Andreev, S., Turlikov, A., Koucheryavy, Y.: On IEEE 802.16m overload control for smart grid deployments. In: Andreev, S., Balandin, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART 2012. LNCS, vol. 7469, pp. 86–94. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  6. Ren, W., Beard, R.W., Atkins, E.M.: A survey of consensus problems in multi-agent coordination. In: Proceedings of the 2005 American Control Conference, pp. 1859–1864. IEEE (2005)

    Google Scholar 

  7. Lesser, V.R.: Reflections on the nature of multi-agent coordination and its implications for an agent architecture. Auton. Agent. Multi-Agent Syst. 1(1), 89–111 (1998)

    Article  Google Scholar 

  8. Shehory, O.M., Sycara, K., Jha, S.: Multi-agent coordination through coalition formation. In: Singh, M.P., Rao, A., Wooldridge, M.J. (eds.) ATAL 1997. LNCS, vol. 1365, pp. 143–154. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  9. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013)

    Article  Google Scholar 

  10. Jung, Y., Kim, M., Masoumzadeh, A., Joshi, J.B.: A survey of security issue in multi-agent systems. Artif. Intell. Rev. 37(3), 239–260 (2012)

    Article  Google Scholar 

  11. Araniti, G., Calabro, F., Iera, A., Molinaro, A., Pulitano, S.: Differentiated services QoS issues in next generation radio access network: a new management policy for expedited forwarding per-hop behaviour. In: Proceedings of the IEEE 60th Vehicular Technology Conference (VTC2004-Fall), vol. 4, pp. 2693–2697. IEEE (2004)

    Google Scholar 

  12. Bell, D., LaPadula, L.: Secure Computer Systems: Unified Exposition and Multics Interpretation, vol. MTR-2997 R. MITRE Corp., Bedford (1976)

    Google Scholar 

  13. Harrison, M.A., Ruzzo, W.L., Ullman, J.D.: Protection in operating systems. Commun. ACM 19(8), 461–471 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  14. Higgins, F., Tomlinson, A., Martin, K.M.: Threats to the swarm: security considerations for swarm robotics. Int. J. Adv. Secur. 2(2&3), 1–10 (2009)

    Google Scholar 

  15. Petrov, V., Edelev, S., Komar, M., Koucheryavy, Y.: Towards the era of wireless keys: how the IoT can change authentication paradigm. In: Proceedings of the IEEE World Forum on Internet of Things (WF-IoT), pp. 51–56, March 2014

    Google Scholar 

  16. Weis, S.A., Sarma, S.E., Rivest, R.L., Engels, D.W.: Security and privacy aspects of low-cost radio frequency identification systems. In: Hutter, D., Müller, G., Stephan, W., Ullmann, M. (eds.) Security in Pervasive Computing. LNCS, vol. 2802, pp. 201–212. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  17. Kachirski, O., Guha, R.: Effective intrusion detection using multiple sensors in wireless ad hoc networks. In: Proceedings of the 36th Annual Hawaii International Conference on System Sciences, 8 p. IEEE (2003)

    Google Scholar 

  18. Mishra, A., Nadkarni, K., Patcha, A.: Intrusion detection in wireless ad hoc networks. IEEE Wirel. Commun. 11(1), 48–60 (2004)

    Article  Google Scholar 

  19. Pelechrinis, K., Iliofotou, M., Krishnamurthy, S.V.: Denial of service attacks in wireless networks: the case of jammers. IEEE Commun. Surv. Tutor. 13(2), 245–257 (2011)

    Article  Google Scholar 

  20. Basagni, S.: Distributed clustering for ad hoc networks. In: Proceedings of the Fourth International Symposium on Parallel Architectures, Algorithms, and Networks (I-SPAN 1999), pp. 310–315. IEEE (1999)

    Google Scholar 

  21. Karnik, N.M., Tripathi, A.R.: Security in the Ajanta mobile agent system. Softw. Pract. Exp. 31(4), 301–329 (2001)

    Article  MATH  Google Scholar 

  22. Sander, T., Tschudin, C.F.: Protecting mobile agents against malicious hosts. In: Vigna, G. (ed.) Mobile Agents and Security. LNCS, vol. 1419, pp. 44–60. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  23. Hohl, F.: Time limited blackbox security: protecting mobile agents from malicious hosts. In: Vigna, G. (ed.) Mobile Agents and Security. LNCS, vol. 1419, pp. 92–113. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  24. Page, J., Zaslavsky, A., Indrawan, M.: A buddy model of security for mobile agent communities operating in pervasive scenarios. In: Proceedings of the Second Workshop on Australasian Information Security, Data Mining and Web Intelligence, and Software Internationalisation, vol. 32, pp. 17–25. Australian Computer Society, Inc. (2004)

    Google Scholar 

  25. Page, J., Zaslavsky, A., Indrawan, M.: Countering security vulnerabilities using a shared security buddy model schema in mobile agent communities. In: Proceedings of the First International Workshop on Safety and Security in Multi-Agent Systems (SASEMAS 2004), pp. 85–101 (2004)

    Google Scholar 

  26. Zikratov, I.A., Lebedev, I.S., Gurtov, A.V.: Trust and reputation mechanisms for multi-agent robotic systems. In: Balandin, S., Andreev, S., Koucheryavy, Y. (eds.) NEW2AN/ruSMART 2014. LNCS, vol. 8638, pp. 106–120. Springer, Heidelberg (2014)

    Google Scholar 

  27. Hong, Y., Hu, J., Gao, L.: Tracking control for multi-agent consensus with an active leader and variable topology. Automatica 42(7), 1177–1182 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ni, W., Cheng, D.: Leader-following consensus of multi-agent systems under fixed and switching topologies. Syst. Control Lett. 59(3), 209–217 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandr Ometov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Zikratov, I., Maslennikov, O., Lebedev, I., Ometov, A., Andreev, S. (2016). Dynamic Trust Management Framework for Robotic Multi-Agent Systems. In: Galinina, O., Balandin, S., Koucheryavy, Y. (eds) Internet of Things, Smart Spaces, and Next Generation Networks and Systems. ruSMART NEW2AN 2016 2016. Lecture Notes in Computer Science(), vol 9870. Springer, Cham. https://doi.org/10.1007/978-3-319-46301-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46301-8_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46300-1

  • Online ISBN: 978-3-319-46301-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics