Skip to main content

Exploiting Spatial Correlation of Spectral Signature for Training Data Selection in Hyperspectral Image Classification

  • Conference paper
  • First Online:
Book cover Discovery Science (DS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9956))

Included in the following conference series:

Abstract

Supervised classification is commonly used to produce a thematic map from hyperspectral data. A classifier is learned from training pixels and used to assign a known class (theme) to each pixel (imagery data example). However, supervised classification requires a sufficient number of representative training samples to be accurate. These samples are usually selected by expert visual inspection or field survey. Consequently, collecting representative samples is a very challenging task due to the high cost of true sample selecting and labeling. This paper introduces an unsupervised learning schema, where the most suitable pixels to train the classifier are selected via image segmentation. This reduces the expert effort required for choosing training samples. In our proposal, clustering is performed by accounting for the property of spatial correlation of pixel-level spectral information, so that thematic objects can be retrieved via unsupervised learning and representative training data can be sampled throughout clusters. Experimental results highlight that the pixel classification accuracy outperforms the results of a random selection scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This expected property of the presented clustering procedure is, empirically, investigated in Sect. 5.2 of this study.

References

  1. Ablin, R., Sulochana, C.: A survey of hyperspectral image classification in remote sensing. Int. J. Adv. Res. Comput. Commun. Eng. 2(8), 2986–3000 (2013)

    Google Scholar 

  2. Angin, P., Neville, J.: A shrinkage approach for modeling non-stationary relational autocorrelation. In: Proceedings of 8th IEEE International Conference on Data Mining, pp. 707–712. IEEE Computer Society (2008)

    Google Scholar 

  3. Appice, A., Malerba, D.: Leveraging the power of local spatial autocorrelation in geophysical interpolative clustering. Data Min. Knowl. Discov. 28(5–6), 1266–1313 (2014)

    Article  MathSciNet  Google Scholar 

  4. Bailey, T., Krzanowski, W.: An overview of approaches to the analysis and modelling of multivariate geostatistical data. Math. Geosci. 44(4), 381–393 (2012). http://dx.doi.org/10.1007/s11004-011-9360-7

    Article  MATH  Google Scholar 

  5. Boots, B.: Local measures of spatial association. Ecoscience 9(2), 168–176 (2002)

    MathSciNet  Google Scholar 

  6. Chen, C., Li, W., Su, H., Liu, K.: Spectral-spatial classification of hyperspectral image based on kernel extreme learning machine. Remote Sens. 6(6), 5795–5814 (2014)

    Article  Google Scholar 

  7. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  8. Dray, S., Jombart, T.: Revisiting guerry’s data: introducing spatial constraints in multivariate analysis. Ann. Appl. Stat. 5(4), 2278–2299 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fauvel, M., Tarabalka, Y., Benediktsson, J., Chanussot, J., Tilton, J.: Advances in spectral-spatial classification of hyperspectral images. Proc. IEEE 101(3), 652–675 (2013)

    Article  Google Scholar 

  10. Getis, A., Ord, J.K.: The analysis of spatial association by use of distance statistics. Geogr. Anal. 24(3), 189–206 (1992)

    Article  Google Scholar 

  11. Hughes, G.: On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inf. Theor. 14(1), 55–63 (1968)

    Article  Google Scholar 

  12. Legendre, P.: Spatial autocorrelation: trouble or new paradigm? Ecology 74(6), 1659–1673 (1993)

    Article  Google Scholar 

  13. Li, M., Zang, S., Zhang, B., Li, S., Wu, C.: A review of remote sensing image classification techniques: the role of spatio-contextual information. Eur. J. Remote Sens. 47, 389–411 (2014)

    Article  Google Scholar 

  14. Manning, C., Raghavan, P., Schutze, H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  15. Melgani, F., Bruzzone, L.: Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 42(8), 1778–1790 (2004)

    Article  Google Scholar 

  16. Mondal, B., Choudhury, J.: A comparative study on k means and pam algorithm using physical characters of different varieties of mango in india. Int. J. Comput. Appl. 5(78), 21–24 (2013)

    Google Scholar 

  17. Pasolli, E., Melgani, F., Tuia, D., Pacifici, F., Emery, W.J.: SVM active learning approach for image classification using spatial information. IEEE Trans. Geosci. Remote Sens. 52(4), 2217–2233 (2014)

    Article  Google Scholar 

  18. Pasolli, E., Yang, H.L., Crawford, M.M.: Active-metric learning for classification of remotely sensed hyperspectral images. IEEE Trans. Geosci. Remote Sens. 54(4), 1925–1939 (2016)

    Article  Google Scholar 

  19. Plaza, A., Benediktsson, J.A., Boardman, J.W., Brazile, J., Bruzzone, L., Camps-Valls, G., Chanussot, J., Fauvel, M., Gamba, P., Gualtieri, A., Marconcini, M., Tilton, J.C., Trianni, G.: Recent advances in techniques for hyperspectral image processing. Remote Sens. Environ. 113(Supplement 1(0)), S110–S122 (2009)

    Article  Google Scholar 

  20. Rajadell, O., Garcia-Sevilla, P., Dinh, V.C., Duin, R.P.W.: Semi-supervised hyperspectral pixel classification using interactive labeling. In: 2011 3rd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), pp. 1–4 (2011)

    Google Scholar 

  21. Reynolds, A., Richards, G., de la Iglesia, B., Rayward-Smith, V.: Clustering rules: a comparison of partitioning and hierarchical clustering algorithms. J. Math. Modell. Algorithms 5(4), 475–504 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Richards, J.A.: Remote Sensing Digital Image Analysis: An Introduction, 2nd edn. Springer, New York (1993)

    Book  Google Scholar 

  23. Stearns, S.D., Wilson, B.E., Peterson, J.R.: Dimensionality reduction by optimal band selection for pixel classification of hyperspectral imagery. In: Proceedings of the SPIE, Applications of Digital Image Processing XVI, vol. 2028, pp.118–127 (1993)

    Google Scholar 

  24. Struyf, A., Hubert, M., Rousseeuw, P.: Clustering in an object-oriented environment. J. Stat. Softw. 1(4), 1–30 (1997)

    Google Scholar 

  25. Tobler, W.: A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 46(2), 234–240 (1970)

    Article  Google Scholar 

Download references

Acknowledgments

Authors thank Giuseppe Lorusso for his support in developing the algorithm presented. This work is carried out in partial fulfillment of the research objectives of the European project “MAESTRA - Learning from Massive, Incompletely annotated, and Structured Data (Grant number ICT-2013-612944)” funded by the European Commission, as well as the ATENEO 2012 project “Mining Complex Patterns” and the ATENEO 2014 project “Mining of network data” funded by University of Bari “Aldo Moro”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annalisa Appice .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Appice, A., Guccione, P. (2016). Exploiting Spatial Correlation of Spectral Signature for Training Data Selection in Hyperspectral Image Classification. In: Calders, T., Ceci, M., Malerba, D. (eds) Discovery Science. DS 2016. Lecture Notes in Computer Science(), vol 9956. Springer, Cham. https://doi.org/10.1007/978-3-319-46307-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46307-0_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46306-3

  • Online ISBN: 978-3-319-46307-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics