
A Toolkit for Analysis of Deep Learning
Experiments?

Jim O’ Donoghue1 and Mark Roantree1

Insight Centre for Data Analytics, School of Computing,
Dublin City University, Dublin, IRELAND
jodonoghue, mroantree@computing.dcu.ie

Abstract. Learning experiments are complex procedures which gener-
ate high volumes of data due to the number of updates which occur
during training and the number of trials necessary for hyper-parameter
selection. Often during runtime, interim result data is purged as the
experiment progresses. This purge makes rolling-back to interim experi-
ments, restarting at a specific point or discovering trends and patterns in
parameters, hyper-parameters or results almost impossible given a large
experiment or experiment set. In this research, we present a data model
which captures all aspects of a deep learning experiment and through an
application programming interface provides a simple means of storing,
retrieving and analysing parameter settings and interim results at any
point in the experiment. This has the further benefit of a high level of
interoperability and sharing across machine learning researchers who can
use the model and its interface for data management.

1 Introduction

In order to tune and optimise machine learning models, a wide range of param-
eters are required. Finding the best combination of parameters is often complex
and time consuming, as parameter optimisation requires careful monitoring of
each batch of results, which are generated during an update in training. These
results should also be monitored with respect to different combinations of hyper-
parameters. Hyper-parameters (HPs) are those not learned by the model but in-
stead given as inputs to the algorithm before training. One needs to choose a set
of HPs which allow model parameters to reach a configuration that optimises a
particular performance goal on a dataset for an algorithm during training. Grid
and manual search are the most widely used strategies for HP optimisation and
in both cases, many HP configurations are run to view their effect on algorithm
training in order to determine the best parameters. The main issues in trying to
find good parameter settings can be listed as follows:

– Functions require many complete iterations of training to find the optimal
hyper-parameter configuration - often a manual and lengthy process which
can lack empirical rigour.

? Research funded by Science Foundation Ireland, grant number SFI/12/RC/2289.



2

– In the majority of experiments interim results are stored in-memory and
subsequently discarded, save for the final, most accurate learner(s), result(s)
and hyper-parameters. This makes backtracking to an earlier parameter set
at a point in the experiment, or the analysis of interim learners, impossible.

– There are few languages defined for the exchange of data mining and machine
learning (ML) functions and parameters, which provides a barrier to sharing
and exchanging the complete set of results captured during the experiment.

There have been a number attempts to address the above problems via frame-
works such as CRISP-DM and SEMMA [2]. However, these frameworks are ab-
stract and require the development of more fine-grained methodologies before
any benefits can be accrued. To date, a number of ontologies have been created
for example, to describe: machine learning experiments [13]; or data mining con-
cepts in general [8]. However, ontologies are expensive to construct, often suited
to specific domains and require a significant learning curve for researchers.

1.1 Contribution

In this research, we present the Parameter Optimisation for Learning (POL)
data model which captures all aspects of machine learning experiments. The data
model formalises the description of a deep learning experiment along with pa-
rameters and result data; this enables the design of an application programming
interface (API) for the data management of both, facilitating storage and deeper
analysis of each trial and learner in the experiment. In specific terms, using a
JSON API for our data model provides a platform for historical analyses and
comparison across these analyses; a high level of interoperability enabling our
results to be shared and evaluated by others; and more efficient learning through
the ability to pause experiments, resume from any checkpoint and iterate on re-
sults. Our evaluation demonstrates how to achieve a reduced HP-search-space,
one important requirement in machine learning experiments.

Terminology. For a paper which covers both data modelling and machine
learning, it is necessary to clarify the terminology we will use throughout the
paper. The conceptual model presented in this paper captures all of the data
properties of a machine learning experiment. For this reason we will use the
term data model to refer to our representation of these data concepts. When
discussing the machine learning aspects of our work, we will use the terms al-
gorithm or learner to refer to the model being learned.

Paper Structure. This paper is structured as follows: in the following sec-
tion, we provide an overview of related research; in §3, we describe our conceptual
model which captures all aspects of deep learning experiments and analysis; in
§4, we present a deployment architecture which uses our conceptual model as
an interface layer to deep learning functions, parameter settings and result data
which are stored using NoSQL (Mongo) technology; our evaluation is described
and discussed in §5; and finally, in §6, we provide some conclusions.



3

2 Related Research

The first model interchange format for predictive data mining functions was
PMML [7]. They aimed to provide a mechanism for working with different types
of predictive models by defining a convenient language for importing and export-
ing these models between different systems. Their experience with DM applica-
tions had shown the usefulness that a flexible interchange mechanism would
provide and they argued that previous interchange formats were proprietary.
However, PMML lacks a conceptual abstract model to describe a machine learn-
ing experiment, nor does it describe or utilise experiment databases which store
interim training results. Instead, its focus is purely on model deployment and
interchange and therefore, does not sufficiently describe the hyper-parameter
optimisation process, an important function of training deep learning models.

With the Portable Format for Analytics (PFA) [1], the authors provide an ab-
stract description of a machine learning model allowing user-defined algorithms
and models. While PFA incorporates JSON for its implementation model, its
aim is somewhat different to our own. Similar to our approach, PFA provides a
mechanism to export and exchange models where not previously possible. The
main difference is that PFA focuses on the deployment of their model to produc-
tion environments whereas we focus on the analysis of all aspects of a machine
learning experiment. This enables the building of more robust learning models
and aids in hyper-parameter selection. As PFA is a ’mini-language’ rather than a
data-model, it provides the capability to take in data and score this data accord-
ing to the algorithm it has learned. As a result, it is a complex process whereas
we aimed to define a light-weight, simple format that allows a formal description
of a deep learning experiment and model.

In [5], the authors present the MEX vocabulary, a lightweight interchange
format for ML experiments, which is an extension to the PROV-O ontology [10].
Their aim is similar to our own, but instead of taking a data-modelling approach,
their methodology focuses on a linked-data, semantic web paradigm. Again,
similar to the research presented here, [5] aims to provide a means to describe
the elements of a learning experiment instead of exhaustively defining all aspects
of the knowledge discovery process. However, a physical or implementation model
for this ontology is not provided, nor an interface to persistent storage for later
evaluation of experiment results. We also believe that the RDF graph-store does
not provide as high a level of interoperability offered by JSON.

3 A Conceptual Model for Deep Learning Methods

The goal of our conceptual model is to capture all data properties of the ML ex-
periment. There are three broad aspects to our model: model-parameter, hyper-
parameter and (interim and final) result data management. The highest level of
abstraction is an experiment and within that entity are all objects and attributes
required to describe parameter and result data. Thus, we refer to our data model
as the Parameter Optimisation for Learning (POL) model.



4

3.1 Model Overview

In Figure 1, we present a detailed illustration of the POL data model and the
3 levels of data capture required. At the highest level, the Experiment class is
the entry point to the model and has a 1-to-many relationship with the Learner
class, meaning an experiment can have multiple occurrences of a learner. As the
search space settings remain constant for an experiment, the HyperParam-
SearchSpace is also present at this level. The Learner (at one level down
from Experiment) has a 1-to-many relationship with the Layer class, allow-
ing the algorithm to have one or more layers. Within Learner, there are three
main concepts: parameters (weights and biases) which are represented by the
LayerConfiguration, Layer and Tensor classes; hyper-parameters which are
represented by the HyperParameters class; and results (output from any it-
eration of the algorithm) which are represented by the LearnerPerformance,
Performance, ConfusionMatrix and Tensor classes as well as Indices which
describes the dataset configuration which generated those results. Result data
is captured at this layer as the entire Learner is used to produce results. At the
lowest level of the data model is the Layer class which contains the weights and
biases for a Layer in the Learner and as these are multi-dimensional mathemat-
ical objects they are represented by the Tensor class.

3.2 Model Details

In this section, we provide a detailed description of two of the more important
classes of POL data model: Learner and HyperParameters, as space restrictions
prevent a full description of the entire model. Learner is described by:

– learner type: Name of the learning algorithm used, for example: restricted
boltzmann machine or recurrent neural network (RNN).

– learning type: Learning task: reinforcement, supervised, unsupervised, etc.
– optimisation method: Optimisation method for the learning function e.g.

mini-batch stochastic gradient-descent (MSGD).
– hyper parameters: Input and fixed parameters used by the optimisation

process and initialised within the search-space bounds.
– layers: A list of Layer objects, which transform features into more ab-

stract features or classifications and predictions. A Layer contains the model-
parameters, weights and biases which make up a Learner.

– performance: Instance of the Learner Performance object, containing a
result snapshot for an update, or the final result if training has finished.

– trained: Boolean attribute to indicate if the Learner’s model-parameters
are optimised. Otherwise, the instance is a snapshot of a particular update.

To represent hyper-parameter optimisation, 2 classes are required in our
model: HyperParamSearchSpace and HyperParameters. The search-space
class defines an upper and lower bound for each HP, from which n trial hyper-
parameters are instantiated to find the best setting. We now describe HyperParameters
which details a single configuration generated within the space:



5

Fig. 1. POL Conceptual Model

– hp opt method: The name of the algorithm used to optimise the hyper-
parameters.

– alpha learning rate: Determines the magnitude of parameter updates for
one step of gradient descent (GD).

– lambda regularisation term: Determines the penalty placed on very large
or small weights and biases or null if dropout or no regularisation is applied.

– regularisation type: Type of regularisation applied to the model-parameters,
for example L1, L2, dropout, dropconnect or none.

– l hidden layers: Number of hidden layers in a Learner; 1 or less is con-
sidered shallow whereas anything more is considered deep.

– o hidden nodes: List where each element describes the number of hidden
nodes in each layer.

– batch size: Number of dataset rows to use in MSGD, which affects the
algorithm’s learning ability. A size of one is synonymous with stochastic GD
and a size equal to the number of training samples equates to batch GD.



6

– max updates: Maximum number of GD updates to apply to a learning func-
tion, the bounds depend on the number of model-parameters and rows in the
dataset; used as an exit parameter or a patience parameter in early-stopping.

– truncate gradient: Describes how far in the past to pass errors in back-
propagation through time.

– layers: A list of LayerConfiguration objects which detail the setup and
label of each layer in the architecture.

– n train batches, n valid batches, n test batches: Number of batches
in training, validation and test sets, respectively.

4 Deployment Architecture

We now describe the system architecture where the POL is deployed. It comprises
of: Data Storage, Interoperable and Application layers, shown in Figure 2.

Data Storage Layer. In order to develop an interoperable API to deliver
the goals specified in our introduction, the POL data model was implemented in
JSON and currently uses MongoDB for storage. This facilitates a direct mapping
between the JSON API and the NoSQL database (MongoDB). The efficient
storage of parameters and result data, together with the exploitation of key
properties of the NoSQL databases to construct the experiment database form
part of a future research submission.

Fig. 2. Operational Architecture

Interoperable Layer. The goal of the Interoperable Layer is to facilitate
greater flexibility in the learning process but also to facilitate sharing of results
for comparison and analysis. The layer has 3 libraries to achieve those goals:
the Setup library contains all functions to instantiate an experiment, read in
the data and configure the database in order for results and snapshots to be



7

processed; the Evaluation library contains functions to analyse and rank the
performance of different trial-runs in the learning process; and the Access li-
brary abstracts storage details from the higher level libraries. The Access API is
developed using JSON and is a direct implementation of the POL data model.
This API contains all of the functionality to write and read attributes before
and during a deep learning experiment. The Setup and Evaluation libraries are
developed using Python and are currently accessible using Python APIs. These
libraries provide higher level functionality for experiment setup and evaluation,
both use the Access API to read and write to Mongo.

Application Layer. The major applications which use the toolkit repre-
sents different aspects of learning and deep learning experiments: experimental
setup (Preprocess); learning (Explore/Model) and evaluation (Post-Process &
Analyse). Applications can either interact directly with the Access API to de-
sign their own experiments and evaluation functions or use the Python library
APIs for easier manipulation of experimental data.

5 Evaluation and Analysis

The aim of our evaluation was not to build the most accurate model, but to
demonstrate how our interoperable toolkit can be used for the management
and analysis of learning experiments. Specifically the aim is HP search space
optimisation. The analysis of interim results across all trial-runs was used to
fine-tune the full set of hyper-parameter bounds.

The dataset used for evaluation was generated from a series of sensors worn by
athletes during Gaelic Football matches and is described elsewhere [11]. Random
search was employed as our HP optimisation procedure [3] and 90 trials were
carried out for 2 runs each, giving 180 trial-runs. Table 1 shows the search space
for experiments. Algorithm parameters were randomly initialised according to
[6], save for hidden to hidden rectified linear unit (ReLU) weights, initialised
according to [9] and optimised with MSGD and Early Stopping [12], [4].

Table 1. Hyper Parameters and Bounds

Hyper-parameter Bounds (low, high) Description

activation (relu, logistic) hidden layer activation

n hidden nodes (1, 10) number of hidden layer nodes

truncate gradient (5, 100) number of time-steps to BP errors

learning rate α (0.0001, 0.9) co-efficient for weight updates

max updates (10, 10000) max possible updates performed

batch size (60, 600) samples in mini-batch update



8

5.1 Search Space Reduction: Results and Commentary

We first present summary experiment statistics in Table 2. The experiment con-
sisted of 180 trial-runs, during which 40,830 epochs were iterated. The average
size of a learner and result snapshot was 0.59MB, leading to Trial-Runs being
10.657MB in total and Updates nearly amounting to 2.5GB. Unlike most ma-
chine learning experiments where only the final result is captured, interim results
were recorded for every epoch. It is also possible to store results for each batch
update within epochs, but this level of granularity was not used in our evaluation
due to the obvious cost/benefit in terms of storage and speed.

In our Evaluation library, reduce search space performs an analysis which
uses a set of queries to access results from multiple interim trial-runs. All Learn-
ers are evaluated, with the top-k snapshots returned through get top k ids

(Evaluation library), which then facilitates the retrieval of associated hyper-
parameters through get hyper parameters in the Access library. The coalesce
hyper parameters analyses the top-k hyper-parameter settings and generates

summary statistics before finally, a reduced search space is generated through
reduce search space.

Table 2. Experiment Statistics

Collection Count Size(MB) Avg.Object Size(MB)

trial-runs 180 10.657 0.059

updates 40,089 2,377.193 0.059

Table 3 shows the result of coalesce hyper parameters for the Top 20
performing HPs in the 180 trial-runs. It calculates the mean, standard deviation,
minimum and maximum and the 25th, 50th (median) and 75th percentiles. We
have also shown sample HP frequency distribution histograms, which are output
from visualise hp distribution (Evaluation library) in Figures 3, 4, 6 and 5.
To best understand the beneficial effects of using our system, we now explore the
outputs from coalesce hyper parameters and visualise hp distribution,
key functions that allow analysis of interim results from many learners, which
is only possible with persistent data management. We have omitted histograms
for epochs, updates and batch size due to space restrictions.

Activations. We will first consider the activations of the Top 20 Learners
in our 180 trial runs, shown in Figure 3. Activations are categorical strings and
therefore, require different analyses to numeric HPs. The count of Learners built
with ReLUs is close to those with Logistic activations. This result suggests both
activations have similar performance but as ReLU outweighs logistic by a ratio
of 11:9, reduce search space evaluates the ReLU to be the higher performing
activation.

Hidden Nodes. The (hidden) nodes summary in Table 3, shows the average
value for hidden node count is 4.360 with a median of 4. A median below the
distribution average (right-skewed distribution), suggests the ideal parameter for



9

Table 3. Hyper-Parameter Summary Statistics

ID nodes truncate alpha max updates steps epochs batch size

mean 4.360 53.980 0.404 3966.870 3520.900 157.900 289.240

std 2.765 26.251 0.284 2704.307 3569.484 208.755 178.533

min 1 6 0 132 30 2 68

25% 2 33 0.139 1394 326 8 118

50% 4 55 0.373 3729 2230 88 242

75% 6.250 74.250 0.655 6332 7332 155 451.750

max 10 100 0.889 9899 9932 722 619

Fig. 3. Activations Fig. 4. Hidden Nodes

this HP would be 4 or less, confirmed in the plot of the frequency distribution in
Figure 4. This means the latent features which describe the input are actually
low in cardinality, which shows the dimensionality can likely be reduced.

Fig. 5. Gradient Truncate Fig. 6. Learning Rate Alpha

Truncate Gradient. Figure 5 shows the number of time-steps recorded for
optimising backpropagation through time. The value at the 75th percentile for
truncate gradient are 74.25 in Table 3, with the mean and median at 53.98
and 55 respectively, indicating a skewed distribution. There are two possibilities
for the distribution centring at these values. The first is that time-points near



10

ti−55 : ti have the greatest impact on ti+10, meaning all activity for 55 seconds
before time-point ti has the greatest effect on predictions. The second possibility
is that for time-points > 55 seconds, the gradient disappears, but this is unlikely
as good performance was also demonstrated in the range 90 to 100.

Learning Rate. From Table 3 and Figure 6, we can see only one configura-
tion in the top 20 had a value below 0.1. The mean was 0.404 and the median
was at 0.373, giving a right skew. Both values are quite large for a learning rate
and suggest that GD is quite steep.

Table 4. Reduced Hyper-Parameter Search Space

Hyper-parameter Bounds (low, high)

activation (relu)

n hidden nodes (1,7)

truncate gradient (29, 81)

learning rate α (0.89, 0.657)

max updates (30, 9932)

batch size (63, 421)

The above analyses show that the median better represents the central ten-
dency of all parameters. Also, these distributions do not lend themselves to a
parametric analysis as shown in the graphs. Therefore, our selection methodology
for the bounds of a reduced search-space consisted of taking the median and stan-
dard deviations for each hyper-parameter resulting from coalesce hyper parameters

(Table 3) and generating a new bound in the range (median - std. dev., median +
std. dev.), save for max updates where we instead use the max and min values, as
these parameters had a close to uniform distribution. The more realistic search
bounds presented in Table 4 can only be determined using an analysis of the
stored history of earlier experiments. This also facilitates augmenting random
search with coordinate descent, a process not possible if we simply determine
the single best configuration.

6 Conclusions

A wide range of parameters are used when optimising machine learning models.
Finding the best combination of parameters in high volumes of output data,
across potentially high numbers of experiments is difficult. In this paper, we
addressed this issue through the development of the POL data model, which
captures the entire set of parameters used in learning experiments and models.
The aim of our research to facilitate the optimisation process by providing data
management, analysis and optimisation functions through a standard interface,
developed for the POL data model. In effect, a persistent data-store allows us
to store all models and all updates, generating multiple outputs from a sin-
gle experiment and a direct means of querying interim results. Our evaluation



11

shows how using interim results, distributions can be generated for each hyper-
parameter of the top 20 performing learners, which can then be analysed and
used to determine an empirically reduced search-bounds in which to optimise
hyper-parameters. This also allows for the extraction of confidence intervals for
each hyper-parameter, which is the focus of future research.

References

1. PFA: Portable format for analytics (version 0.8.1). Tech. rep., Data Mining Group
- PFA Working Group (2015)

2. Azevedo, A., Santos, M.F.: Kdd, SEMMA and CRISP-DM: a parallel overview. In:
IADIS European Conference on Data Mining 2008, Amsterdam, The Netherlands,
July 24-26, 2008. Proceedings. pp. 182–185 (2008)

3. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J.
Mach. Learn. Res. 13, 281–305 (Feb 2012)

4. Bottou, L.: Stochastic gradient learning in neural networks. Proceedings of Neuro-
Nımes 91(8) (1991)

5. Esteves, D., Moussallem, D., Neto, C.B., Soru, T., Usbeck, R., Ackermann, M.,
Lehmann, J.: Mex vocabulary: a lightweight interchange format for machine learn-
ing experiments. In: Proceedings of the 11th International Conference on Semantic
Systems. pp. 169–176. ACM (2015)

6. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: International conference on artificial intelligence and statistics.
pp. 249–256 (2010)

7. Grossman, R., Bailey, S., Ramu, A., Malhi, B., Hallstrom, P., Pulleyn, I., Qin, X.:
The management and mining of multiple predictive models using the predictive
modeling markup language. Information and Software Technology 41(9), 589–595
(1999)

8. Keet, C., dAmato, C., Khan, Z., Lawrynowicz, A.: Exploring reasoning with the
DMOP ontology. In: 3rd Workshop on Ontology Reasoner Evaluation (ORE14).
vol. 1207, pp. 64–70 (2014)

9. Le, Q.V., Jaitly, N., Hinton, G.E.: A simple way to initialize recurrent networks of
rectified linear units. arXiv preprint arXiv:1504.00941 (2015)

10. Lebo, T., Sahoo, S., McGuinness, D., Belhajjame, K., Cheney, J., et al.: Prov-o: The
prov ontology. w3c recommendation, 30 april 2013. World Wide Web Consortium
(2013)

11. O’Donoghue, J., Roantree, M., Cullen, B., Moyna, N., Sullivan, C.O., McCarren,
A.: Anomaly and event detection for unsupervised athlete performance data. In:
Proceedings of the LWA 2015 Workshops, Trier, Germany, October 7-9, 2015. pp.
205–217 (2015)

12. Prechelt, L.: Early stopping-but when? In: Neural Networks: Tricks of the trade,
pp. 55–69. Springer (1998)

13. Vanschoren, J., Soldatova, L.: Exposé: An ontology for data mining experiments.
In: International workshop on third generation data mining: Towards service-
oriented knowledge discovery (SoKD-2010). pp. 31–46 (2010)


