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Abstract. We demonstrate the application of Widening to learning per-
formant Bayesian Networks for use as classifiers. Widening is a frame-
work for utilizing parallel resources and diversity to find models in a
hypothesis space that are potentially better than those of a standard
greedy algorithm. This work demonstrates that widened learning of
Bayesian Networks, using the Frobenius Norm of the networks’ graph
Laplacian matrices as a distance measure, can create Bayesian networks
that are better classifiers than those generated by popular Bayesian Net-
work algorithms.

1 Introduction

Widening [2,18] formalizes a method for executing a greedy learning algo-
rithm in parallel while using diversity to guide the parallel refinement paths
through a hypothesis1 space. This enables the system as a whole to avoid local
optima and potentially find better models than the greedy learning algorithm
would otherwise find. Previous work [13,29] has demonstrated its viability on
real world algorithms. This work builds on that with an application to the
superexponentially-sized [28] hypothesis space of learning Bayesian Networks.
Bayesian Networks [26] are probabilistic graphical networks, which describe rela-
tionships of conditional dependence between the features of a dataset. Perhaps
the best known of these graphical networks is the network defined by the Näıve

Bayes algorithm [11,23]. This paper describes the application of Widening to
the learning of Bayesian Networks for use as classifiers.

The ultimate goal of Widening is not just to provide better solutions using
parallel resources, but to provide better solutions in the same time or less than
the canonical greedy algorithm. To enable this, communication-free Widening
would allow the model refinement paths, separated by some measure of diversity,
to be followed through the solution space until some stopping criterion is met.
The difficulty in that effort has been finding a suitable measure of distance, i.e.,

1 We freely mix the use of “solution space” and “hypothesis space” throughout this
paper, referring essentially to the same space, but drawing attention to whether it
is the evaluation of the hypothesis or the hypothesis itself that is important.
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diversity. Here, we show that the Frobenius Norm of Bayesian Networks’ graph
Laplacians is a useful measure of diversity for comparing Bayesian networks in
the Widening framework, albeit not in a communication-free framework.

2 Background

2.1 Learning and Scoring Bayesian Networks

A Bayesian network, B, derived from a dataset, D, is a triple, 〈X , G,Θ〉, where
X is the set of features or random variables in the dataset, G is a directed-
acyclic-graph (DAG), and Θ is the set of conditional probability tables (CPT)
for the features in X . The graph G = (X , E), is an ordered pair, where each node,
X ∈ X , is a feature from the dataset and where each edge, E = {Xi, Xj} ∈ E ,
is directed according to the dependency of one feature on another.

There are four general categories of algorithms for learning Bayesian net-
works: search-and-score, constraint-based, hybrid [19] and evolutionary algo-
rithms [20]. Search-and-score methods such as K2 [9] and Greedy Equiva-

lence Search (GES) [8] rely on heuristics to sequentially add, remove, or
change the direction of the edges in the graph, G, to which a scoring method is
applied. Edges that improve the score are kept in the graph for the next iteration
of add, delete, or change. Constraint-based methods such as PC Algorithm [32]
or CBL [7] rely on some assumptions about the dependency relationships of the
features, from which a partially-directed-acyclic-graph is generated. This “skele-
ton” of a graph describes the neighbors of each of the feature nodes within the
graph, but not necessarily the direction of the edges between the nodes. After
determining the skeleton, search-and-score methods are used to find better net-
works, i.e., networks with a higher score, by flipping the direction of the edges and
re-evaluating the score. Hybrid methods such as Max-Min Hill-Climbing [35]
incorporate techniques from both the search-and-score and the constraint-based
methods. Algorithms based on evolutionary techniques randomly change and
combine networks and evaluate them with a fitness function.

Several scoring functions have been proposed for the use of learning Bayesian
networks. For an extensive overview and comparison, the reader is referred to [6].
Scoring functions can be grouped into two categories, Bayesian and information-
theoretic. Bayesian scoring methods calculate the posterior probability distribu-
tion based on the prior probability distribution conditioned on D. Some exam-
ples of Bayesian scoring functions are K2 [9], Bayesian Dirichlet (BD) [17], BD
with equivalence assumption (BDe) [9], and BD with equivalence and uniform
assumptions (BDeu) [5].

Information-theoretic score functions are based on Shannon entropy and the
amount of compression possible for a Bayesian network. The Log-Likelihood (LL)
score is based on the logarithm of the likelihood of D given B, i.e., log(P (D|B)).
The LL score is better, in general, for complete networks, and for this reason
alternate scoring functions have been proposed that penalize the LL according to
some factor. The Minimum Description Length [34] (MDL), the Akaike Informa-
tion Criterion [1] (AIC), and Bayesian Information Criterion [30] (BIC) (roughly
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Mi r(·) Δ(·) stop−k(·) Mi+1

Fig. 1. Widening. Each mk,i ∈ Mi (green) is refined to five models (yellow). In each
of these sets, the three most diverse from another are determined (red). The two best
performing models (blue) are selected and used for the next iteration, mk,i+1 ∈ Mi+1

(green). (Color figure online)

equivalent to MDL) all adjust the LL by different proportions of the network
complexity.

Less commonly, and more often associated with evolutionary algorithms such
as [27,31], the performance of the networks as a classifier is used as the scoring,
i.e., fitness, function. In this vein, the work described in this paper also uses
accuracy as the scoring function.

When used as a classifier, the relevant portion of the network contains the
parents of the target node, the children of the target node, and the children’s
other parents. This is termed the Markov blanket [26, p. 97].

2.2 Widening

The Widening framework [2,18] (See Fig. 1.) describes a general process for
improving greedy learning algorithms where models, m ∈ M, are iteratively
refined and scored in parallel. Each refinement path follows a different route
through the hypothesis space. The models at each refinement step are separated
using a diversity measure, Δ, which enforces a distance between the models’
respective refinement paths.

More formally, a refinement operator, r(·), applied to a model, m, generates
a set of models, M ′, from the set of all possible models, M, in the hypothesis
space. A selection operator, s(·), when applied to a set of models, selects a subset
according to a performance metric. In Widening’s most rudimentary form, the
best k performing models from a refinement step are selected, stop−k(M ′), which
in turn are further refined and selected until a stopping criterion is met. The
stop−k(·) operator has a similarity to a Beam Search, [22] but instead of a
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selection operator based solely on performance, the selection is also based on
diversity, due to the refinement operator.

2.3 Related Work

Learning Bayesian Networks for classification, either by modifying networks cre-
ated by Näıve Bayes or by the generation of networks through completely
different methods, is a very active research area. An excellent survey can be
found in [4]. In [14], Friedman et al. describe Tree Augmented Näıve Bayes

Network (TAN) where edges are added between child nodes of a Näıve Bayes
network in a greedy search using the MDL scoring function, and whose struc-
ture is limited to that of a tree. The authors also describe learning an “unre-
stricted” Bayesian Network Augmented Näıve Bayes (BAN), but these
networks do not include networks with nodes as parents for the target nodes, but
rather just more complex relationships among the child nodes. Cheng et al. in
[7] describe an algorithm (CBL) for finding General Bayesian Networks (GBN)
based on conditional independence tests using Mutual Information (MI).

In [25] Nielsen et al. present k-Greedy Equivalence Search (KES) which
is a modification to the GES, where a random subset of models from the entire
set is chosen and evaluated. They describe this as a method specifically to avoid
the local optima encountered by GES in [8].

Su and Zhang describe in [33] what they call Full Bayesian Networks (FBN),
which are TANs where all child nodes of the target are connected to a maximal
subset of the other child nodes based on an ordering using MI. This structure is
in turn used to learn a Decision Tree-like structure for learning CPT-Trees.

The work presented here is similar to the TAN in [14], in that we perform a
greedy search for better networks starting with a network generated by Näıve

Bayes. It is similar to the work in [25], in that a subset of models is chosen and
evaluated specifically to avoid local optima. It differs from these two, in that (1)
any configuration of Bayes Network is allowed, (2) diversity between networks
rather than randomness is used to select models, and (3) classification accuracy
is employed for the scoring function.

3 Widened Bayesian Networks

3.1 Application of the Widening Framework

The simplest search-and-score method (Hill-Climbing or Greedy Search)
refines a Bayesian Network model by changing a randomly or heuristically chosen
edge, E, and scores the network according to one of the scoring functions dis-
cussed in Sect. 2.1. The algorithm greedily keeps the changed edge if it improves
the score. Using the Widening notation, the greedy search-and-score method is
Bi+1 = stop−k=1(r(Bi)), where i refers to the current search-and-score iteration.
The process stops when no further improvement is seen.

The application of Widening to this process is to refine a set of different
Bayesian networks at each stage, Bi+1 = r(Bi). Each model is refined to a
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number, l, of refinements. From this set, k models are selected by the selection
operator, stop−k(·). k × l models are generated during each refinement iteration,
with the exception of the initial one. Additionally, the application of a diversity
measure, Δ, is used by the refinement operator, and therefore notated as rΔ(·).
The refinement operator ensures that the models are different enough to explore
disparate regions of the hypothesis space.

Scoring Bayesian Networks by using classification accuracy is common only
with the evolutionary algorithms, even though, for example, Friedman et al.
in [14] explicitly say that one of the reasons that their TAN Algorithm did
not always provide superior solutions was that the structural score may not have
been a good analog for the use of the network in its role as a classifier.

In summary, each step in the top-k Widening process is described as

Bi+1 = stop−k(rΔ(Bi)) (1)

3.2 Refinement Operator

The refinement operator creates a list of all possible pairs of nodes, i.e., all
possible edges. Each edge is compared with the current model and up to two
additional models are created based on the edge. (See Fig. 2.)

1. If it is possible to add the edge to the initial model (Fig. 2a), i.e., its presence
would not contravene the definition of DAG by creating a loop, it is added.
(See Fig. 2f.)

2. If it is present in the model, it is removed. (See Figs. 2b and d.)
3. If it is present in the model, and the reversal of its direction would not create

a loop, it is reversed. (See Figs. 2c and e.)

A distance matrix of all distances between network model pairs is then cal-
culated.

3.3 Diversity

There are a variety of measures for comparing two labeled DAGs. Early exper-
iments indicated that the Hamming distance [16] does not measure diversity in
a way that scales well to larger networks. For this work, we have chosen the
Frobenius Norm of the difference between the graphs’ Laplacian matrices. The
Frobenius Norm is sometimes referred to as the Euclidean norm and provides a
“measure of distance on the space of matrices”. [15] The Frobenius Norm for a
matrix, A ∈ R

m×n is defined as

||A||F =

√√√√
m∑

i=1

n∑
j=1

|aij |2[15] (2)

where, aij are elements of matrix A.
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(a) Initial model. (b) A-t B removed. (c) A-t B => B -t A (d) A-t C removed. 

(g) Reversed edge ap­
plied to Figure 2f. 

(e) A___. C => C ___.A (f) B ___. C added. Disallowed; not DAG. 

Fig. 2. Example possible refinements for the three edges {(A, B), (A, C), (B, C)} 

The Laplacian matrix of a graph is given by the formula L = D - A , where 
D is the out-degree matrix, and A is the adjacency matrix. Here we use the 
Frobenius Norm of the difference of each pair of Bayesian networks' Laplacian 
matrices, i.e., 

(3) 

and Bi is the set of refined Bayesian networks from Eq. l. 
The P-DISPERSION P ROBLEM describes selecting a subset of points from 

a larger set, where the subset's minimum pairwise distances are maximized. 
There are several diversity measures used commonly with the P- DISPERSION 

PROBLEM, including sum and min-sum. p-dispersion-sum simply maximizes the 
sum of the distances between any two points in the subset, whereas p-dispersion­
min-sum maximizes the sum of the minimum distances between two points. 
p -dispersion-sum has the property of pushing the resultant subset to the margins 
of the original set, whereas the subset derived using p-dispersion-min-sum is 
more representative of the dataset as whole [24]. Because of this property, and 
based on the results in [29], we favor p-dispersion-min-sum as the diverse subset 
selection method. 

D efinit ion 1 p-dispersion-min-sum.2 Given a set B = {Bt, · · · , Bn} of n 
distinct Bayesian networks and p, where p E N and p ~ n , and a distance 

2 In this application, it would be correctly termed "l-dispersion-min-sum," but the 
notation is written here as "p" to be consistent with the literature. 
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measure d(Bi, Bj) : Bi, Bj ∈ B between Bayesian networks Bi and Bj, the
p-diversity-min-sum problem is to select the set B̂ ⊆ B, such that

B̂ = argmax
B′⊆B
|B′|=p

f(B′), where

f(B′) =
p∑

i=1

min
1≤i,j≤n,i �=j

d(Bi, Bj) : Bi, Bj ∈ B[24]

(4)

The p-Dispersion Problem is known to be NP-complete, and when adjust-
ing the diversity criterion to be min-sum, the problem is NP-hard [12].

3.4 Selection Operator

The selection operator presented in this work is simply the performance metric
of the Bayesian network as a classifier, similar to that of [31]. When compared
to the scoring methods described in Sect. 2.1, this has the advantage of being
directly related to the network’s use as a classifier, and networks that perform
poorly as classifiers are eliminated from the refinement paths. The calculation
for determining the target winner is similar to that of Näıve Bayes, except the
probabilities of the parents of the target node and of the other parents of the
target’s child nodes are considered.

Ĉ = argmax
j=1,...,|C|

P (Cj ,Xm) = argmax
j=1,...,|C|

P (Cj |pa(C))
m∏

i=1

P (xi|pa(xi))[4] (5)

where Xm ⊆ X is the subset of features contained in the Markov-blanket of the
target node, C, and pa(·) is the set of parents of a child of C in the Bayesian
network.

4 Experimental Results

The experiments were performed in KNIME Analytics Platform [3]. The datasets
from the UCI Machine Learning repository3 [21] were discretized using the
LUCS-KDDN software.4 Unlike algorithms such as K2 or CBL, no assumptions
were made concerning the ordering of the features within the dataset. Datasets
with missing values or continuous values were not considered, because we are
interested in testing the Widened learning process and not the robustness of the
algorithm to various data types. The refinement operator placed no restrictions
on the number of parents a node may have. The stopping criterion was set to
stop the iterations when improvement in the best model compared to its perfor-
mance in the previous iteration was less than 0.01 %. The records in the datasets
were shuffled between each widening trial of a different breadth and width.
3 http://archive.ics.uci.edu/ml/.
4 http://www.csc.liv.ac.uk/∼frans/KDD/Software/LUCS KDD DN/.
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Table 1. Accuracy (μ ± 2σ) comparison of all tested algorithms with 5-fold cross-
validation.

Dataset |D| |X | |C| Widened Bayes MMHC Tabu Hill-Climbing

ecoli 336 7 8 0.747 ± 0.032 0.430 ± 0.123 0.593 ± 0.119 0.647 ± 0.057

flare 1389 10 9 0.843 ± 0.015 0.843 ± 0.013 0.843 ± 0.013 0.843 ± 0.013

glass 214 9 7 0.649 ± 0.137 0.457 ± 0.151 0.564 ± 0.133 0.536 ± 0.111

nursery 12960 8 8 0.935 ± 0.047 0.570 ± 0.150 0.621 ± 0.214 0.632 ± 0.246

pageBlocks 5473 10 5 0.898 ± 0.015 0.913 ± 0.011 0.913 ± 0.004 0.910 ± 0.023

pima 768 8 2 0.710 ± 0.068 0.721 ± 0.136 0.757 ± 0.098 0.736 ± 0.143

waveform 5000 21 3 0.790 ± 0.025 0.342 ± 0.014 0.619 ± 0.020 0.620 ± 0.021

wine 178 13 3 0.939 ± 0.091 0.746 ± 0.150 0.798 ± 0.116 0.747 ± 0.184

The initial state could be any network configuration that satisfies the defi-
nition of a DAG, including a network without any edges. Because our effort is
to prove the ability of Widening to find superior solutions to traditional greedy
methods, we chose a Näıve Bayes configuration, where all of the non-target fea-
tures are dependent on the target variable, as the initial state. This was a prag-
matic decision in the sense that finding a network out of all possible networks
that is tuned to the target node is impractical. Additionally, Näıve Bayes per-
forms remarkably well given its simplicity for a large number of datasets and is
a measuring stick for many new algorithms.

We tested eight datasets, ecoli, flare, glass, nursery, pageBlocks,
pima, waveform and wine against three standard Bayesian Network learning
algorithms, Max-Min Hill-Climbing (MMHC), Tabu, and Hill-Climbing,
from the R bnlearn5 package, version 3.8.1. MMHC and Hill-Climbing used
parameters test = mi, restart = 100, and perturb = 100. These values were
chosen experimentally as values that provide good results for all datasets.

Widened Bayesian Networks (WBN) significantly outperformed the
other three reference implementations in five of the eight datasets, tied in one,
and performed slightly worse in two (Table 1).

The results in Fig. 3 show a two responses to Widening. In general, with
Widening we expect a gradual improvement of average performance with the
width, i.e., the number of parallel paths in the solution space. Additionally,
we expect a decrease in the variance of the results as the many paths push
themselves towards better solutions. ecoli, glass, nursery, pima, waveform,
and wine show this behavior nicely. pageBlocks and flare demonstrate how
some solution space topologies cannot be explored with the refine-and-select
process presented here, even though the results for the comparison algorithms
for flare indicate that the resultant Bayesian network is a best fit. The non-
responsive nature of pageBlocks however, invites further research into other
refining-and-select strategies and/or diversity measures.

5 http://www.bnlearn.com/.
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Fig. 3. Widened Bayesian Networks accuracy progression verses width with 5-fold
cross-validation.

5 Conclusion and Future Work

This paper demonstrates the successful initial application of Widening to learn-
ing Bayesian Networks for use classifiers and demonstrates classification scoring
techniques with the search-and-score greedy heuristic. The technique was able
to find superior solutions when compared to standard Bayesian Network learn-
ing algorithms from the R bnlearn package. Although the results are similar or
superior to established Bayesian Network learning algorithms on some datasets,
the execution time does not meet the specified goal of finding better solutions
in the same time or less as the greedy algorithm. The primary impediment to
this goal, as it is demonstrated here, is the use of p-dispersion-min-sum for find-
ing a maximally diverse subset of networks for refinement. Methods that allow
for diverse subsets to be calculated without communication between the paral-
lel workers would be better. (See [18] for details.) Additionally, the refinement
operator considers the entire space of possible networks, where only the refine-
ments to the Markov blanket are actually necessary. Significantly, the use of the
Frobenius Norm of the difference of the Bayesian networks’s graph Laplacians is
very encouraging and suggests further research into distance measures based on
graph features such as those derived from Spectral Graph Theory. Experiments
with alternate starting states based on conditional information, in a manner
similar to the PC Algorithm and CBL, or constraint-based algorithms like
Incremental Association or HITON, or even to those claiming to find the exact
network structure [10] could also be promising.
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versity of Lisboa, April 2009

7. Cheng, J., Bell, D.A., Liu, W.: An algorithm for Bayesian belief network construc-
tion from data. In: Proceedings of AI & STAT 1997, pp. 83–90 (1997)

8. Chickering, D.M.: Optimal structure identification with greedy search. J. Mach.
Learn. Res. 3, 507–554 (2002)

9. Cooper, G.F., Herskovits, E.: A Bayesian method for the induction of probabilistic
networks from data. Mach. Learn. 9(4), 309–347 (1992)

10. De Campos, C.P., Zeng, Z., Ji, Q.: Structure learning of Bayesian networks
using constraints. In: Proceedings of the 26th Annual International Conference
on Machine Learning, pp. 113–120. ACM (2009)

11. Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. Wiley,
New York (1973)

12. Erkut, E.: The discrete p-dispersion problem. Eur. J. Oper. Res. 46(1), 48–60
(1990)

13. Fillbrunn, A., Berthold, M.R.: Diversity-driven widening of hierarchical agglomer-
ative clustering. In: Fromont, E., Bie, T., Leeuwen, M. (eds.) IDA 2015. LNCS, vol.
9385, pp. 84–94. Springer, Heidelberg (2015). doi:10.1007/978-3-319-24465-5 8

14. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Mach.
Learn. 29(2–3), 131–163 (1997)

15. Golub, G.H., van Loan, C.F.: Matrix Computations, 4th edn. The Johns Hobpkins
University Press, Baltimore (2013)

16. Hamming, R.W.: Error detecting and error correcting codes. Bell Syst. Tech. J.
29(2), 147–160 (1950)

17. Heckerman, D., Geiger, D., Chickering, D.M.: Learning Bayesian networks: the
combination of knowledge and statistical data. Mach. Learn. 20(3), 197–243 (1995)

18. Ivanova, V.N., Berthold, M.R.: Diversity-driven widening. In: Tucker, A., Höppner,
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31. Sierra, B., Larrañaga, P.: Predicting the survival in malignant skin melanoma using

Bayesian networks. an empirical comparison between different approaches. Artif.
Intell. Med. 14(1–2), 215–230 (1998)

32. Sprites, P., Glymour, C., Scheines, R.: Causation, Prediction, and Search. MIT
Press, Cambridge (1993)

33. Jiang, S., Zhang, H.: Full Bayesian network classifiers. In: Proceedings of the 23rd
International Conference on Machine Learning, pp. 897–904. ACM (2006)

34. Suzuki, J.: A construction of Bayesian networks from databases based on an MDL
principle. In: Proceedings of the Ninth International Conference on Uncertainty in
Artificial Intelligence, pp. 266–273.MorganKaufmannPublishers Inc., SanFrancisco
(1993)

35. Tsamardinos, I., Brown, L.E., Aliferis, C.F.: The max-min hill-climbing Bayesian
network structure learning algorithm. Mach. Learn. 65(1), 31–78 (2006)




