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Abstract. The logistic Generalized Estimating Equations (logistic-
GEE) models have been extensively used for analyzing clustered binary
data. However, assessing the goodness-of-fit and predictability of these
models is problematic due to the fact that no likelihood is available and
the observations can be correlated within a cluster. In this paper we
propose a new measure for estimating the generalization performance of
the logistic GEE models, namely ranking accuracy for models based on
clustered data (RAMCD). We define RAMCD as the probability that a
randomly selected positive observation is ranked higher than randomly
selected negative observation from another cluster. We propose a compu-
tationally efficient algorithm for RAMCD. The algorithm can be applied
for two cases: (1) when we estimate RAMCD as a goodness-of-fit cri-
terion and (2) when we estimate RAMCD as a predictability criterion.
This is experimentally shown on clustered data from a simulation study
and a biomarkers’ study.

Keywords: Clustered data · Generalized Estimating Equation ·
Goodness-of-fit · Predictability · Ranking accuracy

1 Introduction

Clustered data are common in biomedical, clinical, and social-science research
[2,9,14]. They are defined as data with a clustered/grouped structure. A cluster
(group) can consist of variable measurements of related subjects or repeated vari-
able measurements for a single subject such that in either case the measurements
may correlate.

To analyze clustered data, the correlation within clusters needs to be taken
into account. To this end, Liang and Zeger [10] proposed an extension of the
Generalized Linear Model (GLM) for clustered data with either dichotomous or
continuous outcomes [16]. They introduced Generalized Estimating Equations
(GEE) to estimate the parameters of the GLM model for dealing with correlated
outcomes.
c© Springer International Publishing AG 2016
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The GEE models are widely used for analysis of clustered data, particularly
if outcomes are binary (see e.g., [8]). However, due to the fact that no likeli-
hood is available and the residuals (observed outcome minus expected terms)
are correlated within a cluster, there is no consensus how to evaluate the GEE
models.

This paper addresses the problem of evaluating logistic GEE models. The
problem has been considered by several authors (see e.g., [6,7,13]). As a result,
several criteria and tests have been proposed for assessing the goodness-of-fit of
logistic GEE models. However, most of them have their own shortcomings mak-
ing impossible having a commonly accepted criterion or test. Below we briefly
describe relevant work and then propose our solution.

Barnhart and Williamson [4] proposed a model-based and robust goodness-
of-fit test for logistic-GEE models. The method is based on partitioning the space
of covariates into distinct regions. The main disadvantage of this method is that
applying this method might be problematic when many continuous covariates
contribute to the model, or sample sizes are small.

Williamson et al. [15] proposed a Kappa-like classification statistic to assess
the model fit of GEE models with categorical outcomes. The disadvantage of the
statistic is that for two-class imbalanced data it usually tends to be close to zero
(i.e., it states that the model is poorly fitted). Moreover, since no distribution
of the statistic is given, interpretation of the statistic is not obvious.

One of the well-established goodness-of-fit statistics for GEE is an quasilikeli-
hood under the independence model information criterion (QIC) [12] which is the
extension of Akiake’s information criterion (AIC) [3]. As a goodness-of-fit and
model-selection criterion, the model with smaller QIC is preferred. Since QIC
is a function of both quasilikelihood (that depends on the size of the working
dataset) and the number of estimated parameters in the GEE model, it indicates
the quality of a model relative to other models, fitted with the same data set.
That is why it might have different ranges for different data sets. Therefore, QIC
is not an applicable criterion for comparing the goodness-of-fit of GEE models
for different data sets.

If we generalize the aforementioned goodness-of-fit test statistics and criteria
for logistic GEE models, we can derive the following shortcomings: (a) diffi-
culty of interpretation, (b) a relative range of the criterion values (i.e., the range
depends on the number of subjects and number of covariates in the model),
(c) restriction on the number and types of covariates in the model being eval-
uated, (d) bias in case of two-class imbalanced data, and (e) inapplicability to
indicate the predictability of the model being evaluated.

To propose a criteria that does not suffer from problems (a)–(e), we observe
that: (1) logistic GEE models are models trained on clustered data, and
(2) logistic GEE models output probabilities of being positive for test obser-
vations. The latter implies that logistic GEE models can induce an ordering
over those observations. Thus, logistic GEE models actually solve the bipartite
ranking task for clustered data [1]. The task is as follows: given labeled clus-
tered data, find an ordering on test observations so that positive observations
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are ranked higher than negative ones. The standard measure for the quality of
that ordering is ranking accuracy. However, it is not applicable for the logistic
GEE models, since it does not take into account the within-cluster correlation
that might be present, and thus it is not valid.

In this paper we extend the concept of ranking accuracy for clustered data.
We propose a new measure that we call ranking accuracy for models based on
clustered data (RAMCD). It is defined as a probability that a randomly selected
positive observation is ranked higher than randomly selected negative observa-
tion from another cluster. By the definition RAMCD employs the within-cluster
correlation in the data used. It focuses on estimating the generalization perfor-
mance of the logistic GEE models when ranking uncorrelated observations.

We show that RAMCD can be used as a goodness-of-fit criterion and a
predictability criterion (i.e., it can be used for estimating the generalization
performance of the logistic GEE models beyond training data). For the latter
we propose a modification to standard k-fold cross validation method applicable
for clustered data.

When comparing RAMCD with the presented standard goodness-of-fit test
statistics and criteria for logistic GEE models we observe that RAMCD does
not suffer from any of problems (a) to (e) (given above). The main reasons
are that: (1) RAMCD is a probability that is easy to interpreted; (2) RAMCD
does not impose any restriction on the models being evaluated; (3) RAMCD is
not biased for binary imbalanced data (since it indicates class separation); and
(4) RAMCD can be used as a goodness-of-fit criterion and a predictability cri-
terion.

The rest of the paper is organized as follows. Section 2 briefly formalizes the
bipartite ranking task for clustered data and logistic-GEE model. RAMCD is
introduced in Sect. 3. Section 4 provides the experiments and Sect. 5 concludes
the paper.

2 Bipartite Ranking Task and Logistic GEE Models

The bipartite ranking task assumes that we have n subjects. The i-th subject
is represented by a cluster of mi observations such that the tth observation,
t = 1, ...,mi is given with p covariates Xit1, ...,Xitp in R and a binary outcome
variable Yit. Hence, the i-th cluster is identified by Xi and Yi, where Xi =
(Xi1, ...,Ximi

)′ in which Xit = (Xit1, ...,Xitp) is 1 × p vector of covariates for
observation t for subject i and Yi = (Yi1, ..., Yimi

)′ is mi × 1 vector of binary
outcomes. For any i �= j we assume that the correlation between Yi and Yj

equals 0.0 while the components of each Yi may be correlated and the covariates
may be either fixed or changing at every cluster level. Given n clusters Xi and
Yi for i ∈ [1, n], the goal of bipartite ranking is to find a real-value ranking
function that maps any observation Xit to real number. The ranking function
can be used to induce ordering over the observations Xit.

The logistic-GEE model solves the bipartite ranking task, since it is essen-
tially a ranking function for clustered data. It describes the relationship between
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the covariates and outcome variables with the following equation:

log
(

πit

1 − πit

)
= β0 + βX ′

it , i = 1, ..., n, t = 1, ...,mi, (1)

where πit = E(Yit|Xit), β0 is the population averaged intercept term and β =
(β1, ..., βp) is the vector of population averaged (or marginal) coefficients.

The logistic-GEE model can be obtained by estimating the unknown regres-
sion coefficient vector γ = (β0,β). Estimating the coefficients can be done by
solving the following generalized estimating equations [10]:

n∑
i=1

(
∂πi

∂βh

)′
Vi

−1(Yi − πi) = 0, h = 0, ..., p, (2)

where, for i = 1, ..., n, πi = (πi1, ..., πimi
)′, Vi = Ai

1/2Ri(α)Ai
1/2 is the working

covariance matrix for Yi, Ai, is a diagonal matrix diag[πi1(1−πi1), ..., πimi
(1−

πimi
)], α is an m × 1 vector of unknown parameters, associated with the cor-

relation between outcomes Yit and Yis of cluster i, m = max(m1, ...,mn), and
Ri(α) is the working correlation matrix for Yi.

We note that the working correlation matrix Ri(α), parameterized by α,
might be defined in different ways depending on the nature of correlation between
outcomes Yit and Yis. Zeger and Liang [16] proposed a method for estimating
the parameter vectors α and γ in Eq. (3). The method operates by minimizing
the weighted sum of squared residuals using IRLS, described in [11].

3 Ranking Accuracy for Models Based on Clustered Data

In this section we introduce the ranking accuracy for models based on clustered
data (RAMCD). RAMCD is formally defined in Subsect. 3.1. The algorithm
for computing RAMCD is provided in Subsect. 3.2 together with a complexity
analysis. Subsect. 3.3 explains how the algorithm can be used for estimating
RAMCD as a criterion of the model’s goodness-of-fit and as a criterion for the
model’s predictability.

3.1 Definition

According Eq. (1) any logistic GEE model is essentially a scoring classifier. It
outputs a score, a probability πit, for any observation Xit. Given a test data of
n number of clusters 〈Xi,Yi〉, the probabilities πit induce an ordering over the
observations from the clusters. To judge the quality of the probabilities πit, we
judge the quality of the ordering, they induce, and compare that ordering with
the binary outcome variables Yit. The standard measure for such a comparison is
ranking accuracy [1]. It is defined as a probability that a randomly selected pos-
itive observation is ranked higher than randomly selected negative observation.
However, as it might be seen from the definition, the ranking accuracy does not
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take into account the within-cluster correlation that might be present and thus
it is not valid for clustered data. This calls for a new special ranking accuracy
applicable for models based on clustered data.

We introduce the ranking accuracy for models based on clustered data
(RAMCD) by analogy. Consider a set of observations Xit where each cluster is
present with exactly one observation. The number of such sets equals

∑n
i=1 mi.

The probabilities πit induce an ordering for each of these sets. To compare these
orderings with the binary outcome variables Yit we introduce RAMCD. RAMCD
is defined as a probability that a randomly selected positive observation is ranked
higher than randomly selected negative observation from another cluster. By the
definition RAMCD employs the within-cluster correlation in the data used and
focuses on estimating the generalization performance of the logistic GEE models
when ranking uncorrelated observations.

RAMCD is easy to interpret, since it is a probability (i.e., it ranges between
0 and 1). The value of 1.0 indicates that the orderings imposed correspond
completely to the binary outcome variables Yit in the clustered data, and the
value of 0.0 shows that the orderings are reversed to that with value of 1.0. The
value of 0.5 is the worst case. It indicates bad orderings that do not correspond
at all to the outcome variables. However, we note that RAMCD of 0.5 does
not always imply a random logistic GEE model (e.g., when the data is class-
imbalanced).

Below we introduce the exact formula for RAMCD. We first introduce statis-
tics imposed by the binary outcome variables Yit. Following the RAMCD defin-
ition we determine for any positive observation Xit the number Pit of negative
observations from other clusters:

Pit =
n∑

j=1,j �=i

mj∑
t=1

I{Yjt = 0} (3)

where I is the indicator function. The number Pit can be interpreted as the
number of pairs that consist of positive observation Xit and negative observation
from any other cluster. It is the same for any positive observation in cluster i.
This implies that the number Pi of pairs for all the positive observations in
cluster i is equal to:

Pi =
mi∑
t=1

PitI{Yit = 1} (4)

and the total number P of pairs of observations over all the clusters imposed by
the binary outcome variables Yit is equal to:

P =
n∑

i=1

Pi (5)

Once the statistics imposed by the binary outcome variables Yit have been
defined, we introduce statistics for comparing the orderings imposed by probabil-
ities πit. We assume that for any observation Xit we have a probability estimate
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πit provided by a logistic GEE model. We rank the observations Xit according
to πit. To judge whether a particular positive observation Xit from cluster i is
ranked properly we compute the number CP it of correct pairs produced by the
ranking through combining with all negative observations Xjt from all other
clusters j such that j �= i. The number CP it is given by:

CPit =
n∑

j=1,j �=i

mj∑
tj=1

(I{πit > πjtj} +
1
2
I{πit = πjtj})I{Yjtj = 0} (6)

Number CP it does not stay the same for each positive observation in cluster i.
Hence, the number CP i of all correct pairs produced by combining all the positive
observations Xit from cluster i with all the negative observations Xjt over all
the clusters j given that j �= i is equal to:

CPi =
mi∑
t=1

CPitI{Yit = 1} (7)

and the number CP of all the correct pairs produced by the ranking is:

CP =
n∑

i=1

CPi (8)

Thus, formally our RAMCD with respect to the ranking produced is defined
equal to:

RAMCD =
CP
P

(9)

3.2 Algorithm

Below in Fig. 1 we provide an algorithm for RAMCD. Given data with n num-
ber of clusters 〈Xi,Yi〉, and a vector πi of observation probabilities πit for each
cluster 〈Xi,Yi〉, the algorithm computes RAMCD induced by the observation
probabilities πit w.r.t. outcome variable Yit. The main steps are as follows. First,
the algorithm computes the statistics imposed by the binary outcome variables
Yit: it computes number Pi for each cluster i (see formula (4)) and total num-
ber P (see formula (5)). Then, the algorithm computes statistics necessary for
comparing the orderings imposed by probabilities πit. For that purpose the obser-
vations Xit over all the clusters are sorted according to πit in decreasing order
of magnitude into list Lπ. The algorithm scans the sorted list Lπ to compute
numbers CP it, CP i, and CP (initially set equal to 0). For list scanning it keeps
a counter Ci for all the clusters i ∈ [1, n] that represents the number of all
correct pairs that start with a positive observation from cluster i and end with
a negative observation from another cluster given that both observations have
not been visited in list Lπ. Therefore, Ci is initialized equal to Pi

mi
which is the

number of pairs derived by combining a positive observation from cluster i with
all possible negative observations from other clusters.
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Fig. 1. Algorithm for computing ranking accuracy for models based on clustered data.

After the initialization the algorithm sequentially visits the observations Xit

in the sorted list Lπ. For each observation Xit the actions taken depends on the
output variable Yit. If the observation is negative (Yit = 0), then the algorithm
decrements the counter Cj for each cluster j different from cluster i. This is
to indicate that all the positive observations Xjt with probability πjt that is
lower than πit cannot form a correct pair with observation Xit according to
the ordering imposed on Lπ. If the observation is positive (Yit = 1), then the
algorithm assigns the counter value Ci to the number CP it and then this number
is added to number CP i according to formula (7). Once all the numbers CP i

have been computed, the algorithm computes number CP (see formula (8)) and
then outputs the RAMCD (see formula (9)).

The algorithm for RAMCD is computationally efficient. Its space complexity
is O(nm), where n is the number of clusters and m is the size of the clusters.
This complexity is due to the sorted list Lπ that has to be explicitly maintained
by the algorithm. The time complexity is O(nmlog2(nm)) and it coincides with
the time complexity of the sorting algorithm1. We note that the time complexity
of scanning list Lπ is linear in the size of the list (nm) and that is why it does
not influence the asymptotic time complexity.

1 We assume the usage of efficient sorting algorithms like merge sort.
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3.3 Goodness of Fit and Predictability

The ranking accuracy for models based on clustered data (RAMCD) can be used
as a criterion of model’s goodness-of-fit and as a criterion for model’s predictabil-
ity. If a logistic GEE model has been trained and tested on the same data, then
RAMCD is a goodness-of-fit criterion. In this case RAMCD estimates how the
logistic GEE model fits the data when only uncorrelated observations are taken
into account.

If a logistic GEE model has been tested using k-fold cross validation on the
data, then RAMCD is a predictability criterion. However, the randomization
part of the cross validation has to be controlled such that observations within
any cluster are being selected for only one folder. In this way we do not introduce
additional bias when computing probabilities πi due to the within-cluster corre-
lation. This guarantees that the algorithm estimates RAMCD that indicates the
predictability of the GEE model beyond training data when only uncorrelated
observations are taken into account.

4 Experiments

In this section we present the experiments with RAMCD and QIC on simulated
data and biomarker data. The experiments are employed to compare these two
criteria.

4.1 Experiments with Simulated Data

This subsection presents two experiments with RAMCD of logistic GEE mod-
els on a simulated data. The simulated data is described by 30 time-dependent
covariates (X1, X2, . . . , X30). It contains 500 clusters with maximum sizes of
m = 10 and autoregressive working correlation structure of order 1 with corre-
lation of 0.25.

The first experiment is in the context of the goodness-of-fit test. We compare
RAMCD and QIC in a function of the GEE model complexity. For that purpose
we add the covariates X1 to X30 one by one into the GEE model and each time
plot the RAMCD and QIC in Fig. 2. The Figure shows that the RAMCD and
QIC follow similar trends in a function of the model complexity. There exists
however some fluctuations of RAMCD when it is close to 0.5. In these cases GEE
models are under-fitted and exhibit random performance which is not captured
by QIC.

The second experiment is in the context of model selection: we employ
RAMCD for forward feature selection when it is used as a goodness-of-fit crite-
rion and when it is used as a predictability criterion. In the first case RAMCD
is estimated on the simulated data and it is denoted as RAMCD. In the second
case RAMCD is estimated using one-cluster-out cross validation on the simu-
lated data and it is denoted as RAMCD-CV. In both cases we compare the
results of the model selection with those obtained by QIC.
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Fig. 2. QIC and RAMCD as functions of GEE model complexity.

The process of forward feature selection is sequential; i.e., the covariates are
added one by one. It is guided by a hill-climbing search which for RAMCD
(QIC) adds that covariate that maximizes (minimizes) the RAMCD (QIC) of
the resulted GEE model. The process stops when further improvement is not
possible.

Table 1. Forward feature selection for logistic-GEE model using RAMCD, RAMCD-
CV, and QIC. Each box represents the selected covariate and the value of selection
criterion (RAMCD, RAMCD-CV, or QIC). The bold variables are those that are not
selected.

Step RAMCD RAMCD-CV QIC Step RAMCD RAMCD-CV QIC

1 X18 (0.590242) X18 (0.581824) X18 (3791.772) 16 X25 (0.877261) X25 (0.873539) X25 (2464.293)

2 X17 (0.621768) X17 (0.614062) X17 (3732.281) 17 X27 (0.881865) X27 (0.878116) X27 (2425.637)

3 X16 (0.649819) X16 (0.643470) X16 (3658.207) 18 X26 (0.886264) X26 (0.882337) X26 (2387.744)

4 X19 (0.672773) X19 (0.666522) X19 (3587.769) 19 X9 (0.889523) X9 (0.885488) X9 (2360.825)

5 X15 (0.696743) X15 (0.690881) X15 (3502.061) 20 X29 (0.890200) X29 (0.885943) X29 (2357.297)

6 X20 (0.718667) X20 (0.713321) X20 (3422.789) 21 X2 (0.890596) X6 (0.886166) X6 (2355.108)

7 X13 (0.743073) X13 (0.737916) X13 (3325.778) 22 X6 (0.890973) X28 (0.886391) X28 (2353.878)

8 X14 (0.759801) X14 (0.754877) X14 (3241.496) 23 X28 (0.891342) X2 (0.886536) X2 (2352.896)

9 X22 (0.778013) X22 (0.773413) X22 (3141.077) 24 X5 (0.891657) X5 (0.886586) X5 (2352.300)

10 X21 (0.798329) X21 (0.794059) X21 (3028.665) 25 X30 (0.891823) X4 (0.886572) X7 (2352.430)

11 X12 (0.818305) X12 (0.814269) X12 (2905.000) 26 X4 (0.891994) X30 (0.886520) X4 (2352.941)

12 X23 (0.834424) X23 (0.830658) X23 (2801.273) 27 X7 (0.892142) X7 (0.886462) X30 (2353.607)

13 X24 (0.848698) X24 (0.844904) X24 (2698.514) 28 X1 (0.892164) X1 (0.886271) X8 (2355.205)

14 X11 (0.861617) X11 (0.858049) X11 (2600.898) 29 X8 (0.892181) X8 (0.886086) X1 (2356.971)

15 X10 (0.870470) X10 (0.866909) X10 (2527.606) 30 X3 (0.892134) X3 (0.885836) X3 (2359.079)

The results of model selection for RAMCD, RAMCD-CV, and QIC are pro-
vided in Table 1. The Table shows that RAMCD-CV and QIC are rather con-
sistent: they lead to the same ordered set of covariates on the simulated data
when the process of feature selection stops. This means that RAMCD-CV and



Ranking Accuracy for Logistic-GEE Models 23

QIC result in the same GEE model. However, if we continue to add covariates
after the stopping condition, the RAMCD-CV and QIC become less consistent.
As expected, the values of RAMCDs are higher than those of RAMCD-CVs at
each step which results in a bigger set of selected covariates. In this context we
note that RAMCD is less consistent with RAMCD-CV and QIC than those two
measures together.

4.2 Experiments with Biomarkers’ Data

This subsection presents a model-selection (biomarker selection) process guided
by RAMCD-CV on the data from the TIME-CHF study [5]. The TIME-CHF
study (The Intensified versus standard Medical therapy in Elderly patients
with Congestive Heart Failure) includes 499 patients aged 60 years or older,
with left ventricular ejection fraction (LVEF) < 45% and NYHA II or more,
from 15 centers in Switzerland and Germany. Patients were followed for 6 pre-
specified visits after baseline, 1st, 3rd, 6th, 12th and 18th month. Six biomark-
ers, PREA (prealbumin), SST2 (soluble ST2), IL6 (Interleukin-6), hsCRP (high
sensitivity C-reactive protein), GDF15 (growth differentiation factor 15), SFLT
(soluble fms-like tyrosine kinase-1,) and BPsyst (Systolic blood pressure) and
LVEF were measured at every visit and dosages of a heart failure (HF) drug
Loop (Loop diuretics per se) were available on a daily basis. Patients were fol-
lowed up for 19 months and the outcome variable for ith patient at month t,
Yit, i = 1, ..., 499, t = 1, ..., 19, takes the value of one if the patient experienced
HF hospitalization or death at the given month, otherwise zero. In this setup,
more weight is given to the outcome death (weight 2 for death and 1 for the
other observations).

The medication covariate Loop is down-sampled to monthly values by tak-
ing the average drug dosage during the previous month. Since the biomarkers,
BPsyst and LVEF have been recorded just in six visits; obviously for these six
measurements, the covariates gets the exact value, and between these six vis-
its we used last observation carried forward method (LOCF) and put the value
of the covariates of the previous visit. There exist eight fixed covariates that
measured only at the baseline; Age, Gender (1 = male, 0 = female), Coronary
artery disease (CAD), Kidney-disease, Diabetes, Anemia, Charlsonscore (Charl-
son comorbidity score) and Rales, where CAD, Kidney-disease and Diabetes are
binary variable that indicates whether the patients are suffering from these dis-
eases or not (1 = yes, 0 = no) and Rales (1 = abnormal lung sounds, 0 = normal
lung sounds).

The goal of the study is to select the best subset of covariates (biomark-
ers) to explain the variation of the probability of HF hospitalization and death.
To this end, we apply a forward feature selection process using the proposed
RAMCD-CV and QIC as model-selection criteria to find the best GEE model.
Table 2 shows the selected covariates for the GEE model at every step of for-
ward selection process based on RAMCD-CV and QIC. Both criteria lead to
the same selected subset of covariates (GDF15, SST2, CAD, Loop, hsCRP,
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Table 2. Selected covariates at each step of forward selection method using RAMCD-
CV and QIC as model selection criteria.

RAMCD-CV-Covariates RAMCD-CV p-values QIC-Covariates QIC p-values

Intercept 0.5 0.000000 Intercept 1917.96 0.000000

GDF15 0.738816 0.000002 GDF15 1753.53 0.000002

SST2 0.767409 0.000001 SST2 1691.76 0.000001

CAD 0.775987 0.003211 Loop 1660.43 0.000060

Loop 0.784891 0.000060 CAD 1649.28 0.003211

hsCRP 0.790796 0.031393 BPsyst 1645.50 0.018600

Age 0.794360 0.020222 Age 1639.86 0.020222

BPsyst 0.795732 0.018600 hsCRP 1635.74 0.031393

Rales 0.796831 0.073626 Rales 1635.28 0.073626

Age, BPsyst and Rales), however, the selected subsets were obtained in dif-
ferent orders for each criterion. The estimated coefficients and corresponding
p-values of selected covariates, when using RAMCD-CV as a model-selection,
are presented in Table 2.

5 Conclusion

In this paper we proposed RAMCD as a new measure for estimating the general-
ization performance of logistic GEE models. RAMCD was defined as a probabil-
ity that a randomly selected positive observation is ranked higher than randomly
selected negative observation from another cluster. We showed that RAMCD
focuses on estimating the generalization performance of the logistic GEE mod-
els when ranking uncorrelated observations. We proposed a computationally effi-
cient algorithm for RAMCD and showed that it can be applied for two cases:
(1) when we estimate RAMCD as a goodness-of-fit criterion and (2) when we
estimate RAMCD as a predictability criterion. The algorithm was experimen-
tally tested on clustered data from a simulation study and a biomarkers’ study.
The experiments showed that RAMCD is consistent with the QIC criterion.

We compared RAMCD with the standard goodness-of-fit test statistics and
criteria for logistic GEE models: we observed that RAMCD does not suffer from
any of their problems. The main reasons are that: (1) RAMCD is a probability
that is easy to interpreted; (2) RAMCD does not impose any restriction on the
models being evaluated; (3) RAMCD is not biased for binary imbalanced data
(since it indicates class separation); and (4) RAMCD can be used as a goodness-
of-fit criterion and a predictability criterion.

Finally, we note although RAMCD has been initially designed for the logistic
GEE models, it is applicable to any model for bipartite ranking based on clus-
tered data. This is due to the fact that RAMCD employs model’s probabilities
and data labels; i.e., it does not use any internal information from the model
being tested. Thus, we conclude that RAMCD is a general measure for models
for bipartite ranking based on clustered data.
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