Skip to main content

Explainable and Efficient Link Prediction in Real-World Network Data

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9897))

Abstract

Data that involves some sort of relationship or interaction can be represented, modelled and analyzed using the notion of a network. To understand the dynamics of networks, the link prediction problem is concerned with predicting the evolution of the topology of a network over time. Previous work in this direction has largely focussed on finding an extensive set of features capable of predicting the formation of a link, often within some domain-specific context. This sometimes results in a “black box” type of approach in which it is unclear how the (often computationally expensive) features contribute to the accuracy of the final predictor. This paper counters these problems by categorising the large set of proposed link prediction features based on their topological scope, and showing that the contribution of particular categories of features can actually be explained by simple structural properties of the network. An approach called the Efficient Feature Set is presented that uses a limited but explainable set of computationally efficient features that within each scope captures the essential network properties. Its performance is experimentally verified using a large number of diverse real-world network datasets. The result is a generic approach suitable for consistently predicting links with high accuracy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adamic, L.A., Adar, E.: Friends and neighbors on the web. Soc. Netw. 25(3), 211–230 (2003)

    Article  Google Scholar 

  2. Al Hasan, M., Chaoji, V., Salem, S., Zaki, M.: Link prediction using supervised learning. In: Workshop on Link Analysis, Counter-Terrorism and Security (2006)

    Google Scholar 

  3. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval, 2nd edn. Addison-Wesley, Boston (2011)

    Google Scholar 

  4. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Caruana, R., Karampatziakis, N., Yessenalina, A.: An empirical evaluation of supervised learning in high dimensions. In: Proceedings ICDM, pp. 96–103 (2008)

    Google Scholar 

  6. Choudhury, M.D., Sundaram, H., John, A., Seligmann, D.D.: Social synchrony: predicting mimicry of user actions. In: Proceedings ICCSE, pp. 151–158 (2009)

    Google Scholar 

  7. Fire, M., Tenenboim-Chekina, L., Puzis, R., Lesser, O., Rokach, L., Elovici, Y.: Computationally efficient link prediction in a variety of social networks. ACM Trans. Intell. Syst. Technol. (TIST) 5(1), 10 (2013)

    Google Scholar 

  8. Gómez, V., Kaltenbrunner, A., López, V.: Statistical analysis of social network discussion threads in Slashdot. In: Proceedings WWW, pp. 645–654 (2008)

    Google Scholar 

  9. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software. SIGKDD Explor. Newslett. 11(1), 10–18 (2009)

    Article  Google Scholar 

  10. Huang, Z., Li, X., Chen, H.: Link prediction approach to collaborative filtering. In: Proceedings DLT, pp. 141–142 (2005)

    Google Scholar 

  11. Isella, L., Stehlé, J., Barrat, A., Cattuto, C., Pinton, J.-F., den Broeck, W.V.: What’s in a crowd? Analysis of face-to-face behavioral networks. J. Theor. Biol. 271(1), 166–180 (2011)

    Article  Google Scholar 

  12. Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18(1), 39–43 (1953)

    Article  MATH  Google Scholar 

  13. Kleinberg, J.: The small-world phenomenon: an algorithmic perspective. In: Proceedings STOC, pp. 163–170 (2000)

    Google Scholar 

  14. KONECT. Linux mailing list replies network (2015). http://konect.uni-koblenz.de

  15. Lewis, T.G.: Network Science: Theory and Applications. Wiley, New York (2011)

    Google Scholar 

  16. Liben-Nowell, D., Kleinberg, J.: The link prediction problem for social networks. In: Proceedings CIKM, pp. 556–559 (2003)

    Google Scholar 

  17. Lichtenwalter, R.N., Lussier, J.T., Chawla, N.V.: New perspectives and methods in link prediction. In: Proceedings KDD, pp. 243–252 (2010)

    Google Scholar 

  18. Lü, L., Zhou, T.: Link prediction in complex networks: a survey. Physica A Stat. Mech. Appl. 390(6), 1150–1170 (2011)

    Article  Google Scholar 

  19. O’Madadhain, J., Hutchins, J., Smyth, P.: Prediction and ranking algorithms for event-based network data. SIGKDD Explor. Newslett. 7(2), 23–30 (2005)

    Article  Google Scholar 

  20. Opsahl, T., Panzarasa, P.: Clustering in weighted networks. Soc. Netw. 31(2), 155–163 (2009)

    Article  Google Scholar 

  21. Popescul, A., Ungar, L.H.: Statistical relational learning for link prediction. In: IJCAI Workshop on Learning Statistical Models from Relational Data (2003)

    Google Scholar 

  22. Preusse, J., Kunegis, J., Thimm, M., Gottron, T., Staab, S.: Structural dynamics of knowledge networks. In: Proceedings ICWSM (2013)

    Google Scholar 

  23. Sarukkai, R.R.: Link prediction and path analysis using Markov chains. Comput. Netw. 33(1), 377–386 (2000)

    Article  Google Scholar 

  24. Scott, J.: Social Network Analysis. Sage, London (2012)

    Google Scholar 

  25. Takes, F.W.: Algorithms for analyzing and mining real-world graphs. Ph.D. thesis, Leiden University (2014)

    Google Scholar 

  26. Viswanath, B., Mislove, A., Cha, M., Gummadi, K.P.: On the evolution of user interaction in Facebook. In: Proceedings WOSN, pp. 37–42 (2009)

    Google Scholar 

  27. Zhang, B., Liu, R., Massey, D., Zhang, L.: Collecting the internet AS-level topology. SIGCOMM Comput. Commun. Rev. 35(1), 53–61 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank W. Takes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

van Engelen, J.E., Boekhout, H.D., Takes, F.W. (2016). Explainable and Efficient Link Prediction in Real-World Network Data. In: Boström, H., Knobbe, A., Soares, C., Papapetrou, P. (eds) Advances in Intelligent Data Analysis XV. IDA 2016. Lecture Notes in Computer Science(), vol 9897. Springer, Cham. https://doi.org/10.1007/978-3-319-46349-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46349-0_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46348-3

  • Online ISBN: 978-3-319-46349-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics