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Preface

This volume contains the papers presented at the 27th International Conference on
Algorithmic Learning Theory (ALT 2016). ALT 2016 was co-located with the 19th
International Conference on Discovery Science (DS 2016). Both conferences were held
during October 19–21 in the beautiful city of Bari, Italy.

The technical program of ALT 2016 had five invited talks (presented jointly to both
ALT 2016 and DS 2016) and 24 papers selected from 45 submissions by the ALT
Program Committee. ALT is dedicated to the theoretical foundations of machine
learning and provides a forum for high-quality talks and scientific interaction in areas
such as statistical learning theory, online learning, inductive inference, query models,
unsupervised learning, clustering, semi-supervised and active learning, stochastic
optimization, high-dimensional and non-parametric inference, exploration–exploitation
trade-off, bandit theory, reinforcement learning, planning, control, and learning with
additional constraints. ALT is furthermore concerned with the analysis of the theo-
retical properties of existing algorithms such as boosting, kernel-based methods, SVM,
Bayesian methods, graph- or manifold-based methods, methods for latent-variable
estimation or clustering, decision tree methods, and information-based methods.

The present volume of LNAI contains the text of the 24 papers presented at ALT
2016 as well as the abstracts of the invited talks:

– Avrim Blum (Carnegie Mellon University, Pittsburgh):
“Learning About Agents and Mechanisms from Opaque Transactions”
(Invited talk for ALT 2016)

– Gianluca Bontempi (Interuniversity Institute of Bioinformatics, Brussels):
“Perspectives of Feature Selection in Bioinformatics: From Relevance to
Causal Inference”
(Invited tutorial for DS 2016)

– Kristian Kersting (Technische Universität Dortmund):
“Collective Attention on the Web”
(Invited talk for DS 2016)

– Gábor Lugosi (Pompeu Fabra University, Barcelona):
“How to Estimate the Mean of a Random Variable”
(Invited tutorial for ALT 2016)

– John Shawe-Taylor (University College London):
“Margin-Based Structured Output Learning”
(Invited talk for ALT 2016 and DS 2016)

Since 1999, ALT has been awarding the E.M. Gold Award for the most outstanding
student contribution. This year, the award was given to Areej Costa for her paper “Exact
Learning of Juntas from Membership Queries” co-authored with Nader Bshouty.



ALT 2016 was the 27th meeting in the ALT conference series, established in Japan in
1990. The ALT series is supervised by its Steering Committee: Shai Ben-David
(University of Waterloo, Canada), Marcus Hutter (Australian National University,
Canberra, Australia), Sanjay Jain (National University of Singapore, Republic of
Singapore), Ronald Ortner (Montanuniversität Leoben, Austria), Hans U. Simon
(Ruhr-Universität Bochum, Germany), Frank Stephan (National University of
Singapore, Republic of Singapore), Csaba Szepesvári (University of Alberta, Edmon-
ton, Canada), Eiji Takimoto (Kyushu University, Fukuoka, Japan), Akihiro Yamamoto
(Kyoto University, Japan), and Sandra Zilles (Chair, University of Regina, Canada).

We thank the following people and institutions who contributed to the success of the
conference. Most importantly, we would like to thank the authors for contributing and
presenting their work at the conference. Without their contribution this conference
would not have been possible. We are very grateful to the Fondazione Puglia and to the
Consorzio Interuniversitario Nazionale per l’Informatica (National Interuniversity
Consortium for Informatics, CINI) for their financial support. We would also like to
acknowledge the support of the European Commission through the project MAESTRA
— Learning from Massive, Incompletely Annotated, and Structured Data (grant
number ICT-2013-612944).

ALT 2016 and DS 2016 were organized by the University of Bari A. Moro. We
thank the local arrangements chairs, Annalisa Appice, Corrado Loglisci, Gianvito Pio,
Roberto Corizzo, and their team for their efforts in organizing the two conferences.

We are grateful for the collaboration with the conference series Discovery Science.
In particular, we would like to thank the general chair of DS 2016 and ALT 2016,
Donato Malerba, and the DS 2016 Program Committee chairs, Toon Calders and
Michelangelo Ceci.

We are also grateful to EasyChair, the excellent conference management system,
which was used for putting together the program for ALT 2016. EasyChair was
developed mainly by Andrei Voronkov and is hosted at the University of Manchester.
The system is free of charge.

We are grateful to the members of the Program Committee for ALT 2016 and the
additional reviewers for their hard work in selecting a good program for ALT 2016.
Special thanks go to Frank Stephan from the National University of Singapore for
maintaining the ALT website. Last but not the least, we thank Springer for their support
in preparing and publishing this volume in the Lecture Notes in Artificial Intelligence
series.

July 2016 Ronald Ortner
Hans U. Simon
Sandra Zilles
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Learning about Agents and Mechanisms
from Opaque Transactions

Avrim Blum

School of Computer Science, Carnegie Mellon University,
Pittsburgh, PA 15213–3891, USA

avrim@cs.cmu.edu

In this talk I will discuss some learning problems coming from the area of algorithmic
economics. I will focus in particular on settings known as combinatorial auctions in
which agents have preferences over items or sets of items, and interact with an auction
or allocation mechanism that determines what items are given to which agents. We
consider the perspective of an outside observer who each day can only see which
agents show up and what they get, or perhaps just which agents’ needs are satisfied and
which are not. Our goal will be from observing a series of such interactions to try to
learn the agent preferences and perhaps also the rules of the allocation mechanism.

As an example, consider observing web pages where the agents are advertisers and
the winners are those whose ads show up on the given page. Or consider observing the
input-output behavior of a cloud computing service, where the input consists of a set of
agents requesting service, and the output is a partition of them into some whose
requests are actually fulfilled and the rest that are not—due to overlap of their resource
needs with higher-priority requests. From such input-output behavior, we would like to
learn the underlying structure. We also consider a classic Myerson single-item auction
setting, where from observing who wins and also being able to participate ourselves we
would like to learn the agents’ valuation distributions.

In examining these problems we will see connections to decision-list learning and
to Kaplan-Meier estimators from medical statistics.

This talk is based on work joint with Yishay Mansour and Jamie Morgenstern.



Perspectives of Feature Selection
in Bioinformatics: From Relevance

to Causal Inference

Gianluca Bontempi

Machine Learning Group, Interuniversity
Institute of Bioinformatics in Brussels (IB)2

Université libre de Bruxelles, Bld de Triomphe, 1050 Brussels, Belgium
mlg.ulb.ac.be

A major goal of the scientific activity is to model real phenomena by studying the
dependency between entities, objects or more in general variables. Sometimes the goal
of the modeling activity is simply predicting future behaviors. Sometimes the goal is to
understand the causes of a phenomenon (e.g. a disease). Finding causes from data is
particular challenging in bioinformatics where often the number of features (e.g.
number of probes) is huge with respect to the number of samples [5]. In this context,
even when experimental interventions are possible, performing thousands of experi-
ments to discover causal relationships between thousands of variables is not practical.
Dimensionality reduction techniques have been largely discussed and used in bioin-
formatics to deal with the curse of dimensionality. However, most of the time these
techniques focus on improving prediction accuracy, neglecting causal aspects. This
tutorial will introduce some basics of causal inference and will discuss some open
issues: may feature selection techniques be useful also for causal feature selection? Is
prediction accuracy compatible with causal discovery [2]? How to deal with Markov
indistinguishable settings [1]? Recent results based on information theory [3], and some
learned lessons from a recent Kaggle competition [4] will be used to illustrate the issue.

References

1. Bontempi, G., Flauder, M.: From dependency to causality: a machine learning approach.
JMLR 15(16), 2437–2457 (2015)

2. Bontempi, G., Haibe-Kains, B., Desmedt, C., Sotiriou, C., Quackenbush, J.: Multiple-input
multiple-output causal strategies for gene selection. BMC Bioinformatics 12(1), 458 (2011)

3. Bontempi, G., Meyer, P.E.: Causal filter selection in microarray data. In: Proceedings of
ICML (2010)

4. Bontempi, G., Olsen, C., Flauder, M.: D2C: predicting causal direction from dependency
features (2014). R package version 1.1

5. Meyer, P.E., Bontempi, G.: Information-theoretic gene selection in expression data. In:
Biological Knowledge Discovery Handbook. IEEE Computer Society (2014)



Margin Based Structured Output Learning

John Shawe-Taylor

Department of Computer Science, CSML,
University College London, London WC1E 6EA, UK

j.shawe-taylor@cs.ucl.ac.uk

Structured output learning has been developed to borrow strength across multi-
dimensional classifications. There have been approaches to bounding the performance
of these classifiers based on different measures such as microlabel errors with a fixed
simple output structure. We present a different approach and analysis starting from the
assumption that there is a margin attainable in some unknown or fully connected output
structure. The analysis and algorithms flow from this assumption but in a way that the
associated inference becomes tractable while the bounds match those attained were we
to use the full structure. There are two variants depending on how the margin is
estimated. Experimental results show the relative strengths of these variants, both
algorithmically and statistically.



Collective Attention on the Web

Kristian Kersting

Computer Science Department, TU Dortmund University,
44221 Dortmund, Germany

Kristian.Kersting@cs.tu-dortmund.de

It’s one of the most popular YouTube videos ever produced, having been viewed more
than 840 million times. Its hard to understand why this clip is so famous and actually
went viral, since nothing much happens. Two little boys, Charlie and Harry, are sitting
in a chair when Charlie, the younger brother, mischievously bites Harrys finger.
There’s a shriek and then a laugh. The clip is called “Charlie Bit My Finger–Again!”

Generally, understanding the dynamics of collective attention is central to an infor-
mation age where millions of people leave digital footprints everyday. So, can we capture
the dynamics of collective attention mathematically? Can we even gain insights into the
underlying physical resp. social processes? Is it for instance fair to call the video “viral” in
an epidemiological sense?

In this talk I shall argue that computational methods of collective attention are not
insurmountable. I shall review the methods we have developed to characterize, analyze,
and even predict the dynamics of collective attention among millions of users to and
within social media services. For instance, we found that collective attention to memes
and social media grows and subsides in a highly regular manner, well explained by
economic diffusion models [2, 4]. Using mathematical epidemiology, we find that so-
called viral videos show very high infection rates and, hence, should indeed be called
viral [1]. Moreover, the spreading processes may also be related to the underlying
network structures, suggesting for instance a physically plausible model of the distance
distributions of undirected networks [3]. All this favors machine learning and discovery
science approaches that produce physically plausible models.

This work was partly supported by the Fraunhofer ICON project SoFWIReD and
by the DFG Collaborative Research Center SFB 876 project A6.

References

1. Bauckhage, C., Hadiji, F., Kersting, K.: How viral are viral videos? In: Proceedings of the
Ninth International Conference on Web and Social Media (ICWSM 2015), pp. 22–30 (2015)

2. Bauckhage, C., Kersting, K., Hadiji, F.: Mathematical models of fads explain the temporal
dynamics of internet memes. In: Proceedings of the Seventh International Conference on
Weblogs and Social Media (ICWSM 2013) (2013)

3. Bauckhage, C., Kersting, K., Hadiji, F.: Parameterizing the distance distribution of undirected
networks. In: Proceedings of the Thirty-First Conference on Uncertainty in Artificial Intel-
ligence (UAI 2015), pp. 121–130 (2015)



4. Bauckhage, C., Kersting, K., Rastegarpanah, B.: Collective attention to social media evolves
according to diffusion models. In: 23rd International World Wide Web Conference (WWW
2014), pp. 223–224 (2014)
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How to Estimate the Mean
of a Random Variable?

Gabor Lugosi

Department of Economics, Pompeu Fabra University,
Ramon Trias Fargas 25-27, 08005, Barcelona, Spain

gabor.lugosi@gmail.com

Given n independent, identically distributed copies of a random variable, one is interested
in estimating the expected value. Perhaps surprisingly, there are still open questions
concerning this very basic problem in statistics. In this talk we are primarily interested in
non-asymptotic sub-Gaussian estimates for potentially heavy-tailed random variables.
We discuss various estimates and extensions to high dimensions. We apply the estimates
for statistical learning and regression function estimation problems. The methods
improve on classical empirical minimization techniques.

This talk is based on joint work with Emilien Joly, Luc Devroye, Matthieu Lerasle,
Roberto Imbuzeiro Oliveira, and Shahar Mendelson.
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