Skip to main content

Structural Online Learning

  • Conference paper
  • First Online:
Algorithmic Learning Theory (ALT 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9925))

Included in the following conference series:

  • 1202 Accesses

Abstract

We study the problem of learning ensembles in the online setting, when the hypotheses are selected out of a base family that may be a union of possibly very complex sub-families. We prove new theoretical guarantees for the online learning of such ensembles in terms of the sequential Rademacher complexities of these sub-families. We also describe an algorithm that benefits from such guarantees. We further extend our framework by proving new structural estimation error guarantees for ensembles in the batch setting through a new data-dependent online-to-batch conversion technique, thereby also devising an effective algorithm for the batch setting which does not require the estimation of the Rademacher complexities of base sub-families.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartlett, P.L., Mendelson, S.: Rademacher and Gaussian complexities: risk bounds and structural results. J. Mach. Learn. Res. 3, 463–482 (2002)

    MathSciNet  MATH  Google Scholar 

  2. Beygelzimer, A., Hazan, E., Kale, S., Luo, H.: Online gradient boosting. In: Proceedings of NIPS, pp. 2449–2457 (2015)

    Google Scholar 

  3. Beygelzimer, A., Kale, S., Luo, H.: Optimal and adaptive algorithms for online boosting. In: ICML, volume 37 of JMLR Proceedings (2015)

    Google Scholar 

  4. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)

    MathSciNet  MATH  Google Scholar 

  5. Cesa-Bianchi, N., Conconi, A., Gentile, C.: On the generalization ability of on-line learning algorithms. IEEE Trans. Inf. Theor. 50(9), 2050–2057 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cesa-Bianchi, N., Lugosi, G.: Prediction, Learning, and Games. Cambridge University Press, New York (2006)

    Book  MATH  Google Scholar 

  7. Cesa-Bianchi, N., Mansour, Y., Stoltz, G.: Improved second-order bounds for prediction with expert advice. Mach. Learn. 66(2–3), 321–352 (2007)

    Article  MATH  Google Scholar 

  8. Cortes, C., Mohri, M., Syed, U.: Deep boosting. In: Proceedings of ICML (2014)

    Google Scholar 

  9. Dekel, O., Singer, Y.: Data-driven online to batch conversions. In: NIPS, pp. 267–274 (2005)

    Google Scholar 

  10. Dietterich, T.G.: An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization. Mach. Learn. 40(2), 139–157 (2000)

    Article  Google Scholar 

  11. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jin, R., Hoi, S.C.H., Yang, T.: Online multiple kernel learning: algorithms and mistake bounds. In: Hutter, M., Stephan, F., Vovk, V., Zeugmann, T. (eds.) ALT 2010. LNCS, vol. 6331, pp. 390–404. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  13. Koltchinskii, V., Panchenko, D.: Empirical margin distributions and bounding the generalization error of combined classifiers. Ann. Stat. 30, 1–50 (2002)

    MathSciNet  MATH  Google Scholar 

  14. Littlestone, N., Warmuth, M.K.: The weighted majority algorithm. Inf. Comput. 108(2), 212–261 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Rakhlin, A., Shamir, O., Sridharan, K.: Relax, randomize: from value to algorithms. In: NIPS, pp. 2150–2158 (2012)

    Google Scholar 

  16. Rakhlin, A., Sridharan, K., Tewari, A.: Online learning: random averages, combinatorial parameters, and learnability. In: Proceedings of NIPS, pp. 1984–1992 (2010)

    Google Scholar 

  17. Rätsch, G., Onoda, T., Müller, K.-R.: Soft margins for adaboost. Mach. Learn. 42(3), 287–320 (2001)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was partly funded by the NSF awards IIS-1117591 and CCF-1535987 and was also supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE 1342536.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Mohri, M., Yang, S. (2016). Structural Online Learning. In: Ortner, R., Simon, H., Zilles, S. (eds) Algorithmic Learning Theory. ALT 2016. Lecture Notes in Computer Science(), vol 9925. Springer, Cham. https://doi.org/10.1007/978-3-319-46379-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46379-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46378-0

  • Online ISBN: 978-3-319-46379-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics