

Libraries and Learning Services

University of Auckland Research
Repository, ResearchSpace

Version

This is the Accepted Manuscript version. This version is defined in the NISO
recommended practice RP-8-2008 http://www.niso.org/publications/rp/

Suggested Reference

Brown, P., Ganesan, J., Köhler, H., & Link, S. (2016). Keys with probabilistic
intervals. In Lecture Notes in Computer Science: Conceptual Modeling Vol. 9974
(pp. 164-179). Gifu, Japan: Springer Verlag. doi:10.1007/978-3-319-46397-
1_13

Copyright

Items in ResearchSpace are protected by copyright, with all rights reserved,
unless otherwise indicated. Previously published items are made available in
accordance with the copyright policy of the publisher.

The final publication is available at Springer via http://dx.doi.org/10.1007/978-
3-319-46397-1_13

For more information, see General copyright, Publisher copyright,
SHERPA/RoMEO.

http://www.niso.org/publications/rp/
http://dx.doi.org/10.1007/978-3-319-46397-1_13
http://dx.doi.org/10.1007/978-3-319-46397-1_13
http://dx.doi.org/10.1007/978-3-319-46397-1_13
http://dx.doi.org/10.1007/978-3-319-46397-1_13
http://www.library.auckland.ac.nz/services/research-support/depositing-theses/copyright
http://www.springer.com/gp/open-access/authors-rights/self-archiving-policy/2124
http://www.sherpa.ac.uk/romeo/issn/0302-9743/

Keys with Probabilistic Intervals

Pieta Brown1, Jeeva Ganesan1, Henning Köhler2, and Sebastian Link1

1 Department of Computer Science, University of Auckland, New Zealand
{pieta.brown,j.ganesan,s.link}@auckland.ac.nz

2 School of Engineering & Advanced Technology, Massey University, New Zealand
h.koehler@massey.ac.nz

Abstract. Probabilistic databases accommodate well the requirements
of modern applications that produce large volumes of uncertain data
from a variety of sources. We propose an expressive class of probabilis-
tic keys which empowers users to specify lower and upper bounds on
the marginal probabilities by which keys should hold in a data set of
acceptable quality. Indeed, the bounds help organizations balance the
consistency and completeness targets for their data quality. For this pur-
pose, algorithms are established for an agile schema- and data-driven
acquisition of the right lower and upper bounds in a given application
domain, and for reasoning about these keys. The efficiency of our acqui-
sition framework is demonstrated theoretically and experimentally.

Keywords: Data mining; Data semantics; Integrity Constraint; Proba-
bilistic data; Requirements acquisition

1 Introduction

Background. Keys allow us to understand the structure and semantics of data.
In relational databases, a key is a set of attributes that holds on a relation if no
two different tuples in the relation have matching values on all the attributes of
the key. The ability of keys to uniquely identify entities makes them invaluable
in data processing and applications.
Motivation. Relational databases target applications with certain data, such
as accounting and payroll. Modern applications, such as data integration and
financial risk assessment produce large volumes of uncertain data from a va-
riety of sources. For instance, RFID (radio frequency identification) can track
movements of endangered species of animals, such as the Japanese Serow in cen-
tral Honshu. Here it is sensible to apply probabilistic databases. Table 1 shows
two probabilistic relations (p-relation), which are probability distributions over
a finite set of possible worlds, each being a relation.

In requirements acquisition the goal is to specify all keys that apply to the
application domain, and those keys only. This goal addresses the consistency and
completeness dimensions of data quality. Here, consistency means to specify all
meaningful keys in order to prevent the occurrence of inconsistent data, while
completeness means not to specify any meaningless keys in order to capture any
potential meaningful database instance. This situation is exemplified in Figure 1.

2 Brown et al.

Table 1. Probabilistic relations r1 and r2

r1 : W1 (p1 = 0.35)

rfid time zone

j1 2pm z1
j1 3pm z2
j2 4pm z1
j3 2pm z3

W2 (p2 = 0.3)

rfid time zone

j1 2pm z1
j3 2pm z3
j1 5pm z1

W3 (p3 = 0.1)

rfid time zone

j1 2pm z1
j1 5pm z1
j4 2pm z1

W4 (p4 = 0.25)

rfid time zone

j1 2pm z1
j1 5pm z1
j4 2pm z1
j1 2pm z4

r2 : W1 (p1 = 0.2)

rfid time zone

j1 2pm z1
j2 3pm z1

W2 (p2 = 0.3)

rfid time zone

j1 2pm z1
j2 3pm z1
j1 4pm z2
j3 2pm z3

W3 (p3 = 0.25)

rfid time zone

j1 2pm z1
j3 2pm z3
j1 5pm z1

W4 (p4 = 0.25)

rfid time zone

j1 2pm z1
j1 5pm z1
j1 2pm z4
j4 2pm z1

Fig. 1. Consistency and completeness dimensions as controlled by keys

In probabilistic databases, one may speak of a key when it holds in all possible
worlds. That is to say that a key holds with marginal probability one, which
means that the probabilities of the worlds in which the key holds add up to
one. Due to the veracity of probabilistic data and the variety of sources the data
originate from, one must not expect to satisfy the completeness criteria with this
definition. Neither does such definition make sensible use of probabilities, as one
would expect for probabilistic data. In our example, neither r1 nor r2 satisfy any
non-trivial key with marginal probability one: The key k{rfid, time} has marginal
probability 0.75 in both r1 and r2, while k{time, zone} has marginal probability
0.65 in r1 and marginal probability 0.75 in r2.

We propose keys with probabilistic intervals, or p-keys for short, which stip-
ulate lower and upper bounds on the marginal probability by which a tradi-
tional key holds on probabilistic data. For example, we may specify the p-keys
k{rfid, time} ∈ (0.75, 1) and k{time, zone} ∈ (0.65, 0.75). In particular, the abil-
ity to stipulate lower and upper bounds on the marginal probability of keys is
useful for probabilistic data. The p-key k{time, zone} ∈ (0.65, 0.75) reflects our
observations that different serows may occur at the same time in the same zone
at least with probability 0.25 and at most with probability 0.35. Our main mo-
tivation for p-keys is their ability to balance the consistency and completeness

Keys with Probabilistic Intervals 3

Table 2. Two PC-tables that form an Armstrong PC-base for the p-keys of Figure 2

CD table

rfid time zone W

j1 2pm z1 1, 2, 3, 4
j1 3pm z2 1
j2 4pm z1 1
j3 2pm z3 1, 2
j1 5pm z1 2, 3, 4
j4 2pm z1 3, 4
j1 2pm z4 4

P table

W P
1 .35
2 .3
3 .1
4 .25

CD table

rfid time zone W

j1 2pm z1 1, 2, 3, 4
j2 3pm z1 1, 2
j1 4pm z2 2
j3 2pm z3 2, 3
j1 5pm z1 3, 4
j1 2pm z4 4
j4 2pm z1 4

P table

W P
1 .2
2 .3
3 .25
4 .25

targets for the quality of probabilistic data. Consistency means that for each
key the specified lower (upper) bound on its marginal probability is not too high
(low), and completeness means that for each key the specified lower (upper)
bound is not too low (high). Once the bounds have been consolidated, p-keys
can be utilized to control these data quality dimensions during updates. When
new data arrives, p-keys can help detect anomalous patterns of data in the form
of p-key violations. That is, automated warnings can be issued whenever data
would not meet a desired lower or upper bound of some p-key. In a different
showcase, p-keys can be used to infer probabilities that query answers are (non-
)unique. In our example, we may wonder about the chance that different serows
are in the same zone at the same time, indicating potential mating behavior. We
may ask

SELECT DISTINCT rfid FROM Tracking WHERE zone=‘z2’ AND time=‘2pm’ .

P-keys enable us to derive a minimum (maximum) probability of 0.65 (0.75) that
a unique answer is returned, because different serows are in zone z2 at 2pm at
least with probability 0.25 and at most with probability 0.35. These bounds can
be inferred without accessing any data at all, only requiring that k{time, zone}
has a marginal probability between 0.65 and 0.75 on the given data.
Contributions. Our contributions can be summarized as follows. Modeling:
We propose p-keys kX ∈ (p, q) as a natural class of integrity constraints over
uncertain data. Their main use is to help organizations balance consistency and
completeness targets for the quality of their data, and to quantify bounds on the
probability for (non-)unique query answers. Reasoning: While sets of p-keys
can be unsatisfiable, we establish an efficient algorithm to decide satisfiability.
The implication problem is to decide for a given set Σ ∪ {ϕ} of p-keys, whether
every p-relation that satisfies all elements of Σ also satisfies ϕ. We character-
ize the implication problem of satisfiable sets of p-keys by a finite set of Horn
rules, and a linear time decision algorithm. This enables organizations to reduce
the overhead of managing p-keys to a minimal level necessary. Summariza-
tion: For the schema-driven acquisition of the right probabilistic intervals, we
show how to perfectly summarize any given satisfiable set of p-keys as an Arm-
strong PC-base. An Armstrong PC-base consists of two PC-tables: One that

4 Brown et al.

satisfies every key with the exact marginal probability that is the perceived
best lower bound for the domain, and one that is the perceived best upper
bound. Any flaws with these perceptions are explicitly pointed out: Either as
unreasonably high lower bounds, or unreasonably low upper bounds. For exam-
ple, Table 2 shows an Armstrong PC-base for the p-keys shown in Figure 2.
In the CD table, the W column of a tuple shows the identifiers of possible
worlds to which the tuple belongs. The P -table shows the probability distri-
bution on the possible worlds. The first PC-table represents the p-relation r1
and the second PC-table represents the p-relation r2 from Table 1. While all
p-keys that are implied by this p-key set are satisfied by both PC-tables, every
non-implied p-key is violated by at least one PC-table. For example, the implied
p-key k{time,zone} ∈ (0.6, 0.8) is satisfied by the p-relations the tables repre-
sent, while the non-implied p-key k{time,zone} ∈ (0.7, 0.75) is violated by r1.

Fig. 2. P-key Profile of Table 2

Discovery: For the data-driven acquisition of
p-keys we compute the probabilistic interval of
any key as the smallest and largest marginal
probabilities across all given PC-tables. For ex-
ample, given the two PC-tables in Table 2, our
algorithm would discover the profile of p-keys
in Figure 2. Experiments: Experiments show
that our algorithms are efficient and scale lin-
early in our acquisition framework.
Organization. We discuss related work in Sec-
tion 2. P-keys are introduced in Section 3. Com-
putational problems are characterized in Sec-
tion 4. The schema- and data-driven acquisition
of p-keys is developed in Section 5. Experiment
results are presented in Section 6. We conclude
in Section 7.

2 Related Work

Poor data quality inhibits the transformation of data into value [23]. P-keys pro-
vide a well-founded, yet simple approach to balance the consistency and com-
pleteness targets for the quality of data. Keys are fundamental to most data
models [3, 6, 9, 12, 15, 25, 26]. P-keys subsume keys from traditional relations [1,
2], covered by the special case where p-relations consist of one possible world
only. There is substantial work on the discovery of “approximate” constraints,
see [4, 16, 20] for recent surveys. Approximate means that not all tuples satisfy
the given constraint, but exceptions are tolerable. P-keys are not approximate
since they are either satisfied or violated by the given p-relation. Future work will
investigate approximate p-keys. Possibilistic keys [11] are attributed some degree
of certainty saying to which tuples they apply. Possibility theory is a qualitative
approach, while probability theory is a quantitative approach to uncertainty. P-
keys complements the qualitative approach to possibilistic keys from [11]. Keys

Keys with Probabilistic Intervals 5

with probabilistic intervals extend our own work on keys with lower bounds only
[3]. The extension causes significant differences. Keys with intervals are more ex-
pressive as upper bounds smaller than 1 can be specified, addressing better any
consistency and completeness targets. Sets of keys with intervals may not be
satisfiable by any p-relation, while every set of keys with only lower bounds
is satisfiable. While implication and inference problems become more complex
for intervals, we succeed in establishing linear time algorithms. While keys with
only lower bounds enjoy representations by a single Armstrong PC-table, keys
with intervals require generally two PC-tables. This is an interesting novelty
for Armstrong databases for which more than one database instance have not
been considered in previous research. We also generalize the discovery problem
for keys with intervals to a collection of input instances, while only single input
instances were considered in [3] for keys with lower bounds.

3 Keys with Probabilistic Intervals

We introduce our notion of keys with probabilistic intervals after some prelimi-
naries on probabilistic databases.

A relation schema is a finite set R of attributes A. Each attribute A is
associated with a domain dom(A) of values. A tuple t over R is a function that
assigns to each attribute A of R an element t(A) from the domain dom(A).
A relation over R is a finite set of tuples over R. Relations over R are also
called possible worlds of R here. An expression kX over R with X ⊆ R is
called a key. A key kX is said to hold in a possible world W of R, denoted by
W |= kX, if and only if there no two tuples t1, t2 ∈ W such that t1 6= t2 and
t1(X) = t2(X). A probabilistic relation (p-relation) over R is a pair r = (W, P) of
a finite non-empty setW of possible worlds over R and a probability distribution
P : W → (0, 1] such that

∑
W∈W P (W) = 1 holds. Table 1 shows two p-

relations over relation schema Tracking={rfid,time,zone}. World W2 of r1, for
example, satisfies the keys k{rfid, time} and k{zone, time}, but violates the key
k{rfid, zone}. The marginal probability mX,r of a key kX in the p-relation r is
the sum of the probabilities of those possible worlds in r which satisfy kX. We
will now introduce the central notion of a key with probabilistic intervals.

Definition 1. A key with probabilistic intervals, or p-key for short, over rela-
tion schema R is an expression kX ∈ (l, u) where X ⊆ R, l, u ∈ [0, 1], and l ≤ u.
The p-key kX ∈ (l, u) over R is satisfied by, or said to hold in, the p-relation
r over R if and only if the marginal probability mX,r of kX in r falls into the
interval (l, u), that is, l ≤ mX,r ≤ u.

In our running example over relation schema Tracking, the p-relation r2
from Table 1 satisfies the p-keys k{rfid, time} ∈ (0.7, 0.75) and k{time, zone} ∈
(0.3, 0.8), but violates the p-keys k{rfid, time} ∈ (0.7, 0.7) and k{time, zone} ∈
(0.3, 0.65). The reasons are that m{rfid,time},r2 = m{time,zone},r2 = 0.75.

It is useful to separate a p-key into one key that stipulates the lower bound
and one key that stipulates the upper bound. This allows users to focus on one

6 Brown et al.

bound at a time, but also allows us to gain a better understanding of their
interaction. A key with lower bound, or l-key, is of the form kX ∈ (l, 1), and
we write kX≥l. A key with upper bound, or u-key, is of the form kX ∈ (0, u),
and written as kX≤u. For example, the p-key k{time, zone} ∈ (0.65, 0.75) can
be rewritten as the l-key k{time, zone}≥0.65 and the u-key k{time, zone}≤0.75. It
follows directly that a p-relation satisfies a p-key iff it satisfies the corresponding
l-key and u-key. L-keys were studied in [3]. First, we will study u-keys, and then
combine them with l-keys.

4 Reasoning Tools

When using sets of p-keys to enforce the consistency and completeness targets
on the quality of data, their overhead must be reduced to a minimal level nec-
essary. In practice, this requires us to reason about p-keys efficiently. We will
now establish tools to reason about the interaction of p-keys. This will help us
identify efficiently i) if a given set of p-keys is consistent, and ii) the most concise
interval by which a given key is implied from a given set of p-keys. This helps
optimize query and update efficiency, but is also essential for developing our
acquisition framework later.

4.1 Computational Problems

Let Σ ∪ {ϕ} denote a set of constraints over relation schema R. We say that
Σ is satisfiable, if there is some p-relation over R that satisfies all elements of
Σ; and say that Σ is unsatisfiable otherwise. We say Σ implies ϕ, denoted by
Σ |= ϕ, if every p-relation r over R that satisfies Σ, also satisfies ϕ. We use
Σ∗ = {ϕ : Σ |= ϕ} to denote the semantic closure of Σ. Let C denote a class of
constraints. The C-satisfiability problem is to decide for a given relation schema
R and a given set Σ of constraints in C over R, whether Σ is satisfiable. The
C-implication problem is to decide for a given relation schema R and a given
satisfiable set Σ ∪ {ϕ} of constraints in C over R, whether Σ implies ϕ. If C
denotes the class of p-keys, then the C-inference problem is to compute for a
given relation schema R, a given satisfiable set Σ of p-keys, and a given key
kX over R the largest probability l and the smallest probability u such that Σ
implies kX ∈ (l, u). We will characterize the computational problems for u-keys
first. Subsequently, we then show how to combine these results with our previous
findings on l-keys to characterize the computational problems for p-keys.

4.2 Keys with Upper Bounds

Satisfiability. Unsatisfiability is strong evidence that a set of keys has been
over-specified. While every set of l-keys is satisfiable, this is not the case for
every set of u-keys. However, satisfiable sets are easy to characterize for u-keys:
Unsatisfiability can only originate from stipulating an upper bound smaller than
one for the trivial key kR.

Keys with Probabilistic Intervals 7

Table 3. Axiomatization U = {R,F ,W}

kR≤1

kXY≤p

kX≤p

kX≤p

kX≤p+q

(Maximum, M) (Fragment, F) (Relax, R)

Proposition 1. A set Σ of u-keys over relation schema R is satisfiable if and
only if Σ does not contain a u-key of the form kR≤u where u < 1. The satisfia-
bility problem for u-keys can thus be decided with one scan over the input. ut

Axioms. We determine the semantic closure by applying inference rules of

the form
premise

conclusion
. For a set R of inference rules let Σ `R ϕ denote the

inference of ϕ from Σ by R. That is, there is some sequence σ1, . . . , σn such
that σn = ϕ and every σi is an element of Σ or is the conclusion that results
from an application of an inference rule in R to some premises in {σ1, . . . , σi−1}.
Let Σ+

R = {ϕ : Σ `R ϕ} be the syntactic closure of Σ under inferences by R. R
is sound (complete) if for every satisfiable set Σ over every R we have Σ+

R ⊆ Σ∗
(Σ∗ ⊆ Σ+

R). The (finite) set R is a (finite) axiomatization if R is both sound and
complete. The set U of inference rules from Table 3 forms a finite axiomatization
for the implication of u-keys. Here, R denotes the underlying relation schema,
X and Y form attribute subsets of R, and p, q as well as p+ q are probabilities.

Theorem 1. U forms a finite axiomatization for u-keys. ut

It is worth pointing out the soundness of the rules. The maximum rule M
holds trivially, because every marginal probability can at most be one. For the
fragment rule F assume that the marginal probability of kX exceeds p. Since
every world that satisfies kX must also satisfy kXY , the marginal probability
of kXY exceeds p, too. Finally, for the relax rule R assume that the marginal
probability of kX exceeds p + q. Then the marginal probability of kX exceeds
p, for sure. Some examples illustrate the use of the inference rule for reasoning
about u-keys.

For example, Σ = {k{rfid,time}≤0.75} implies ϕ = k{time}≤0.8, but not ϕ′ =
k{time}≤0.2. Indeed, ϕ can be inferred fromΣ by applying F to k{rfid,time}≤0.75
to infer k{time}≤0.75, and applying R to k{time}≥0.75 to infer ϕ.

If a p-relation satisfies a set Σ of p-keys, then it also satisfies every p-key
ϕ implied by Σ. Consequently, it is redundant to verify that a given p-relation
satisfies an implied p-key. In particular, the larger the given p-relation, the more
time we save by avoiding such redundant validation checks.
Algorithms. In practice, the semantic closure Σ∗ of a finite set Σ is infinite and
even though it can be represented finitely, it is often unnecessary to determine
all implied constraints. In fact, the implication problem has input Σ ∪ {ϕ} and
the question is if Σ implies ϕ. Computing Σ∗ and checking if ϕ ∈ Σ∗ is not
feasible. We will now establish a linear-time algorithm for computing the smallest

8 Brown et al.

Algorithm 1 Inference

Require: R,Σ, kX with satisfiable set Σ of u-keys
Ensure: min{u : Σ |= kX≤u}
1: p← 1;
2: for all kZ≤q ∈ Σ do
3: if X ⊆ Z and q < u then
4: u← q;

5: return u;

probability u, such that kX≤u is implied by Σ. The following theorem allows us
to reduce the implication problem for u-keys to a single scan of the input.

Theorem 2. Let Σ ∪ {kX≤u} denote a satisfiable set of u-keys over relation
schema R. Then Σ implies kX≤u if and only if i) u = 1 or ii) there is some
kZ≤q ∈ Σ such that X ⊆ Z and q ≤ u. ut

Based on Theorem 2, Algorithm 1 returns for a given satisfiable set Σ of
u-keys and a given key kX over R, the smallest probability u such that kX≤u
is implied by Σ. Starting with u = 1, the algorithm scans all input keys kZ≤q
and sets u to q whenever q is smaller than the current u and X is contained in
Z. We use |S| to denote the total number of attributes that occur in set S.

Corollary 1. On input (R,Σ, kX), Algorithm 1 returns in O(|Σ| + |R|) time
the minimum probability u with which kX≤u is implied by Σ. ut

Given R,Σ, kX≤p as an input to the implication problem for u-keys, Algorithm 1
computes u := min{q : Σ |= kX≤q} and we return an affirmative answer iff
u ≤ p. Hence, the implication problem is linear time decidable in the input.

Corollary 2. The implication problem of u-keys is decidable in linear time. ut

Given Σ = {k{rfid,time}≤0.75} and k{time}, Algorithm 1 returns u = 0.75.
For ϕ′ = k{time}≤0.2, we conclude that Σ does not imply ϕ′ as u > 0.2.

4.3 Keys with Probabilistic Intervals

We will now study p-keys as the combination of l-keys and u-keys. That is, we
think of every set Σ of p-keys as the union of the set Σl := {kX≤p | kX ∈
(p, q) ∈ Σ} of l-keys and the set Σu := {kX≥q | kX ∈ (p, q) ∈ Σ} of u-keys.
Satisfiability. While satisfiability for l-keys can be decided in constant time [3],
and satisfiability for u-keys requires one scan over the input, the satisfiability
problem for p-keys requires two scans over the input.

Proposition 2. A set Σ of p-keys over relation schema R is satisfiable if and
only if Σl ∪Σu ∪ {kR≥1} does not contain kX≥p, kXY≤q such that p > q. The
satisfiability problem for p-keys is decidable with two scans over the input. ut

Keys with Probabilistic Intervals 9

The set Σ = {k{rfid} ∈ (0.75, 0.75), k{rfid,time} ∈ (0.6, 0.7)} is unsatisfiable.
No interaction. We reduce the remaining computational problems for p-keys
to those of u-keys and l-keys. This is possible since we can show that every
satisfiable set of p-keys does not exhibit any interaction between its l-keys and
u-keys. Formally, u-keys and l-keys do not interact if and only if for every relation
schema R, every satisfiable set Σ of p-keys, every l-key kX≥p and every u-key
kY≥u over R, the following two conditions hold:

– Σu ∪Σl |= kX≥p if and only if Σl |= kX≥p,
– Σu ∪Σl |= kY≤q if and only if Σu |= kY≤q.

In other words, the non-interaction between u-keys and l-keys enables us to
reduce the implication problem for p-keys to the implication problems for u-
keys and l-keys. That is, a p-key kX ∈ (p, q) is implied by a satisfiable set Σ of
p-keys if and only if i) kX≥p is implied by Σl, and ii) kX≤q is implied by Σu.

Theorem 3. U-keys and l-keys do not interact.

Proof (Sketch). The non-trivial direction is to show the following: if Σl 6|= kX≥p,
then Σu ∪ Σl 6|= kX≥p. If Σl 6|= kX≥p, then any Armstrong p-relation for Σl

satisfies Σl and violates kX≥p. Since Σu ∪ Σl is satisfiable, it follows that the
Armstrong p-relation for Σl also satisfies Σu. Consequently, Σu ∪ Σl 6|= kX≥p.
The arguments works similarly when we know that Σu 6|= kY≤q. We can create
an Armstrong p-relation for Σu, which must also satisfy Σl because Σu ∪Σl is
satisfiable. ut

Theorem 3 allows us to reduce the implication and inference problems for
p-keys to the implication and inference problems for l-keys and u-keys. As a
first consequence, combining our axiomatizations for u-keys and l-keys yields an
axiomatization for p-keys.

Corollary 3. Axiomatization U for u-keys from Theorem 1 together with ax-
iomatization P for l-keys from [3] form a finite axiomatization for p-keys. ut

As a second consequence, we can also combine our inference algorithms for
u-keys and l-keys to obtain an efficient inference algorithm for p-keys.

Corollary 4. Given relation schema R, a satisfiable set Σ of p-keys, and a key
kX over R, we can return in O(|Σ|+ |R|) time the maximum probability l and
the minimum probability u such that kX ∈ (l, u) is implied by Σ. ut

Thirdly, the implication problem of p-keys can be decided efficiently.

Corollary 5. The implication problem of p-keys is decidable in linear time. ut

To decide if k{time,zone} ∈ (0.6, 0.7) is implied by the set Σ of p-keys from
Figure 2, we check if k{time,zone}≥0.6 is implied by Σl and if k{time,zone}≤0.7
is implied by Σu. As the second condition fails, the p-key is not implied by Σ.

Our results show that it takes quadratic time in the input to keep the en-
forcement of p-key sets to a minimal level necessary: For a given p-key set, we
can remove successively all p-keys from the set that are implied by the remaining
set. More validation time is saved the bigger the underlying p-relations grow.

10 Brown et al.

5 Tools for Acquiring Probabilistic Key Intervals

Fig. 3. Acquisition framework

The main inhibitor to the uptake of p-keys is
the difficulty to determine the right interval
for the marginal probabilities by which keys
hold in the underlying application domain.
For that purpose, analysts should communi-
cate with domain experts. We establish two
major computational tools that help analysts
communicate effectively with domain experts.
We follow the framework in Figure 3. Here,
analysts use our algorithm to summarize ab-
stract sets Σ of p-keys in the form of some
Armstrong PC-base, which is then inspected
jointly with domain experts. In particular, the
two PC-tables that form together the PC-
base represent simultaneously for every key
kX their lowest and highest marginal prob-
abilities that quality data sets in the target
domain should exhibit. Domain experts may
change the PC-tables or supply new PC-tables
to the analysts. For that case we establish an
algorithm that discovers p-keys from sets of
PC-tables. That is, the algorithm computes the lowest and highest marginal
probabilities of each key across all the given PC-tables. Such profiles are also
useful for query optimization, for example.

5.1 Summarizing Abstract Sets of P-Keys as Armstrong PC-bases

Our results will show that every satisfiable set Σ of p-keys can be summarized
in the form of two PC-tables such that all given p-keys are satisfied by the two
p-relations the PC-tables represent, and all those p-keys not implied by Σ are
violated by at least one of the p-relations. This notion generalizes the concept
of an Armstrong database, which is a single database instance that satisfies a
constraint if and only if it is implied by the given constraint set [5]. The reason
why p-keys require two database instances is simple: Each instance can only
represent one marginal probability, but p-keys generally require a lower and an
upper bound on the marginal probability. So, unless every given key has the
same lower and upper bounds, we require two database instances. The formal
definition is therefore as follows.

Definition 2. Let Σ be a satisfiable set of p-keys over a given relation schema
R. A pair of p-relation r1, r2 over R is Armstrong for Σ if and only if for all
p-keys ϕ over R it holds that r1 and r2 satisfy ϕ if and only if Σ implies ϕ.

For example, the p-relations r1, r2 from Table 1 are Armstrong for the set Σ
of p-keys in Figure 2. It is worth emphasizing the effectiveness of the definition:

Keys with Probabilistic Intervals 11

Knowing that r1, r2 are Armstrong for a given Σ enables us to reduce every
instance Σ ∪ {ϕ} of the implication problem to simply checking if both r1 and
r2 satisfy ϕ. Knowing that u-keys and l-keys do not interact, we can compute
r1, r2 such that every instance Σ ∪ {kX} of the inference problem is reduced to
simply computing the lower (upper) bound l (u) in kX ∈ (l, u) as the marginal
probability mX,r1 (mX,r2) of kX in r1 (r2). For example, the k{time,zone} ∈
(0.6, 0.7) is not implied by Σ from Figure 2 as the given upper bound 0.7 is
smaller than the marginal probability 0.75 of k{time,zone} in r2.

Instead of computing Armstrong p-relations we compute PC-tables that are
more concise representations. We call these Armstrong PC-bases. Recall the
following standard definition from probabilistic databases [24]. A conditional
table or c-table, is a tuple CD = 〈r,W 〉, where r is a relation, and W assigns to
each tuple t in r a finite set Wt of positive integers. The set of world identifiers
of CD is the union of the sets Wt for all tuples t of r. Given a world identifier
i of CD, the possible world associated with i is Wi = {t|t ∈ r and i ∈ Wt}.
The semantics of a c-table CD = 〈r,W 〉, called representation, is the set W of
possible worlds Wi where i denotes some world identifier of CD. A probabilistic
conditional database or PC-table, is a pair 〈CD,P 〉 where CD is a c-table, and
P is a probability distribution over the set of world identifiers of CD. The set
of possible worlds of a PC-table 〈CD,P 〉 is the representation of CD, and the
probability of each possible world Wi is defined as the probability of its world
identifier. For example, the PC-tables from Table 2 form an Armstrong PC-base
for the set Σ of p-keys from Figure 2.

Algorithm 2 in [3] computes a single Armstrong PC-table for every given set
Σ of l-keys. In the construction, the number of possible worlds is given by the
number of distinct lower bounds that occur in Σ. Indeed, for every given set Σ of
l-keys over R and every p ∈ (0, 1], Σp = {kX : ∃kX≥q ∈ Σ ∧ q ≥ p} denotes the
p-cut of Σ. If Σ does not contain a p-key kX≥p where p = 1, an Armstrong PC-
table for Σ is computed that contains one more possible world than the number
of distinct lower bounds in Σ. Processing the bounds in Σ from smallest p1 to
largest pn, the algorithm computes as possible world with probability pi−pi−1 a
traditional Armstrong relation for the pi-cut Σpi

. For this purpose, the anti-keys
are computed for each pi-cut, and the set W of those worlds i is recorded for
which X is an anti-key with respect to Σpi . The CD-table contains one tuple t0
which occurs in all worlds, and for each anti-key X another tuple tj that occurs
in all worlds for which X is an anti-key and that has matching values with t0 in
exactly the columns of X.

For example, applying this construction to the lower bounds of p-keys in
Figure 2 produces the PC-table on the left of Table 2. Indeed, let Σ consist of
k{rfid, time}≥.75, k{rfid, zone}≥.35, and k{time, zone}≥.65. Then Σ.35 consists of
k{rfid, time}, k{rfid, zone}, and k{time, zone}; Σ.65 consists of k{rfid, time}, and
k{time, zone}; Σ.75 consists of k{rfid, time}; and Σ1 is empty. The world W1

has thus probability p1 = 0.35, and is an Armstrong relation for Σ0.35. Here,
we have the three singleton anti-keys {rfid}, {time}, and {zone}. W1 has four
tuples, the first and second tuple have matching values on {rfid}, the first and

12 Brown et al.

third tuple have matching values on {zone}, and the first and fourth tuple have
matching values on {time}. This gives us the Armstrong relation W1 of r1 shown
in Table 1. The world W2 has probability p2 = 0.3, and is an Armstrong relation
for Σ0.65. Here, we have the two anti-keys {time} and {rfid, zone}. The world
W3 has probability p3 = 0.1, and is an Armstrong relation for Σ0.75. Here, we
have the two anti-keys {rfid, zone} and {time, zone}. Finally, W4 has probability
p4 = 0.25, and is an Armstrong relation for Σ1. Here, we have the three anti-
keys {rfid, zone}, {time, zone}, and {rfid, time}. Similar to W1 it is easy to see
how W2, W3, and W4 of r1 in Table 1 constitute the corresponding Armstrong
relations. Finally, we simply record the identifiers of those worlds in which a
tuple appears to obtain the CD-table. This results in the CD-table shown in
Table 2.

The outlined algorithm can also compute an Armstrong PC-table for every
satisfiable set Σ of u-keys. The reason is that the algorithm is independent of
whether we view the given probabilities as lower or upper bounds. The only
necessary change concerns the definition of Σp which becomes Σp = {kX :
∃kX≤q ∈ Σ ∧ q ≥ p} in this case. For example, applying this construction to
the upper bounds of p-keys in Figure 2 results in the PC-table on the right of
Table 2.

The use of this algorithm can be taken further when we consider Theorem 3,
which states that u-keys and l-keys do not interact in satisfiable sets. This means,
given a satisfiable set Σ of p-keys, we can compute an Armstrong PC-base for
Σ by applying Algorithm 2 of [3] to compute an Armstrong PC-table for the set
Σl, and by applying Algorithm 2 of [3] to compute an Armstrong PC-table for
the set Σu. Indeed, we obtain an Armstrong PC-base for Σ by simply pairing
the outputs of both applications together.

Theorem 4. For every satisfiable set Σ of p-keys over relation schema R, appli-
cations of Algorithm 2 in [3] to Σl and Σu, respectively, result in an Armstrong
PC-base for Σ in which the total number of possible worlds coincides with the
sum of the distinct non-zero lower bounds in Σ′l and the distinct non-zero upper
bounds in Σ′u. Here, Σ′l (Σ′u) denotes Σl (Σu) if there is some X ⊆ R such that
kX≥1 ∈ Σl (kX≤1 ∈ Σu), and Σl ∪ {kR≥1} (Σu ∪ {kR≤1}) otherwise. ut

The PC-tables of Table 2 form an Armstrong PC-base for the set Σ of p-keys
in Figure 2. Indeed, the number of possible worlds in both PC-tables is 4, which
is the number of distinct non-zero lower bounds in Σ and also the number of
distinct non-zero upper bounds in Σ. Finally, we derive some bounds on the
time complexity of finding Armstrong PC-tables. Additional insight is given by
our experiments in Section 6.

Theorem 5. The time complexity to find an Armstrong PC-base for a given set
Σ of p-keys over relation schema R is precisely exponential in |Σ|.

Here, precisely exponential means that there is an algorithm which requires
exponential time and that there are cases in which the number of tuples in the
output is exponential in the input size. Nevertheless, there are also cases where

Keys with Probabilistic Intervals 13

Fig. 4. Results of experiments with visualization

Size of Armstrong PC-tables Time to compute Armstrong PC-table

the number of tuples in some Armstrong PC-base for Σ over R is logarithmic
in |Σ|. Such a case is given by Rn = {A1, . . . , A2n} and Σn = {k(X1 · · ·Xn) ∈
(1, 1) : Xi ∈ {A2i−1, A2i} for i = 1, . . . , n} with |Σn| = n · 2n.

5.2 Discovery of P-Keys from Collections of PC-tables

The discovery problem of p-keys from a collection of PC-tables over a relation
schema R is to determine for all X ⊂ R, the smallest marginal probability
lX,r and the largest marginal probability uX,r of kX across all given p-relations
r = (W, P) represented by some given PC-table. The problem of computing the
marginal probability mX,r can be solved as follows: For each X ⊂ R, initialize
mX,r ← 0 and for all worlds W ∈ W, add the probability pW of W to mX,r, if X
contains some minimal key of W . The set of minimal keys of a world W is given
by the set of minimal transversals over the disagree sets of W (the complements
of agree sets) [21]. For example, applying this algorithm to the PC-tables from
Table 2 returns the p-keys shown in Figure 2.

6 Experiments

In this section we report on some experiments regarding the computational com-
plexity of our algorithms for the summarization and discovery of p-keys.
Summarization. While the worst-case time complexity of generating Arm-
strong PC-tables is exponential, these cases occur rarely in practice and at ran-
dom. In our experiment we simulated average case behavior by generating sets
of keys with upper/lower bounds. For each key, the set of attributes, the asso-
ciated probability, and the type (either upper or lower) were randomly selected.
First, we checked whether the created set of p-keys was satisfiable. If it was, one
Armstrong PC-table was computed for the set of keys with upper bounds and

14 Brown et al.

Fig. 5. GUI for summarization and times for discovering p-keys

Fig. 6. Results on “Car” data set for MapReduce Implementation

one for the set of keys with lower bounds. Overall, 24% of the p-key sets created
were unsatisfiable. The average sizes and times to create the Armstrong PC-
tables are shown in Figure 4. The results demonstrate that Armstrong PC-bases
exhibit small sizes on average, which makes them a practical tool to acquire keys
with meaningful probabilistic intervals in a joint effort with domain experts. A
screenshot of our graphical user interface is shown on the left of Figure 5.

Discovery. The right of Figure 5 shows the discovery times of p-keys from two
given PC-tables. The input size is the total number of tuples in the input. We
also applied a MapReduce implementation on a single node machine with 40
processors to the “Car” data set3 of the UCI Machine Learning Repository. We
converted “Car” into a p-relation with rising numbers of possible worlds and
500 tuples in each world. Figure 6 shows that our algorithm for the discovery of
p-keys scales linearly in the number of possible worlds, considering this number
is relatively low in our acquisition framework.

3 http://archive.ics.uci.edu/ml/datasets/Car+Evaluation

Keys with Probabilistic Intervals 15

7 Conclusion and Future Work

We introduced keys with probabilistic intervals, which stipulate lower and upper
bounds on the marginal probability by which keys shall hold on large volumes of
uncertain data. Keys with probabilistic intervals provide a principled, yet simple
enough mechanism to control the consistency and completeness targets for the
quality of an organization’s uncertain data. Similar to how lower bounds say that
a key is satisfied with some minimum probability, upper bounds provide us with
means to say that a key is violated with a minimum probability. Our axiomatic
and algorithmic reasoning tools minimize the overhead in using the keys for data
quality management and query processing. Our findings for the visualization and
discovery of these keys provide effective support for the efficient acquisition of
the right probabilistic intervals that apply in a given application domain.

In future research we will apply our algorithms to investigate empirically the
usefulness of our framework for acquiring the right probabilistic intervals of keys
in a given application domain. This will require us to extend empirical measures
from certain [17] to probabilistic data. Particularly intriguing is the question
whether PC-bases or their p-relations are more useful. It is also interesting to
investigate probabilistic variants of other useful constraint sets, such as func-
tional, multivalued, and inclusion dependencies [7, 8, 10, 13, 14, 18, 19]. However,
we have shown that such variants are not finitely axiomatizable. In this sense,
our results for p-keys are rather special. An extension that seems feasible is to
add lower bounds to the probabilistic cardinality constraints from [22].

References

1. Abedjan, Z., Golab, L., Naumann, F.: Profiling relational data: a survey. VLDB J.
24(4), 557–581 (2015)

2. Beeri, C., Dowd, M., Fagin, R., Statman, R.: On the structure of Armstrong rela-
tions for functional dependencies. J. ACM 31(1), 30–46 (1984)

3. Brown, P., Link, S.: Probabilistic keys for data quality management. In:
Zdravkovic, J., Kirikova, M., Johannesson, P. (eds.) Advanced Information Sys-
tems Engineering - 27th International Conference, CAiSE 2015, Stockholm, Swe-
den, June 8-12, 2015, Proceedings. Lecture Notes in Computer Science, vol. 9097,
pp. 118–132. Springer (2015)

4. Caruccio, L., Deufemia, V., Polese, G.: Relaxed functional dependencies - A survey
of approaches. IEEE Trans. Knowl. Data Eng. 28(1), 147–165 (2016)

5. Fagin, R.: Horn clauses and database dependencies. J. ACM 29(4), 952–985 (1982)

6. Hannula, M., Kontinen, J., Link, S.: On the finite and general implication problems
of independence atoms and keys. J. Comput. Syst. Sci. 82(5), 856–877 (2016)

7. Hartmann, S., Link, S.: Multi-valued dependencies in the presence of lists. In: Beeri,
C., Deutsch, A. (eds.) Proceedings of the Twenty-third ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, June 14-16, 2004, Paris,
France. pp. 330–341. ACM (2004)

8. Hartmann, S., Link, S.: On a problem of Fagin concerning multivalued dependen-
cies in relational databases. Theor. Comput. Sci. 353(1-3), 53–62 (2006)

16 Brown et al.

9. Hartmann, S., Link, S.: Efficient reasoning about a robust XML key fragment.
ACM Trans. Database Syst. 34(2) (2009)

10. Hartmann, S., Link, S., Schewe, K.: Functional and multivalued dependencies in
nested databases generated by record and list constructor. Ann. Math. Artif. Intell.
46(1-2), 114–164 (2006)

11. Köhler, H., Leck, U., Link, S., Prade, H.: Logical foundations of possibilistic keys.
In: Fermé, E., Leite, J. (eds.) Logics in Artificial Intelligence - 14th European Con-
ference, JELIA 2014, Funchal, Madeira, Portugal, September 24-26, 2014. Pro-
ceedings. Lecture Notes in Computer Science, vol. 8761, pp. 181–195. Springer
(2014)

12. Köhler, H., Leck, U., Link, S., Zhou, X.: Possible and certain keys for SQL. The
VLDB Journal 25(4), 571–596 (2016)

13. Köhler, H., Link, S.: Inclusion dependencies reloaded. In: Bailey, J., Moffat, A.,
Aggarwal, C.C., de Rijke, M., Kumar, R., Murdock, V., Sellis, T.K., Yu, J.X.
(eds.) Proceedings of the 24th ACM International on Conference on Information
and Knowledge Management, CIKM 2015, Melbourne, VIC, Australia, October 19
- 23, 2015. pp. 1361–1370. ACM (2015)

14. Köhler, H., Link, S.: SQL schema design: Foundations, normal forms, and nor-
malization. In: Özcan, F., Koutrika, G., Madden, S. (eds.) Proceedings of the 2016
International Conference on Management of Data, SIGMOD Conference 2016, San
Francisco, CA, USA, June 26 - July 01, 2016. pp. 267–279. ACM (2016)

15. Köhler, H., Link, S., Zhou, X.: Possible and certain SQL keys. PVLDB 8(11),
1118–1129 (2015)

16. Köhler, H., Link, S., Zhou, X.: Discovering meaningful certain keys from incomplete
and inconsistent relations. IEEE Data Eng. Bull. 39(2), 21–37 (2016)

17. Langeveldt, W., Link, S.: Empirical evidence for the usefulness of Armstrong re-
lations in the acquisition of meaningful functional dependencies. Inf. Syst. 35(3),
352–374 (2010)

18. Link, S.: Charting the completeness frontier of inference systems for multivalued
dependencies. Acta Inf. 45(7-8), 565–591 (2008)

19. Link, S.: Characterisations of multivalued dependency implication over undeter-
mined universes. J. Comput. Syst. Sci. 78(4), 1026–1044 (2012)

20. Liu, J., Li, J., Liu, C., Chen, Y.: Discover dependencies from data - A review.
IEEE Trans. Knowl. Data Eng. 24(2), 251–264 (2012)

21. Mannila, H., Räihä, K.J.: Algorithms for inferring functional dependencies from
relations. Data Knowl. Eng. 12(1), 83–99 (1994)

22. Roblot, T., Link, S.: Probabilistic cardinality constraints. In: Johannesson, P.,
Lee, M., Liddle, S.W., Opdahl, A.L., López, O.P. (eds.) Conceptual Modeling -
34th International Conference, ER 2015, Stockholm, Sweden, October 19-22, 2015,
Proceedings. Lecture Notes in Computer Science, vol. 9381, pp. 214–228. Springer
(2015)

23. Sadiq, S.: Handbook of Data Quality. Springer (2013)
24. Suciu, D., Olteanu, D., Ré, C., Koch, C.: Probabilistic Databases. Synthesis Lec-

tures on Data Management, Morgan & Claypool Publishers (2011)
25. Thalheim, B.: On semantic issues connected with keys in relational databases

permitting null values. Elektronische Informationsverarbeitung und Kybernetik
25(1/2), 11–20 (1989)

26. Toman, D., Weddell, G.E.: On keys and functional dependencies as first-class cit-
izens in description logics. J. Autom. Reasoning 40(2-3), 117–132 (2008)

