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Pseudoinversion Fractals

Krzysztof Gdawiec

Institute of Computer Science, University of Silesia
Bȩdzińska 39, 41-200, Sosnowiec, Poland

kgdawiec@ux2.math.us.edu.pl

Abstract. In this paper, we present some modifications of inversion
fractals. The first modification is based on the use of different metrics in
the inversion transformation. Moreover, we propose a switching process
between different metric spaces. All the proposed modifications allowed
us to obtain new and diverse fractal patterns that differ from the original
inversion fractals.

Keywords: fractal, pseudoinversion, computer art

1 Introduction

Fractals discovered by Mandelbrot in 1970s are used to model complex shapes
such as clouds, plants, mountains, sea-shores. They are also applied in the field of
art and computer graphics. Many different methods of obtaining fractal patterns
were proposed in the literature, e.g., dynamical systems [4], hyperbolic geometry
[6], complex numbers [5] or iterated function systems [9]. One of the recent
methods is the use of inversion transformation of the star-shaped sets [2, 3].
This type of fractals are called inversion fractals. In this paper we propose some
modifications of the inversion transformation that lead to new fractal patterns.

The paper is organized as follows. In Sec. 2, we briefly introduce the inversion
fractals and the algorithm to generate them. Next, in Sec. 3, we introduce some
modifications of inversion fractals. The first modification is based on the use of
pair of metrics in the inversion transformation and the second modification uses
switching process between pairs of metrics. Some examples of fractal patterns
obtained with the proposed modifications are presented in Sec. 4. Finally, in
Sec. 5, we give some concluding remarks.

2 Inversion Fractals

To introduce the psuedoinversion fractals firstly we must know what the inversion
fractals are. The first fractals of this type appeared about 2000 in [1]. They
were based on circle inversion. Later in [2] a generalization from circles to the
star-shaped sets was introduced. Some further generalizations, namely the use of
iteration process from fixed-point theory and the use of q-systems, were presented
in [3].

Following [3] let us start with some definitions.
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Definition 1. A set S in a metric space (IR2, de), where de is the Euclidean
distance, is star-shaped if there exists a point z ∈ int S (int S means the interior
of S) such that for all points p ∈ S the line segment zp lies entirely within S.
The locus of the points z having the above property is the kernel of S and is
denoted by kerS.

Let us assume that we have a star-shaped set S, some point o ∈ kerS and
point p ̸= o for which we want to calculate the inversion. We start by shooting
a ray r from o in the direction p − o, i.e., r(t) = o + t(p − o), where t ∈ [0,∞).
Then, we find the intersection point b of r and the boundary of S.

Definition 2. Point p′ is said to be the inverse of p with respect to S if it
satisfies the following equation:

de(o, p) · de(o, p′) = [de(o, b)]
2. (1)

Point o is called the centre of inversion. The transformation that takes p and
transforms it into p′ is called the star-shaped set inversion transformation and
it is denoted by IS.

The inversion transformation can be extended also to o in a following way:
IS(o) = ∞ and IS(∞) = o. Relation (1) is uncomfortable in implementation, so
after some derivations we can obtain a better formula:

p′ = IS(p) = o+

[
de(o, b)

de(o, p)

]2
(p− o). (2)

Now, having a set of k star shaped sets that define star-shaped set inversion
transformations we are able to generate an inversion fractal. For this purpose
we can use algorithm presented in Algorithm 1. The Pv in the algorithm is an
iteration process: iteration from fixed point theory or switching process [3]. In
the examples presented later in Sec. 4 we will use only the standard Picard
iteration, i.e., iteration process of the form:

pi+1 = IS(pi). (3)

3 Pseudoinversion Fractals

In the definition of inversion transformation (circle or star-shaped set) we use the
Euclidean metric. In [8] Ramı́rez et al. have changed the metric to the metrics:

dq(a, b) = (|ax − bx|q + |ay − by|q)
1
q , (4)

where a, b ∈ IR2 and q ∈ [1,∞). So, using this modification the inversion trans-
formation has the following form:

IS,q(p) = o+

[
dq(o, b)

dq(o, p)

]2
(p− o), (5)
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Algorithm 1: Extended random inversion algorithm with colouring [3]

Input: S1, . . . , Sk – star-shaped sets with chosen centres of inversion, c1, . . . , ck
– colours of the transformations, p0 – starting point external to
S1, . . . , Sk, n > 20 – number of iterations, Pv – iteration with
parameters v, W , H – image dimensions, γ ∈ IR+

Output: Image I with an approximation of a star-shaped set inversion fractal

1 for (x, y) ∈ {0, 1, . . . ,W − 1} × {0, 1, . . . , H − 1} do
2 I(x, y) = black
3 H(x, y) = 0

4 c = random colour
5 j = random number from {1, . . . , k}
6 p = Pv(ISj , p0)
7 for i = 2 to n do
8 l = random number from {1, . . . , k}
9 while j = l or inSet(Sl, p) do

10 l = random number from {1, . . . , k}
11 j = l
12 p = Pv(ISj , p)
13 if i > 20 then
14 x = ⌊xp⌋
15 y = ⌊yp⌋
16 H(x, y) = H(x, y) + 1

17 c =
c+cj

2

18 I(x, y) = c

19 mH = max(x,y) H(x, y)
20 for (x, y) ∈ {0, 1, . . . ,W − 1} × {0, 1, . . . , H − 1} do
21 if H(x, y) > 0 then

22 I(x, y) =
(

log2(1+H(x,y))

log2(1+mH)

)1/γ

I(x, y)

where q ∈ [1,∞).

In the case of circle inversion together with the change of the metric the
shape of the circle also changes, so the value of the inversion is different in
different metric spaces. But, in the case of the star-shaped sets the shape of the
set remains unchanged and it is easy to prove the following theorem.

Theorem 1. Let S be a star-shaped set, o ∈ kerS be a centre of inversion and
p point for which we want to calculate the inverse. Assume that b is the point
of intersection of r(t) = o + t(p − o), where t ∈ [0,∞) with the boundary of S.
Then, for any q1, q2 ∈ [1,∞):

dq1(o, b)

dq1(o, p)
=

dq2(o, b)

dq2(o, p)
. (6)
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From Theorem 1 we can conclude that for a fixed star shaped set S and any
q1, q2 ∈ [1,∞) the following equality is true:

∀p∈IR2 IS,q1(p) = IS,q2(p). (7)

So, the use of different metrics of the form (4) does not change the value of the
star shaped inversion transformation and thus the inversion fractal remains the
same.

From mathematical analysis we know that for any q1, q2 ∈ [1,∞) such that
q1 ≤ q2 we have [7]:

dq2(a, b) ≤ dq1(a, b). (8)

From this fact we can conclude that for q1 ̸= q2 (q1, q2 ∈ [1,∞)) and for a fixed
q ∈ {q1, q2} we have:

dq(o, b)

dq(o, p)
≤ dq1(o, b)

dq2(o, p)
or

dq(o, b)

dq(o, p)
≥ dq1(o, b)

dq2(o, p)
. (9)

In the inversion transformation we can use a pair of metrics for q1 and q2
(q1 ̸= q2) instead of one metric for q. In this way, following (9), we change
the value of the inversion transformation. The obtained point will be laying
(on the ray) closer or further from the centre of inversion. This modification
of inversion transformation causes that we loose some of the properties of the
inversion. Because of that the modified inversion transformation will be called
pseudoinversion transformation.

Replacing the inversion transformations with pseudoinversions will change
the shape of the original inversion fractal. This type of fractal will be called
pseudoinversion fractal.

If we look at the set of inversion transformations as the transformations in
separate metric spaces, then for each of the transformations we can use a different
pair of metrics (q1, q2). This will allow us to modify the shape of the fractal in
a local manner.

Moreover, we can introduce a switching process of the metric spaces. Let us
assume that we have M pairs of numbers defining metrics of the form (4), i.e.,
(q01 , q

0
2), (q

1
1 , q

1
2), . . . , (q

M−1
1 , qM−1

2 ). Now, in the m-th iteration of the iteration
process we use m mod M pair of metric spaces, i.e., (qm mod M

1 , qm mod M
2 ).

4 Examples

In this section, we present some examples of pseudoinversion fractals obtained
with the proposed methods. The first example is presenting the use of pseudoin-
version transformation using one pair (q1, q2) ∈ [1,∞)2 of parameters defining
metrics for all the transformations. Fig. 1 presents the star-shaped sets defin-
ing the transformations and the inversion fractal generated using the inversion
transformations of the sets. Examples of pseudoinversion fractals generated with
the same star-shaped sets are presented in Fig. 2. The parameters used to gen-
erate these images were the following (from left): (3, 7), (2, 1), (10, 3). From the
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Fig. 1. Star-shaped sets defining the transformations (left) and original inversion frac-
tal (right)

Fig. 2. Pseudoinversion fractals obtained with the use of different metrics

images we see that using different pairs of metrics we are able to obtain new
fractal shapes that are different from the original inversion fractal.

In the second example we will use the same star-shaped sets and different
pairs of metrics for different sets. Star-shaped sets defining the transformations
and original inversion fractal are presented in Fig. 3. Fig. 4 presents examples of
psuedoinversion fractals. The pairs of metrics for the individual sets are gathered
in Tab. 1. From the figure we can observe that the use of different pairs of metrics
for different transformations changes the shape of the fractal. In this way we can
place the sets in a symmetrical way and the shape of the fractal can loose its
symmetry, e.g., left image in Fig. 4. Moreover, we can observe that the shapes
of pseudoinversion fractals differ in a significant way from the original inversion
fractal.

The last example present fractal shapes obtained with the switching process
of metrics. Fig. 5 presents star-shaped sets defining the transformations and
original inversion fractal. In the first example of switching we will use two pairs
of metrics. Images on the left and in the middle of Fig. 6 present pseudoinver-
sion fractals obtained with the pairs: (1, 3), (2, 1), respectively. Fractal pattern
obtained using switching process of these two pairs of metrics is presented on
the right of Fig. 6.
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Fig. 3. Star-shaped sets defining the transformations (left) and original inversion frac-
tal (right)

Fig. 4. Pseudoinversion fractals obtained with the use of various metrics for different
transformations

Table 1. Parameters used to generate fractals from Fig. 4, T – triangle, Sq – square,
C – circle, N – North, S – South, E – East, W – West, M – middle

Image NWT NET SET SWT Sq NC EC SC WC MC

Left (2, 1) (2, 3) (2, 1) (2, 3) (2, 2) (2, 2) (2, 2) (2, 2) (2, 2) (1.1, 3)
Middle (2, 2) (2, 2) (2, 2) (2, 2) (1, 2.3) (2, 2) (2, 2) (2, 2) (2, 2) (2, 2)
Right (2, 2) (2, 2) (2, 2) (2, 2) (5, 1) (2, 2) (2, 2) (2, 2) (2, 2) (1, 5)

Fig. 5. Star-shaped sets defining the transformations (left) and original inversion frac-
tal (right)
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Fig. 6. Original pseudoinversion fractals (left, middle) and the result of switching their
metric spaces (right)

The second example of switching metric spaces in presented in Fig. 7. This
time we switch between three different pairs of metric spaces. The patterns at
the top of this figure were obtained using the following pairs: (2, 3), (3, 1), (5, 3).
The result of switching between these three pairs of metric spaces is presented
in the bottom part of Fig. 7.

5 Conclusions

In this paper, we presented modification of inversion fractals. The proposed mod-
ification was based on the use of different metrics in the inversion transformation
formula. Moreover, we proposed a switching process between different metric
spaces. Patterns which were obtained with the proposed modification differ in a
significant way from the original inversion fractals and form new fractal shapes.
Because of the interesting and aesthetic structure the pseudoinversion fractals
can be used among other things as textile, wallpaper or ceramics patterns.
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