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Preface

It is our pleasure to present the proceedings of EPEW 2016, the 13th European Per-
formance Engineering Workshop, held October 5–7, 2016 in Chios, Greece.

The goal of this annual workshop series is to gather academic and industrial
researchers working on all aspects of performance engineering. The papers presented at
the workshop reflect the diversity of modern performance engineering, with topics
ranging from the analysis of queueing networks and stochastic processes, to perfor-
mance analysis of computer systems and networks, and even modeling of human
behavior.

The call for papers gathered 25 submissions by authors from 13 countries. Each
paper was peer reviewed by an average of three reviewers from the Program Com-
mittee (PC) on the basis of its relevance, novelty, and technical quality. After the
collection of reviews, PC members discussed the quality of the submissions for one
week before deciding to accept 14 papers.

This year, we were honored to have two keynote speakers. Prof. Kishor S. Trivedi
from Duke University (USA) addressed current research on the quantitative analysis of
network survivability. Prof. Nicholas Ampazis from the University of the Aegean
(Greece) explored the use of deep learning approaches for performance analysis.

We thank our keynote speakers, as well as all PC members and external reviewers,
who returned their reviews on time despite the tight reviewing deadline, and provided
constructive and insightful comments. We also express our gratitude to the Organizing
Committee at the University of the Aegean for their continuous and valuable help, the
EasyChair team for their conference system, and Springer for their continued editorial
support. Above all, we would like to thank the authors of the papers for their contri-
bution to this volume, which we hope that you, the reader, will find useful and
inspiring.

August 2016 Dieter Fiems
Marco Paolieri

Agapios N. Platis
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Survivability Quantification for Networks

Kishor S. Trivedi

Department of Electrical and Computer Engineering,
Duke University, Durham, NC 27708, USA

ktrivedi@duke.edu

Abstract. Survivability is a critical attribute of modern computer and communi-
cation systems. The assessment of survivability is mostly performed in a qualitative
manner and thus cannot meet the need for more precise and solid evaluation of
service loss or degradation in presence of failure/attack/disaster. This talk addresses
the current research status of quantification of survivability. First, we carefully
define survivability and contrast it with traditional measures such as reliability,
availability and performability [2, 8, 7]. We use “survivability” as defined by the
ANSI T1A1.2 committee – that is, the transient performance from the instant an
undesirable event occurs until steady state with an acceptable performance level is
attained [1]. Thus survivability can be seen as a generalization of recovery after a
failure or any undesired event [3]. We then discuss probabilistic models for the
quantification of survivability based on our chosen definition. Next, three case
studies are presented to illustrate our approach. One case study is about the
quantitative evaluation of several survivable architectures for the plain old tele-
phone system (POTS) [5]. The second case study deals with the survivability
quantification of communication networks [4] while the third is that of smart grid
distribution automation networks [6]. In each case hierarchical models are devel-
oped to derive various survivability measures. Numerical results are provided to
show how a comprehensive understanding of the system behavior after failure can
be achieved through such models.
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Deep Learning Models for Performance
Modelling

Nicholas Ampazis

Department of Financial and Management Engineering,
University of the Aegean, Chios 82100, Greece

n.ampazis@fme.aegean.gr

Abstract. Deep learning approaches to performance modelling and prediction of
computer systems can be considered as a “black-box” approach, where many
layers of information processing stages in hierarchical neural networks archi-
tectures are exploited for feature learning in prediction or classification tasks.
Examples of deep learning applications to performance modelling span from
anomaly detection to optimization, to capacity planning, and, with the advent of
cloud computing, to automatic resource provisioning.

Keywords: Deep learning � Machine learning � Neural networks � Performance
modelling

1 Introduction

Deep Learning (DL) [1] is a rapidly growing discipline that, during the last few years,
has revolutionalised machine learning and artificial intelligence research due to the
availability of “big data”, new algorithms for neural networks training, and extremely
fast dedicated hardware. Companies like Google, Microsoft, Amazon, Facebook and
Apple use deep learning to solve difficult problems in areas such as speech and image
recognition, machine translation, natural language processing, resource planning or
even to reduce power consumption by manipulating computer servers and related
equipment like cooling systems [2].

The essence of DL is to compute hierarchical features or representations of obser-
vational data, where the higher-level features or factors are defined from primary lower-
level measurements. Based on the features extracted from the data in the training set, the
calculations within the model are adjusted so that known inputs produce desired outputs.
The theory then extends to the fact that, similarly to classical machine learning, a trained
deep learning system will correctly recognize the patterns when presented with new
examples [7].

Deep learning can be seen as a more complete, hierarchical and a “bottom up” way
for feature extraction without human intervention. In the past manually designed fea-
tures were used in demanding tasks such as, for example, image and video processing.
These rely on human domain knowledge and it is hard to manually tune them. Thus,
developing effective features for new applications was a slow process. Deep learning
overcomes this problem of feature extraction by adaptively determining operator



coefficients, like for example in convolutional layers which are exceptionally good at
discovering and extracting features from data. These features are propagated to the next
layer to form a hierarchy of nonlinear features that grow in complexity (e.g. in an image
processing task, from blobs/edges ! noses/eyes/cheeks ! faces). The final layer uses
all these generated features for classification or regression. Deep learning can be
thought of as “feature engineering” done automatically by algorithms [3, 6].

2 Applications

In applications of classical Machine Learning (ML) methods to performance modeling
or prediction, it was sufficient to identify the core inputs (features) of the performance
functions, and the ML algorithm would take care of inferring how they map to target
Key Performance Indicators (KPI). Such models are built on the basis of a so called
training phase, during which the application is tested with different workloads and is
parameterized with different configurations, with the purpose of observing the corre-
sponding achieved performance. Thus their advantage is that the task is reduced to
fitting the input data to their desired output values without exploiting any additional
knowledge about the application. However input features have to be manually crafted,
e.g. small versus large jobs to encode workload intensity, number and types of servers
to encode infrastructure, etc. Similarly, KPI outputs like throughput (e.g. max jobs/sec),
response time (e.g. execution time of a job) or consumed energy (e.g. Joules/job) would
have to carefully defined in order to discriminate the task as being a regression, a
classification or a clustering problem.

Relative to other machine learning techniques, DL has four key advantages:

– It can detect complex relationships among features
– It can extract new low-level features from minimally processed raw data
– It can handle multiclass problems with high-cardinality
– It can produce results with unlabeled data

These four strengths suggest that deep learning can produce useful results where
other methods may fail. It may also build more accurate models than other methods,
and it can reduce the time needed to build a useful model.

Already DL is utilized in order to solve highly practical problems in all aspects of
business. For example:

– Payment systems providers use DL to identify suspicious transactions in real time
[5].

– Organizations with large data centers and computer networks use DL to mine log
files and detect threats [8].

– Vehicle manufacturers and fleet operators use DL to mine sensor data to predict part
and vehicle failure [9].

– Deep learning helps companies with large and complex supply chains predict delays
and bottlenecks in production [4].

XIV N. Ampazis



With the increased availability of deep learning software and the skills to use it
effectively, we expect the list of commercial applications to grow rapidly in the next
several years.
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