
This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License

Newcastle University ePrints - eprint.ncl.ac.uk

Llwaah F, Cala J, Thomas N.

Simulation of Runtime Performance of Big Data Workflows on the Cloud.

In: 13th European Performance Engineering Workshop (EPEW). 2016, Chios,

Greece: Springer.

Copyright:

The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-46433-6_10

DOI link to article:

http://dx.doi.org/10.1007/978-3-319-46433-6_10

Date deposited:

31/10/2016

http://creativecommons.org/licenses/by-nc/3.0/deed.en_GB
http://eprint.ncl.ac.uk/
https://myimpact.ncl.ac.uk/ViewPublication.aspx?id=227761
http://dx.doi.org/10.1007/978-3-319-46433-6_10
http://dx.doi.org/10.1007/978-3-319-46433-6_10

Simulation of Runtime Performance of Big Data
Workflows on the Cloud

Faris Llwaah, Jacek Ca la, Nigel Thomas

Newcastle University
Newcastle upon Tyne, UK

{f.llwaah,jacek.cala,nigel.thomas}@ncl.ac.uk

Abstract. Big data analysis has become a vital tool in many disciplines.
Due to its intensive nature, big data analysis is often performed in cloud
computing environments. Cloud computing offers the potential for large
scale parallelism and scalable provision. However, determining an opti-
mal deployment can be an expensive operation and therefore some form
of prediction of performance prior to deployment would be extremely
useful. In this paper we explore the deployment of one complex such
problem, the NGS pipeline. We use provenance execution data to popu-
late models simulated in WorkflowSim and CloudSim. This allows us to
explore different scenarios for runtime properties.

Keywords: Big-Data, scalability, NGS pipeline, WorkflowSim, CloudSim

1 Introduction

A big data workflow is composed of many applications that may involve large in-
put data sets and produce large amounts of data as an output [5]. The scale and
demand of these applications is such that they might rapidly overwhelm stand
alone computing systems. One solution to this problem is to deploy the workflow
into a commercial cloud environment, which provides ample resources and elas-
tic provision. However, hiring resources clearly costs money and the process of
tuning the deployment to ensure sufficient and efficient use of resources can be
a costly exercise in itself. Therefore some means of predicting the performance
of deployed workflows would be extremely useful and could save money.

In this paper, we explore this problem by considering a complex genomics
data processing Next Generation Sequencing (NGS) workflow-based pipeline de-
ployed on the Microsoft Azure public cloud [1]. The NGS pipeline is used to
discover variants in patients exome. The local deployment of this pipeline, pro-
cessing a cohort of 24 patient samples, typically takes several days to execute.
The Azure deployment can potentially run much faster, but given limited funds
it is necessary to find an optimal or near-optimal deployment which minimises
both execution time and cost.

Fortunately a number of simulation tools have become available in recent
years which enable a workflow to be simulated in repeatable and reproducible

2 Faris Llwaah, Jacek Ca la, Nigel Thomas

experiments, with no charge for testing environment [9]. These simulators have
been a significant tool for the evaluation and improvement a single workflow[3],
although there is a lack of support for simulating a pipeline (a set of workflows).

In this paper, we have modified a simulation platform to simulate the execu-
tion behavior of the NGS pipeline as implemented in e-Science central (e-SC).
The main contributions of this paper is to propose a methodology for predicting
the runtime and output data size using WorkflowSim/CloudSim, parameterised
with realistic data from archived provenance file of e-Science central workflows.
In order to achieve this we have translated the e-SC workflow enactment model
into a Pegasus workflow suitable for input into WorkflowSim and used Work-
flowSim and CloudSim to predict runtime and the output data size. To the best
of our knowledge this kind of prediction is novel.

The remainder of this paper is structured as follows: the next section covers
some background and related work. Section 3 presents the simulation model.
Section 4 discusses the proposed prediction methodology which is followed by
Section 5 covering the evaluation. Finally, conclusions and future work are pre-
sented in Section 6.

2 Background and Related work

Although providing cloud runtime estimation for big data workflows is a problem
of significant interest, very few studies are currently available in the literature.
This is partially, due to the complexity of the problem in terms of workflow per-
formance behavior and due to the modernity of cloud simulation. Some notable
contributions in this area include Rak et al [11], who presents a technique to
evaluate the trade-off between costs and performance of the cloud application
through benchmarks and simulation based on the mOSAIC framework. In [13]
the authors extend this approach to consider bag-of-tasks scientific applications.
The integrated framework with the cloud simulation environment is able to pre-
dict the behavior of development stage performance and cloud resource usage.
Rozinat et al [12], describe a simulation system for operational decisions to sup-
port the context of workflow management. The proposed approach combines
and extends the workflow management system YAWL and the process mining
framework ProM. CloudProphet [8] aims to predict the performance and costs
of legacy applications when executed on cloud infrastructures. The advantage
of this approach is focused on applications cloud-aware by design, which means
it takes into account the elasticity of elasticity rather than using a framework
to predict the performance. The framework presented in [14] for performance
prediction of parallel programs on hierarchical clusters is based on two principle
steps:- one at the installation time of the parallel application and the other at
the runtime. In order to model accurately the components, they are sketched
those components. In the second step in this approach the generated model was
used to the completion time estimation via the fast simulator MPI-PERF-SIM.

Our approach is built on to of WorkflowSim [4], which is an extension of
the CloudSim simulator. This is done by providing multiple layers on top of the

Simulation of Runtime Performance of Big Data Workflows on the Cloud 3

existing task scheduling layer of CloudSim, such as workflow mapper, workflow
engine, clustering engine, and workflow scheduler. Cloudsim [3] provides the
realistic components such as data centre, host, policies and workloads.

3 NGS pipeline simulation

To explore the problem of simulating workflow deployment in the cloud, we have
chosen a case study using the NGS pipeline [1]. These workflows are used to im-
plementing WES data processing pipelines at the Institute for Genetic Medicine.
In general, a pipeline consists of a composition of workflows that include typi-
cal NGS processing steps [10], which are alignment (BWA), cleaning (Picard),
sequence recalibration, filtering, variant calling and recalibration (GATK), cov-
erage analysis (bedTools), and annotation (Annovar). It consists of a top level,
coordinating workflow that invokes 8 sub-workflows, each of which implements
one step of the pipeline, see Figure 1. For each step, the sub-workflows are ex-
ecuted synchronously in parallel over a number of samples or sub-chromosomal
regions. This means that the top-level workflow submits N sub-workflow invo-
cations for a particular step, waits until all of them complete, and then moves
on to the following step.

For most of the steps number of sub-workflow invocations N equals the num-
ber of samples, with the exception when the pipeline enters the variant discovery
step (highlighted with dashed blue line in the figure). Then, the data is split ac-
cording to, so called, chromosome-split i.e. intermediate data for all samples are
gathered together and split chromosome by chromosome into a specified number
of sub-chromosomal regions.

Fig. 1. NGS pipeline structure.

Both Pegasus and e-SC support enactment of scientific workflows which com-
bine tasks into a directed acyclic graph (DAG). These systems share some com-
mon features but there are important differences between their deployment and
workflow execution model.

4 Faris Llwaah, Jacek Ca la, Nigel Thomas

3.1 e-SC architecture and workflow enactment model

e-SC consists of three main components: the server, database and workflow en-
gine. It follows the common master-worker pattern in which the server orches-
trates execution of workflows across one or more workflow engines. All e-SC
components can be deployed on a single VM (all-in-one deployment) but in
larger scale experiments, such as the NGS pipeline, they are deployed separately
with single server and database VM and multiple engine VMs. The e-SC work-
flow enactment model is based on the work stealing approach: the server submits
workflow invocations to a shared FIFO queue. From there invocations are pulled
by the engines. Each engine can run one or more invocations concurrently in
order to improve performance on a multi-core VMs.

The e-SC workflows can be of two types: basic and compound. Basic work-
flows execute within a single engine (within a single invocation thread on that
engine), and so the data transfer between tasks is enclosed within a VM and can
be very efficient. In addition there are compound workflows, which are workflows
which submit one or more subworkflows. A subworkflow can again be compound
or basic. Of course, data transfer between the parent and its child subworkflows
is supported by the server. However, in the Cloud, workflow engines can directly
communicate with scalable cloud storage such as Azure Blob Store or Amazon
S3, which enables effective data transfer for large scale workflow applications.
Moreover, links between blocks can transmit a list of input data and so a single
parent workflow can start multiple subworkflows – one for each element on the
list. Figure 1 shows the architecture of e-SC deployed in the Azure Cloud.

3.2 Pegasus architecture and workflow enactment model

WorkflowSim follows the execution model of the Pegasus WfMS. In Pegasus
a workflow consists of tasks, each of which represents a node, and the task
dependencies, denoted by the edges. Often, a workflow is modeled as a DAX
to DAX relationship; we assume that DAG = (V,A), where set of vectors V =
{T1, T2, . . . , Tn} represents tasks in the workflow and set of arcs A represents
data dependencies between these tasks. Moreover, data transfer between tasks
is achieved using Condor File IO in the case of a non-shared file system setup.

3.3 Modelling the pipeline in WorkflowSim

Because, e-SC workflows can represent combinations of more fine-grained tasks
and also due to the difference between the workflow model and possible in-
vocation trace, we had to find a way to map an e-SC workflow into one that
WorkflowSim could enact. The chosen approach was to represent the actual in-
vocation trace of an e-SC workflow as a compatible Pegasus workflow, which
could be done for the NGS pipeline using the provenance logs provided by e-SC.
The provenance logs allow us to trace the complete graph of tasks and workflows
that were involved in producing a specific output. They also include the block
execution time and the amount of data transferred by each block. We used this

Simulation of Runtime Performance of Big Data Workflows on the Cloud 5

data to reconstruct our NGS pipeline workflow as a WorkflowSim workflow. Each
task in Pegasus may run on different VM (unless there’s clustering turned on)
so we decided to model e-SCworkflows as WorkflowSim tasks. This seems to be
an appropriate abstraction level, however subworkflows in e-SC can be enacted
in the middle of the parent workflow, so we had to split every e-SC workflow
into parts connected by the subworkflow submission blocks; this is depicted in
Figure 1. Following this approach we were able to map an execution trace of
the NGS pipeline ran on e-SC as a WorkflowSim workflow descriptor. Figure 2
illustrates the mapping. Note that for a different number of patient samples in
the batch there is a differently sized DAX (DAG in XML) descriptor.

4 The prediction methodology

WorkflowSim requires as input a description of the execution environments, the
workflow to be executed and the execution times for each task. WorkflowSim
then simulates the deployment of the workflow on the environment. We wish to
use this simulation to predict the performance of the NGS pipeline with differ-
ent sample input sizes. From the above we can provide WorkflowSim with an
input model of the NGS pipeline. However, as yet we have no idea about the
task execution times or the parameters of the execution environment (MIPs and
bandwidth). Our approach is therefore to gather provenance data from sample
executions with small number of input samples, use this data as input to Work-
flowSim to estimate the execution environment parameters and then use this to
gain predictions for larger sample sizes from further WorkflowSim simulations.
These predictions can then be used to find the best selection of resources (e.g.
number of VMs) on which to deploy the pipeline for larger sample sizes.

4.1 Preparation phase

i) Providing parameters to WorkflowSim: A WorkflowSim toolkit must
capture a complete description of the tasks, such as identification, runtime, in-
put data sizes, and output data size. One of the trends is to make a WorkflowSim
automation toolkit by providing it with an opportunity to predict the transfor-
mation parameters such as runtime and output data size. Therefore, this facility
will help a user to use WorkflowSim in an easy and efficient way. As such, the
NGS pipeline is launched only with the input data sizes. This will require using
two prediction models and integrating them into WorkflowSim to perform this
job.

ii) WorkflowSim input compatibility: This step of the preparation phase
is related with the conversion from e-SC provenance traces to WorkflowSim
workflow model, in order to obtain the schema of NGS pipeline that will be
accepted as input workflow to the WorkflowSim.

Based on the workflow execution model description above, we convert the
NGS pipeline from an execution model in e-SC Central to an execution model

6 Faris Llwaah, Jacek Ca la, Nigel Thomas

in Pegasus. Figure 2 shows the result of a hierarchical pipeline graph which can
be represented by DAX (DAG in XML) implementing a single NGS pipeline
that represents one possible execution path of the workflow schema, where an
execution consists of all nodes and edges within a workflow DAX beginning from
the start node (i.e. 1-sample input) to the end node. For running 6 samples NGS
pipeline, the implementation will be within 6 paths of the workflow schema (i.e.
6-sample input), and so on for running N NGS will be implemented within N
paths.

Fig. 2. Invocation graph of the NGS pipeline with N samples.

iii) Data submission format: Here we describe the workflow and present a
new XML file format for workflow states that enable the WorkflowSim to inter-
face NGS pipeline in an acceptable way. As we mentioned above, the original
parser model of the WorkflowSim has been modified to analyse and parse a new
XML file of the pipeline. In order to execute the e-SC workflow application in
our modified WorkflowSim, workflows are described by users manually as DAXs,
where the node represents individual workflow/subworkflow, and the edges rep-
resent execution dependencies between the (sub)workflows. Figure 2 illustrates
the abstract description abstract as an XML file to represent the whole pipeline,
which captures all logical identifiers with which the task should be invoked, such
as input/output file, task identifier (id), and required run time (runtime). For

Simulation of Runtime Performance of Big Data Workflows on the Cloud 7

example, the following is a brief record on XML file that represents the BWA
Aligan workflow.

id = BWA_A1_AL;
file = InputDir_BWA_A1_AL.dat; size="7507423824";
file = BWA__A1_AL.out; size = <->;
runtime = <->

In the case of size parameters, each is assigned by value of input sample,
the second size and runtime parameters should be assigned by the prediction
models.

4.2 Building the prediction models phase

In this phase, we describe the method to build a prediction model. To achieve
this, we need the following steps:

i) Data collection and feature set The main task for this step is to shed
light on the predicting modules by collecting information from the provenance
file for each invocation which is needed for performance prediction. Thus,we
use historical data, including the details information about the execution of the
workflows in the pipeline such as invocation Id, Workflow Name, Block num-
ber, Block name, Start time, End time, Input data size, and Output data size.
The following steps describe a method of extracting the above parameters from
analytical provenance file:

– Sorting the information by an invocation Id and Start time. To obtain an
ordering of the pipeline blocks as were executed in a real cloud. This facility
helps us easily extract the actual execution time of each block.

– Extracting the runtime for each block, (i.e. runtime = End time Start time).
– Specifying the input and output data volume of each block.

Table 1 gives an example of the provenance data pertaining to the runtime
and (input-output) data volume which is collected from an execution before
the actual simulation of a workflow is started. All extracted parameters play
a significant role in our experiments for time execution estimation of the task.
Moreover, to derive the output data volume that will be used as input for next
task.

ii) Extracting prediction equations To run NGS pipeline tasks, as in Fig-
ure 2, on WorkflowSim we need to know the execution time of each task before
the submission is done. This aim prompted us to build prediction models for
both runtime and data output sizes which are based on live performance data
and using a statistical prediction approach for extracting the equations of pre-
diction. The time parameters can be extracted from input data volume for each
block and output data volume parameters. For the majority of the tasks that
shown in Figure 2, it is possible to generate the prediction equations to estimate

8 Faris Llwaah, Jacek Ca la, Nigel Thomas

Table 1. Basic characteristics of a selection of tasks of a 10-sample pipeline execution
extracted from its provenance trace.

Pipeline step
Input data

[MB]
Output data

[MB]
Run time

[s]

BWA1 FEL 15,862 11,336 18,807

BWA A1 AL 7,507 7,963 9,871

PICARD1 11,342 7,411 8,941

GATKP1 1 7,417 2,766 28,703

VARIANTA 344 344 23,792

GATK phase3 55 43 943

VCF1 55 43 175

COVERAGE1 2,766 16 280

ANNOTATE1 43 204 1,206

execution time of each task based upon the size of the input data. For example,
Figure 3 shows a prediction equation of the BWA1 FEL for three 6-sample in-
put using a simple linear regression model. The same method was used to obtain
further equations of the output data sizes.

However, using data input size to generate estimation equations was inade-
quate for the Haplotype workflows which are the entry-point to the part of the
pipeline that runs under the chromosome-split regime. It means that each Hap-
lotype workflow as the input uses data of all patient samples but is configured
to read different chromosomal region of them. Thus, we used the region length
as a division factor for different input sizes.

Fig. 3. Linear model of equation prediction.

Simulation of Runtime Performance of Big Data Workflows on the Cloud 9

iii) Set up training sets: From measurements we have obtained three data
sets based on different numbers of input samples (6, 10 and 12 samples executes
3, 2 and 2 times each respectively). Each set can be used to train an input sample
for execution environment parameter estimation. Thus, we can create different
sized training sets for time prediction of a scalable input sample. For example, if
we have 12-samples input, the prediction model can use a training set based on 6
and/or 10 samples. In the evaluation we can explore whether having more data
points across all available training sets (in this case 6 and 10) provides a better
prediction than using just the data from one set (6 or 10). Ideally we would get
a good prediction from just using the 6 sample training set, as this would clearly
be the cheapest to produce.

4.3 Integrating the derived equations phase

In this phase, we integrate the prediction equations that have been built in
the building phase into WorkflowSim by considering two issues. Firstly, a run
time prediction should be given for each task in case of submitting the tasks
with predefined execution time to the WorkflowSim. Secondly, the output data
volume should be calculated, which is a passing a factor to other tasks during
running the pipeline. So, we have constructed two estimation models:

i) Runtime prediction model: One key benefit potential statistical prediction
method has to match for parameters of input data to predict the parameters of
the output data of task/job, making this prediction by using past information
[7]. We have used the linear regression method as a solution to address the
estimation. This approach manages the relationship between two variables, X is
input variable (i.e. input data volume) and Y is dependent output variable (i.e.
runtime), to extract Y from X.

Execution time prediction is an important factor in cloud computing and in
simulation [6]. However, in a WorkflowSim, a task is assigned according to its
size which is defined by the user. Therefore, it was necessary to develop a model
in WorkflowSim for runtime estimation which is required to simulate the task.

ii) Output data volume prediction model: The approach taken by run-
time prediction method to generate a model is followed in this method as well.
However, the deference lies in two considered variables, i.e. X is input variable
(i.e. input data volume) and Y is dependent output variable (i.e. output data
volume), to extract Y from X.. The volume of data plays a crucial role for mod-
elling execution time estimation. This parameter is gathered from real data in
the provenance file where it is linked to the front line of the tasks (i.e. the first
tasks that the pipeline execution is started). In the NGS pipeline, every task
generates output data required by its child as input. This method is required
for constructing a model and integrating it into WorkflowSim for output data
estimation which is required to complete our models.

10 Faris Llwaah, Jacek Ca la, Nigel Thomas

4.4 Extracting input parameters

In order to extract optimal metrics which have been used to set the WorkflowSim
configuration for implementing our experiment, we have traced the simulator to
generate these parameters, i.e. MIPs (Million instructions per second) and BW
(bandwidth), based on the following steps.

1. Selecting minimum and maximum value of MIPs and BW parameters.
2. Running the WorkflowSim individually for each sample depending on the

chosen MIPs and BW values with defined range in step 1 to generate esti-
mated runtime of pipeline execution.

3. Applying an error function to find the error value between real time and
estimated time for each running input sample by implementing the following
formula.

errorratio =

N∑
j=1

(RT − ET)2. (1)

Where RT and ET are Real time and Predicted time respectively. N is the
number of input sample in one training set.

4. Repeat step 2 and 3 with fixed skip of MIPs and BW values until generating
a minimum value of errorratio.

The input parameters have been generated from three scenarios as in Fig-
ures 4,5 and 6. Each scenario denotes one training set, i.e. scenario 1 denotes
training set {6}, scenario 2 denotes training set {6 + 10}, and scenario 3 denotes
training set {6 + 10 + 12}. Therefore, the above steps have been implemented on
three scenarios to specifying input parameters value of the training sets.

Fig. 4. Scenario 1 ex-
tracting parameters of
6-samples.

Fig. 5. Scenario 2 extract-
ing parameters of (6+10)-
samples.

Fig. 6. Scenario 3 ex-
tracting parameters of
(6+10+12)-samples.

5 Evaluation

This section presents our evaluation of NGS pipeline execution and its use with
an adopted WorkflowSim to derive a scalability and performance optimization

Simulation of Runtime Performance of Big Data Workflows on the Cloud 11

based on estimated run time. Firstly, we describe the experiment setup, then we
present our results on the accuracy of the NGS pipeline running with three input
samples, finally we discuss the evaluation of the estimated results for relative
errors between different running samples to derive the expectation of a Big-Data
samples.

5.1 Experiment setup

The NGS pipeline is composed of 8 tasks for each path and between them there
are 53 common workflows (VARIANT-A, HAPLOTYPE-CLEAR, VARIANT-
B, and GATK-phase3). We ran the application with the size of Total Tasks =
N×9+53, where N is the number of input samples. For example, if N = 6, then
Total Tasks = 6 × 8 + 53. So, when we have 6 input samples, the experiment
consists of 101 tasks. For each task we generate the estimation of the output
data size and runtime using the simulation and then use the output data size to
generate the input data size for the subsequent task. We configured WorkflowSim
to simulate one datacentre and 12 virtual machines (VMs) to represent four
VMs in the real cloud, each with three execution threads. We allocated the
capacity of the computation unit with MIPs and bandwidth (BW) values derived
from simulating the training set. Moreover, for data transfer delay, a shared file
system has been used for one datacentre, where, the data transfer time is already
considered in the task execution time and there is a varying setting of a BW
value depending on which training set we will use. The space shared mode of
the VMs has been defined as only one VM can run one task at a time. We have
used three different sizes of the input sets with 6, 10, and 12 patient samples,
based on the data we have available for training and validation.

5.2 Accuracy of prediction results

We conducted our experiment to evaluate the simulation accuracy prediction of
the NGS pipeline execution. The goal of this experiment is to determine whether
our methodology is able to predict a runtime and output data sizes of the NGS
pipeline, with an enough accuracy to be useful to scale up the number of input
samples.

In this case we extract input data from the provenence files from 6-sample 10-
sample, and 12-sample executions and then use this to execute WorkflowSim over
the same input scale to give an estimated execution time to compare with the
real execution time from the provenance data. In this way, the implementing of
pipeline to generate estimated run time on a specific training set that mentioned
before. i.e. 6-sample would be trained on training set {6}, 10-sample would be
trained on training set {6 + 10}, and 12-sample would be trained on training
set {6 + 10 + 12}. As the real execution potentially vary with each run and
WorkflowSim gives an single prediction, this predicted value will therefore be
different to the real times. The equation that has been used to calculate a relative

12 Faris Llwaah, Jacek Ca la, Nigel Thomas

error between estimated time and real time for each case as follows:

RelativeError =

∑N
j=1 |RT − ET |∑N

j=1(RT)
(2)

Where RT and ET are Real time and Predicted time respectively. N is the
number of input sample in one training set.

In each case the values of MIPs and BW which gives the minimum error over
the training set are used to give the estimated time. The results in each case are
shown in Figure 7. As expected the errors are relatively small (< 10%). It might
be slightly counter-intuitive that the error for the 6-sample (0.090) is larger
than that for either the 10-sample or 12-sample (0.071 and 0.075 respectively).
However, this is due almost entirely to one outlier in the measured execution
times which has a disproportionate effect on the 6-sample as there are fewer data
elements in the training set. Such experimental variance could clearly be reduced
by ignoring the outlying value. However, we have chosen not to manipulate our
results in this way as a) the outlying result is a genuine data point, and b) our
number of data points in each training set is so small that we have no statistical
basis on which to say which result is an outlier and which is not. However, as an
aside, we have executed the experiments without this data point and the results
do improve considerably.

Fig. 7. The real and estimated time for different sizes of the training set.

5.3 Relative errors at input scalable

In the previous section, we verified the accuracy of the prediction model by
comparing the actual and estimated runtime derived from the training sets.
This process was self-reflective in that we included the provenance data from
the sample size we were predicting within the training set. We now wish to
consider a pure prediction of the 12-sample input by using the 6- and 10-sample
sets as training data. This allows us to consider whether our approach can indeed
give rise to a useful prediction in this scenario which might be used to procure
infrastructure in the cloud. The results are shown in Figure 8.

Using the 6-sample data as the training set for the 12-sample case gave a
relative error of approximately 0.187 (18.7%, see Figure 8A). Using the 6- and

Simulation of Runtime Performance of Big Data Workflows on the Cloud 13

10-sample data as the training set for the 12-sample case gave a relative error of
approximately 0.112 (11.2%, see Figure 8B). In both cases the predictions under-
estimate the execution time. In the case of the 6-sample training set we already
know that one outlying result in the provenance data is having an adverse effect
on prediction and this will have had a greater effect here than in Figure 7C.
What also appears to be significant is that the MIPs and BW estimations in
WorkflowSim seem to be much larger for the 12-sample case than in the other
two cases (see Figure 7), presumably reflecting the increased demands. Therefore,
the under-estimation of MIPs and BW is causing an additional error in the
prediction for the 12-sample case.

Fig. 8. The real and estimated time for different training and testing set sizes.

6 Conclusion and future work

In this paper we have described, through the use of a motivating case study,
a method for predicting the runtime performance of a complex workflow based
on existing simulation tools. This addresses an important and current research
question. However, the effort needed to simulate this workflow should not be
underestimated. There is a considerable amount of work which needs to be done
to translate the e-SC workflow model into a Pegasus workflow and to obtain the
baseline data which we use as a training set for the predictions. Although this
cost would be reduced for subsequent workflows due to the experience of this
case study, the future effort would also be significant due to the bespoke nature
of each simulation set up. In our experiments we had only three data sets to con-
sider, corresponding to 6, 10 and 12 input samples. This meant that we could
validate predictions for 10 samples, using the 6 sample data as training, and
for 12 samples, using the 6 and/or 10 samples for training. Ideally, the 6 sam-
ple data would have proved sufficient for good prediction as this would enable
a relatively cheap means of data collection. However, the results clearly show
that for 12 samples the addition of the 10 sample data offers better training. It
is disappointing that the results are not more convincing. While a reasonable
level of accuracy has been shown to be achieved, a similar level of accuracy

14 Faris Llwaah, Jacek Ca la, Nigel Thomas

could potentially be obtained by deriving execution data at a number of scales
and performing a linear extrapolation. However, one advantage of our simuala-
tion approach is that we are able to make predictions based on a single set of
observations, which is clearly less costly in terms of access to the cloud provider.

The results in this paper relate to one complex workflow from one application
domain. Clearly if we are to draw any general conclusions from this work then
we need to conduct more case studies with different applications with different
workflow structures.

References

1. Ca la, J., Marei, E., Xu, Y., Takeda, K., Missier, P.: Scalable and efficient
whole-exome data processing using workflows on the cloud. Future Generation
Computer Systems. (2016).

2. Ca la, J., Xu, Y., Wijaya, E., Missier, P.: From Scripted HPC-Based NGS
Pipelines to Workflows on the Cloud. 2014 14th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing. (2014).

3. Calheiros, R., Ranjan, R., Beloglazov, A., De Rose, C., Buyya, R.: CloudSim:
a toolkit for modeling and simulation of cloud computing environments and
evaluation of resource provisioning algorithms. Softw: Pract. Exper. 41, 23-50
(2010).

4. Chen, W., Deelman, E.: WorkflowSim: A toolkit for simulating scientific work-
flows in distributed environments. 2012 IEEE 8th International Conference on
E-Science. (2012).

5. Deelman, E.Gil, Y.: Managing Large-Scale Scientific Workflows in Distributed
Environments: Experiences and Challenges. 2006 Second IEEE International
Conference on e-Science and Grid Computing (e-Science’06). (2006).

6. Fan, C., Chang, Y., Wang, W., Yuan, S.: Execution Time Prediction Using
Rough Set Theory in Hybrid Cloud. 2012 9th International Conference on
Ubiquitous Intelligence and Computing and 9th International Conference on
Autonomic and Trusted Computing. (2012).

7. Iverson, M., Ozguner, F., Potter, L.: Statistical prediction of task execution
times through analytic benchmarking for scheduling in a heterogeneous envi-
ronment. IEEE Transactions on Computers. 48, 1374-1379 (1999).

8. Li, A., Zong, X., Kandula, S., Yang, X., Zhang, M.: CloudProphet. ACM
SIGCOMM Computer Communication Review. 41, 426 (2011).

9. Long, W., Yuqing, L., Qingxin, X.: Using CloudSim to Model and Simu-
late Cloud Computing Environment. 2013 Ninth International Conference on
Computational Intelligence and Security. (2013).

10. Pabinger, S., Dander, A., Fischer, M., Snajder, R., Sperk, M., Efremova, M.,
Krabichler, B., Speicher, M., Zschocke, J., Trajanoski, Z.: A survey of tools
for variant analysis of next-generation genome sequencing data. Briefings in
Bioinformatics. 15, 256-278 (2014).

11. Rak, M., Cuomo, A., Villano, U.: Cost/Performance Evaluation for Cloud
Applications Using Simulation. 2013 Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises. (2013).

12. Rozinat, A., Wynn, M., van der Aalst, W., ter Hofstede, A., Fidge, C.: Work-
flow Simulation for Operational Decision Support Using Design, Historic and
State Information. Lecture Notes in Computer Science. 196-211 (2008).

Simulation of Runtime Performance of Big Data Workflows on the Cloud 15

13. Rak, M., Turtur, M., Villano, U.: Early Prediction of the Cost of HPC Applica-
tion Execution in the Cloud. 2014 16th International Symposium on Symbolic
and Numeric Algorithms for Scientific Computing. (2015).

14. Achour, S., Ammar, M., Khmili, B., Nasri, W.: MPI-PERF-SIM: Towards
an Automatic Performance Prediction Tool of MPI Programs on Hierarchi-
cal Clusters. 2011 19th International Euromicro Conference on Parallel, Dis-
tributed and Network-Based Processing. (2011).

