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Abstract. The existing stereo refinement methods optimize a surface
representation using a multi-view photo-consistency functional. Such opti-
mization is iterative and requires repeated computation of gradients over
all surface regions, which is the bottleneck affecting adversely the compu-
tational efficiency of the refinement. In this paper, we present a flexible and
efficient framework for mesh surface refinement in multi-view stereo. The
newly proposed Adaptive Resolution Control (ARC) evaluates an optimal
trade-off between the geometry accuracy and the performance via curve
analysis. Then, it classifies the regions into the significant and insignificant
ones using a graph-cut optimization. After that, each region is subdivided
and simplified accordingly in the remaining refinement process, producing
a triangular mesh in adaptive resolutions. Consequently, the ARC accel-
erates the stereo refinement by severalfold by culling out most insignif-
icant regions, while still maintaining a similar level of geometry details
that the state-of-the-art methods could achieve. We have implemented the
ARC and demonstrated intensively on both public benchmarks and pri-
vate datasets, which all confirm the effectiveness and the robustness of the

ARC.

1 Introduction

Recovering a realistic 3D model from images is the ultimate goal of Multiple View
Stereo (MVS) methods. Boosted by the public MVS benchmarks [7,15,16], the
accuracy of stereovision has dramatically increased in last decade. It is believed
the key factor to high accuracy is the final surface refinement step. With a
triangular mesh representing the surface, refinement is a process of iterative
adjustment of vertex locations by optimizing multi-view photo-consistency.
Such iterative refinement is of heavy computation. The primary reason is
the repeated computation of refinement gradient over all visible surface areas.
Another reason is that mesh subdivision used in the refinement will dramatically
increase the #vertices to be optimized. The higher density of mesh vertex also
leads to slower mesh-related operations, e.g., mesh smoothing, visibility testing.
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(a) Initial noisy mesh (b) ARC labeling (c) Adaptive mesh density (d) Final refined mesh

Fig. 1. With a noisy mesh as input (a), the ARC labels the mesh into two regions (b).
Refinement applies only on the significant regions (orange), while the other insignificant
regions (purple) will be culled out and simplified (¢). This method greatly reduces the
surface area to be optimized, but it is still able to produce valuable details (d). (Color
figure online)

According to our observation, not all regions of refinement contribute equally
to the geometry improvement. For example, most planar or low-textured regions
barely have valuable refinement gradient, probably due to early convergence or
lack of gradient on those regions. Refinement virtually produces no geometry
improvement to them. Besides, mesh subdivision on such regions creates over-
dense triangles, bringing extra computation and memory burden. In fact, these
regions sometimes occupy quite a large proportion of the mesh surface (Fig. 4).
Giving up their refinement can exchange for a decent performance speedup.

Unlike previous methods that target only at optimal photo-consistency, we
also take the running time performance as our objective. To be specific, we
quantify the performance and accuracy, and find an optimal trade-off in between
which enables maximal performance speedup with minimal accuracy loss. Below,
we demonstrate twofold contributions of our work.

Firstly, we present a mesh surface refinement framework with improvements
to the baseline method [19]. Our refinement algorithm is divided into an image
registration problem and a gradient aggregation problem. We employ a more
efficient and direct approach to solve for the gradient of image similarity, which
gives the steepest orientation for refinement. Besides, we identify the silhouette
problem and handle it by explicitly culling out the problematic areas. The refine-
ment framework is the fundamental that ensures a high accuracy reconstruction.

Secondly, we propose the novel Adaptive Resolution Control (ARC). The
ARC labels the mesh into two regions (Fig. 1(b)), where the active regions are
most contributive to geometry improvement, and the inactive regions are unim-
portant ones (usually planar or non-textured regions). To keep the labeling piece-
wise smooth, a graph cut optimization is employed. Only the active regions will
be refined and subdivided, while the inactive regions will be discarded and sim-
plified into fewer triangles. This leads to a mesh in adaptive resolution: the active
regions have denser triangles while the inactive regions are sparser (Fig.1(c)).
Our method achieves a severalfold speedup thanks to the dramatic reduction of
the refinement area and #vertex of the mesh. As shown in Fig. 1(d), our method
is still able to preserve the fine details.
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1.1 Related Work

MVS starts with known camera parameters, aiming to reconstruct the dense
representation of the target object. A huge volume of work has been conducted
on MVS [15,16]. Here, we only survey the works regarding surface refinement.

Surface Refinement is the last step in MVS and the key factor to the final
accuracy. Given a rough initial surface, it aims to refine the details by optimizing
photo-consistency (usually minimizing the reprojection error).

Pons et al. [14] proposed a variational method [8] of surface refinement and
scene-flow estimation for level set framework. Their formulation minimizes the
global image reprojection error functional. Vu et al. [19] further extended their
work to apply on discrete triangular meshes. Their method iteratively refines
and subdivides the input triangular mesh, producing highly detailed results.
Delaunoy et al. [4,5] rigorously modeled the mesh refinement problem with the
consideration of visibility change. Their formulation is further extended for the
bundle adjustment problem [3]. Other than surface, patch-based methods [10,
12] apply the refinement to the patch representation (i.e., normal and depth).
Some earlier methods [6,9,18] estimated the refinement gradient using object
silhouette information, but these methods are limited to conditioned scenarios.

Most refinement methods employ an iterative scheme to optimize the surface
shape. Our refinement framework is closest to Vu’s method [19], which can be
seen as the baseline of our method. In the rest of the paper, we first present an
improved surface refinement framework in Sect.2. Then we propose the novel
Adaptive Resolution Control in Sect. 3. Intensive experiments have been con-
ducted in Sect. 4.1 to support the effectiveness of the proposed method.

2 Mesh Surface Refinement

Previous refinement methods for triangular meshes produce impressive results [3,
19]. Our method sticks to this main rule, but we view it as a combination of two
sub-problems (image registration and gradient aggregation). We also propose
the fast photo-consistency (NCC) gradient computation (Sect.2.2) and the sil-
houette culling (Sect. 2.3) as improvements to previous method.

2.1 The Formulation

Denote a pair of images I;, I; and surface S. As introduced by [14], the standard
formulation minimizing their reprojection error is formulated as:

E;;(S) = /vemsyi —M(Li(2), L (7)) das, (1)

where I]S’i is the reprojection of image j in view i via surface S, and M is
the image similarity measurement. F; ;(S) integrates the error over commonly
visible area for image pair 7 and j. Then the error summing up all image pairs



352 S. Li et al.

<
Noisy pointwise gradient
~—

Regularized vertex gradient
A A
2

S
reproject | ;ﬁ

register s \ p N /N E
(a) Ilustration of two-view reprojection (b) Vertex gradients yielded from pointwise gradients

Fig. 2. (a) The two-view refinement problem is formulated as an image registration
problem and a gradient aggregation problem. (b) The discrete vertex gradient is solved
by a least square of pointwise gradient with regularization enforcement.

E(S) =3, ; E;,;(S) is minimized. Assuming camera parameters are correct and

objects are Lambertian, the difference between I; and IJSz is due to the inaccurate
surface S. Here, we separate the minimization into two sub-problems.

Image Registration. The original formulation Eq.1 measures the photo-
consistency between I; and IJS’Z. Instead, we switch the measurement space to
x; coordinate, i.e., measuring Iis’j and I;. This particular choice enables two
sub-problems to be recombined via the proxy x;. To maximize the image simi-
larity M, we take the partial derivative of —M to the coordinate x; of its first
argument:

M 1) ()
al'j

V(-M)[z;] = =Gpsi (7)) € R?. (2)
The 2D gradient field Gys; can be viewed as the optical-flow that registers IZ-S’j
onto I;. We will show its fast computation in Sect. 2.2.

Gradient Aggregation. We consider a two-view scenario (Fig.2(a)): a surface
point p has two projected coordinates x; = IL(p), ; = IL;(p). The image
reprojection If”j deforms as surface S deforms. As Gys.; is the gradient optimizes
M, we solve for the surface gradient Gg which induces the desired Gys;. To
bridge them, we replace Eq. 2 with the derivative to a surface variation 5S:

OM(IP (w; 0TI 4 og 0 TT;), I)
B Oe

V(=M)[8S](z:) =

e=0
= (—alM(Iis’j’Ij)(zj))(%)(w )
al‘j dp Oe Y
d; T
= |Gysa(x;) - ;- NTd, N"4S.
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S 1Y (w,

Note that in line two, the first term —w = Gysj(z;) is pre-
J i

computed. The second term dd% = J; is the Jacobian of projection matrix II;.

The third term, assuming the surface movement is along its normal direction [14],

O 5, 55 (i) _ NT5S(P)d
- NTdi

Oe

e=0
d; is the joining vector from the camera center 7 to p. Then, the gradient for a
surface point p is:

can convert to i, where N is the normal of p, and

d;
NTd,

Gs(p) = {Glfﬂ‘ (zj)-J; N. (3)

Regularized Discretization. Here, an optimize-then-discretize strategy is
employed. The surface is represented by triangular mesh M = {vq,v1,..v,},
and the vertex refinement gradient is denoted as Gpg. An arbitrary surface
point p can be written as the barycentric coordinate of the enclosing triangle
vertices p = ), ¢rVk, where >, ¢, = 1. This relation also holds for their
gradient Gs(p) = >, #xGm (V). To solve for Gy, we formulate it as a linear
least square problem Aj,,.,)Gm = Gs, where matrix A fills with corresponding
barycentric weights ¢, and m = #surface points, n = Fvertices (m > n). As
illustrated in Fig. 2(b), a pointwise gradient Gg(p) is sensitive to noise. However,
the least-squared discrete gradient Gy (v) is much more regularized.

An additional regularization is applied to the data-term: the gradient
of a vertex is expected to be smooth to its neighborhood: Gm(v;) =
+ > jen() Gm(v;). This relation for all the vertices can be written as

m+n)GMm = 0, where 3 is a weight adjusting the smoothness. Stacking up
matrix A and B forms a massive sparse matrix, and the Gyg can be solved via
bi-conjugate gradient method. The Gy is applied to the mesh in each iteration:
M1 = M; + eGg.

Note that in previous method [19], the gradient of a vertex is the sum over
its one-ring triangles from all pairs. Although it is faithful to its formulation, the
gradient magnitude would be biased when the surface visibility is not balanced.
e.g., Regions viewed by more image pairs have larger magnitude. Our discretiza-
tion based on a least square can prevent from the visibility bias problem.

Coarse-to-Fine. To alleviate the local optimal problem, we adopt a coarse-to-
fine strategy. Multiple scales of images are set up beforechand. The input mesh
is first smoothed and simplified to a certain level, followed by the refinement by
images from low-res to high-res gradually over the iterations. A triangle would
be subdivided if its projection area covers more than 9 pixels in any image pair.
The step size € is globally adjusted according to the edge length of the mesh.

2.2 Fast NCC Gradient

The image similarity gradient essentially drives the surface refinement. It is also
the biggest performance bottleneck of the whole algorithm. Here, we provide a
fast gradient computation on NCC similarity measurement.
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Fig. 3. Inaccurate surface induces image reprojection onto a wrong layer (a), and leads
to a wrong refinement gradient ((b) left). With silhouette culling, this problem is
avoided ((b) right).

In [5], the similarity metric is simply the rooted squared difference of pixel
intensity ||I; — I;||2, which is fragile to inconsistent illumination. In [14,19],
they employ ZNCC as similarity metric, but the gradient 8182/1 is separated into

gi(Mz) dfj(f) using chain rules, where %(j) = VI(z) is simply the image gradient.

We argue that it slows down the convergence due to two reasons: (1) as gi(% is a

scalar, it implicitly constraints the refinement gradient 65{;‘ to be on the image

gradient orientation VI(z), but in fact it may not be the steepest orientation;
(2) a single pixel intensity I(z) is used to connect the chain rule, but the real
computation of ZNCC is over a neighborhood of x.

To improve, we resort to a more efficient and direct way to solve for 65’;/1.
Concretely, we use Normalized Cross Correlation (NCC) instead of the zero-
mean version, which reduces the chance of zero denominator. Consider Eq.2 as
the computation for gradient that registers a dynamic image I; to a static image
I,. We denote the scalar product S(d, s,2) =>_, ¢ n(y)La(@r)Is(2zx)), and then

NCC(14,I)(z) = % = %. The gradient is computed by taking

the derivative to the coordinate x of dynamic image I14:

_ONCC(IyL)(x) _ 0 A B A9B

Grl) o s T
where

0A  0S(d,s,x) o

% - T - ;(Dd($>15(m)> - S(d 787$>7

0B 9[S(d,d,2)S(s,5,0)]Y%  [S(s,s.2)]% o,

dr oz = S@dn| S b

D denotes the image gradient. The final formulation simplifies to:

S(d',s,z) — S(d',d, x) SEZ’Z’?Z%

Gi(z) =
1() V/S(d,d,z)S(s, s, z)
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The computation of Gi(z) is independent for every pixel x, making it perfectly
suitable for GPU parallelism.

2.3 Silhouette Culling

Due to the inaccurate initial mesh, the image ¢ is potentially reprojected to a
wrong depth layer. This often happens along the silhouettes of the object, as
shown in Fig.3(a). While this problem is unsolved in the previous method, we
handle it by explicitly detecting the silhouettes during the rendering for reprojec-
tion, and culling out problematic silhouette areas. A mesh edge E is a silhouette
edge w.r.t. view 7 if and only if its two incident triangles ¢y, are front face and
back face. i.e., silhouette edges SE = {E| (N¢,, Nyicw) D (N, , Nyjew) s to, t1 €
N(E)}. Pixels on SE are discarded in the refinement.

3 Adaptive Resolution Control

Motivated by the observation in Fig. 4, the ARC relaxes the original full refine-
ment to partial refinement on selected regions. Specifically, the ARC segments
the surface into two regions namely, active and inactive. Active represents those
significant ones that will apply refinement. Inactive means those insignificant
ones and would be discarded from refinement in exchange of performance gain.

Let f be a function that assigns each surface region R a label f(R) €
{active, inactive}. The trade-off can be formulated as an utility maximization:

u(f) = uaccumcy(f) + Utime,reduction(f)' (4)

Ugecuracy (f) measures the utility derived from accuracy of ARC refinement.
This can be measured as the geometry improvement achieved by refining only
active T€gIONS. Utime_reduction (f) measures the utility derived from time reduction
achieved by culling out inactive regions in refinement.

Herz-Jesu-P25 Jfountain-P11 entry-P10 castle-P30

Fig. 4. The magnitude of refinement gradient for four EPFL dataset [16] in early
iteration. Most regions such as flat walls or grounds have very small gradient values
(blue). They have very little geometry changes before and after refinement. (Color
figure online)
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3.1 Quantification on Triangular Meshes

In the context of meshes, triangle is the smallest unit of surface region. We define
two metrics on triangle to concretely formulate the trade-off problem on meshes.

Geometry Improvement. As illustrated earlier, refinement on each vertex con-
tributes differently to geometry improvement. To quantify the improvement, we
borrow the quadric error metric used in mesh simplification [11], to capture the
amount of geometry difference a vertex displacement can bring. This is a better
alternative than vertex gradient magnitude alone because refinement has oppo-
site goal® to simplification and hence should use the same set of metric. Let v
and v’ be the same vertex before and after a refinement iteration. As shown in
Fig.5(a), we define geometry improvement (gi) for a vertex v as the maximum
of squared distances between v and one-ring neighbor planes of v/, referred as
planes(v'), and g¢i for a triangle as the average of its three vertices:

Gy = maxpGplanes(v’){(I)tv)Q}
1 3
giy = 52 Giv, s

where v = [v, vy v, 1", p = [a b ¢ d]" represents a plane in standard form.

accuracy loss ()

optimal trade-off
decision points

in different weight ratio

Fig.5. (a) The geometry improvement of vertex is the maximum squared distance
from v to planes(v'). (b) Trade-off curve between time reduction and accuracy loss. (c)
Labeling by optimal trade-off decision foP*™* (orange — active, purple — inactive).
(d) Final labeling by graph-cut optimization. (Color figure online)

Running Time Cost. The majority of computation spent on the refinement gra-
dient. The cost spent on a triangle is a factor of the number of visible image
pairs times its area. Then, the time cost (tc) for a triangle ¢ is formulated as:

1
te, = 5|(v2 —vp) X (v1 — vo)| - (Fvisible image pair(t)),

where vg, vy, Vg are three vertices of ¢.

! Simplification minimizes the geometry changes while refinement maximizes it.
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3.2 Optimal Trade-Off Decision

Given the metrics introduced previously, we define the cost effectiveness (ce;)
of a triangle t as the ratio of its geometry improvement over its time cost, i.e.,
ce; = git/ter. A higher ce means more accuracy can be achieved over the same
unit of time cost by labeling it as active. Therefore we should always label
triangles as inactive from the lowest ce to the highest ce.

To better illustrate the effect of this labeling principle, we compute the ce; for
all triangles and sort them in ascending order. Then we obtain an accumulation
curve by incremental summation of tc; on z-axis, and gi; on y-axis in this sorted
order. Every point on this curve represents a labeling configuration based on the
principle, which will label all triangles below and above that particular point as
inactive and active. Then we normalize both axes to [0,1], and the z, y-axis can
be interpreted as the time reduction (r) =", .. tci, /> o tCt; a0d accuracy
loss (l) = Zinactive gltz/ Ztotal gltz (a‘S shown in Flg 5(b))

This curve gives us flexibility to control the amount of trade-off. We can fix
a threshold or range on either time reduction or accuracy loss according to our
application needs. More importantly, we can transform the problem space from
label assignment function f to 2D space (r,1) € curve. We rewrite Eq. 4 as:

u(rv l) = uaccuracy(l) + utime,reduction(r)
=w; - (1=10) 4w, -r
where w; and w, are the weights for accuracy loss and time reduction. The
optimal trade-off decision point (r,,l,) is on the curve such that
U(Tm lo) = max(nl)écur'ueu(rv l)7
which can be solved by taking derivative on u(r,!). It can be deduced the optimal

point (r,,1,) on curve has slope equal to ?Ul This point represents the optimal

labeling, i.e., fePtmality and it is unique because the slope of the curve is strictly
increasing since it is already sorted. Note that full refinement can be seen as a
special case represented by the point (0,0) on curve. The weight ratio TU—’Z is
representing the relative importance of time reduction over accuracy loss. By
default and in the following experiments, we use weight ratio = 1, which means

putting equal weights on accuracy loss and time reduction.

3.3 Graph Optimization

Labeling the mesh by the optimal trade-off decision alone maximizes our utility
function, but it also makes the labeling fragmented into a lot of small regions.
An example is given in Fig.5(c). A desired labeling should be consistent with
the data-term labeling while being piecewise smooth over the mesh. Therefore
graph cut optimization [1] is employed to cope with this problem.

Let f be a labeling configuration that assigns each triangle ¢ a label f; €
{active, inactive}. The energy function of f formulates as the sum of three terms:

E(f) - Eoptimality (f) + Esmoothness(f) + Eprior (f) (5)
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Optimality. Tt is desirable that the final labeling keeps as much fidelity as pos-
sible to the data-term label given by optimal trade-off decision, foPtimality So
Eoptimality (f) accumulates the penalty for all the triangle labels that violate the

optimality labels, i.e., Bopimatity (f) = 305 1P £ f.].

Smoothness. As a nature prior, the labeling should be piecewise smooth. More
importantly, a smooth labeling enables an effective simplification applied to a
larger pieces of the mesh. We simply use the Potts model Egpoothness(f) =
> j€es; 1[f:; # ft;] to enforce the labeling smoothness between neighboring
triangles ¢; and t;. From our experiences, we omit using a weighting scheme
such as edge length ||e; ;||, because a further normalization will easily be affected
by the longest edge. Instead, we use uniform weighting to achieve a reasonable
balance with Eqpiimatity (f)-

Textureness Prior. It is optional to add the textureness prior to the graph
optimization. A sharp gradient change in 2D image does not always mean
the real detail in 3D scene (e.g., textured pattern on a flat wall), but it is
true that, in most cases, a real 3D geometry detail will generate sharp gra-
dient on its projected 2D image. We employ a prior energy to encourage the
textured regions to be labeled as active. Specifically, we compute the aver-
age image gradient magnitude ||VI(¢)||2 (normalized to [0,1]) over the pix-
els on the image which has the largest projection area of the triangle t. i.e.,
Eprior (f) = 224 [IVI(®)|l2 - [fe = inactive].

Graph-cut optimization above yields a piecewise smooth labeling (as shown
in Fig. 5(d)). Worth-mentioning, the labeling is naturally adapted to the scene.
For example, the more non-textured regions the model has, the higher proportion
will be labeled as inactive, and thus gives higher performance gain.

Full refinement

() g
3
1| & ; 1
| | 2 U o
/ //ﬂh\\\ < : b4 m Rl
Initial noisy mesh & smoothing ‘ 15th iteration Final mesh

Fig. 6. Left: the noisy mesh is smoothed before refinement. Right: comparison between
full refinement and ARC refinement over iterations. The full refinement generates an
evenly dense mesh, while the ARC refinement produces a mesh in adaptive resolution:
the valuable (e.g., edges) region has much denser triangles than unimportant regions
(e.g., planes), but the final quality is very similar to the fully refined one.
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3.4 Combining with Refinement

Recall that the refinement employs a coarse-to-fine strategy. By default an image
pyramid of three levels and 20 iterations of refinement are used. The ARC label-
ing recomputes once the image level changes, so ARC only executes three times in
the whole refinement, which is of trivial cost. The active triangles go through the
refinement algorithm, and would be subdivided if necessary. The inactive ones
undergo a QEM [11] simplification with a certain simplifying ratio. This ratio is
set to 0.2 in our experiments. The dramatic drop on #triangle effectively accel-
erates the rendering and mesh operations as well. Then, these triangles are fixed
in later iterations. Except for the visibility testing, all computations regarding
to them are culled out.

Figure 6 shows an evolutionary comparison between the baseline full refine-
ment and our ARC refinement. The input noisy mesh will be smoothed before
refinement. Overall, the full refinement produces much denser mesh, while the
ARC method generates a very compact mesh in adaptive resolution. The final
quality of both mesh surfaces are very close, and hardly be distinguished visually.

4 Experiment

The proposed method is implemented and evaluated on a machine with 8-core
Intel i7-4770K and 32 GB of memory. The image reprojection and the refinement
gradient is computed using OpenGL with a NVIDIA GTX980 graphic card.

In below experiments, two configurations of our method are compared. The
full refinement refers to the highest accuracy refinement. The ARC refinement
is with our ARC' described in Sect. 3 using the default parameters.

4.1 Benchmarking

Our results are evaluated on two public MVS benchmarks [13,15].

Table 1. Quantitative comparison on selected datasets of DTU benchmark [13]. The
term “our full” — full refinement, and “our ARC” — ARC refinement. Smaller is better.

scan 36 scan 63 scan 106

Accuracy Completeness Accuracy Completeness Accuracy Completeness

Mean Med. Mean Med. Mean Med. Mean Med. Mean Med. Mean Med.
our full 0.2644 | 0.1677 | 0.9565 | 0.2319 | 0.8433 | 0.2267 | 0.6645 | 0.2663 | 0.2855 | 0.1822 | 0.9719 | 0.3083

our ARC | 0.2646 | 0.1693 | 0.9602 | 0.2325 | 0.8516 | 0.2295 | 0.6687 | 0.2686 |0.2865 | 0.1853 | 0.9744 | 0.3097
Vu [19] 0.2641 | 0.1683 | 0.9840 | 0.2337 | 0.8576 | 0.2266 | 0.6720 | 0.2567 | 0.2864 | 0.1850 | 0.9741 | 0.3040
tola [17] | 0.3125 | 0.2007 |1.0331 |0.2856 |0.9082 |0.2711 |0.7189 |0.2985 |0.3028 | 0.1902 | 0.9950 |0.3256
furu [10] | 0.6270 | 0.2778 |0.6101 | 0.2930 |2.3992 |1.1192 |0.6401 |0.3849 |0.7881 |0.3028 | 0.7004 |0.3244
camp [2] | 0.5972 | 0.2317 | 0.4622 | 0.2317 | 2.4241 | 0.2782 | 0.4730 | 0.2782 |0.5918 | 0.2793 | 0.6902 | 0.2793
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DTU Benchmark. [13] covers a wide range of objects and each consists of 49
or 64 different views of images at 1600 x 1200 resolution. The high accuracy
camera calibration is provided along with the dataset. To test our refinement
algorithm, we borrow the initial surface generated by the method tola [17], and
evaluate the accuracy and completeness of our final refined mesh by following
the author’s guideline. Note that the accuracy is defined as the distance from
generated surface to the ground truth, and completeness the other way around.

We have tested the full refinement and the ARC refinement comparing to
the baseline refinement method Vu [19] and three referencing methods provided
in the benchmark, namely tola [17], furu [10] and camp [2]. Table1 shows the
statistics of three selected datasets (scan 36, 63, 106) each from a different cat-
egory in the benchmark. All three refinement algorithms consistently improve
the accuracy and completeness comparing to the initial mesh [17], and accu-
racy of our full refinement is the most competitive among all three datasets.
Worth mentioning, our ARC' refinement can achieve very close accuracy and
completeness to full refinement by only refining partial regions.

Middlebury Benchmark is the very first MVS benchmark developed by Seitz
et al. [15]. Although the image resolution is relatively low (640 x 480) by today’s
standard, it provides a fair platform for quantitative comparison (completeness
and accuracy) with many other competing methods. Our method is not designed
for such explicit fore/back-ground objects, but we still submit our full refinement
results to the benchmark challenge. As shown in Fig. 7, our results produce no
less than 99.5 % completeness on all full and ring datasets, and all items of the
temple data rank within top 8th, which is very competitive among all methods.
Overall, our accuracy is less competitive as our initial mesh tends to generate
extra surface than the ground truth (e.g., the bottom of the object).

Temple Temple Temple Ding. Dino. Dino
Full Ring Sparse Full Ring Sparse
312 views 47 views 18 views. 383 views 48 views 18 views

»
S
»
3
S
3

Acc Comp | Ace Comp | Acc Comp

Sort By .
Imm] %] [mm]  [%] Imm] %] [mm] %] [mm] %] (mm] (%]
Furukawa 3 049 096 | 047 006 | 063683 033 008 | 028 008 | 0.37 892
Furukawa 2 054 993 | 055 991 | 0.62 | 882 | 0.32 99.9 | 033 9965 | 042 992
Campbell 041 999 | 048 994 | 0.53 986
ECCV2016_104 | 041 9956 | 0.49 995 | 057 984 | 044 998 | 046 997 | 0.42 980

CVPR2016_466 041 997 | 0.5 995|069 978 | 026 998 | 025 999 | 0.34 997
DCV - 073 982 | 0.66 | 913 028 100 | 03 100
Galliani 039 992 | 048 99.1 | 0.53 970 | 031 999 | 0.3 994 | 038 986
\Vogiatzis2 05 984|064 992 | 069 969
Liu2 065969 051 987

SurfEvolution 056 989 | 078 968 056 97.7 | 066 976
Depth Fusion 053 995 | 072668 046 995 | 042 978
CVPR2014_1287 051 991 ] 07 968 051 987 ours ground truth

Fig. 7. Our results in Middlebury benchmark (highlighted in yellow). (Color figure
online)
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4.2 Performance Gain

We conducted experiments on public EPFL [16] and our private datasets to
quantify the actual accuracy loss and performance gain of the ARC' refinement.

To quantify the accuracy loss, we employ the Hausdorff distance to mea-
sure the difference between two meshes. The accuracy_loss = m{%%,
where M ¢, is the fully refined mesh, M 4gc the mesh by ARC refinement and
M, nitiar the smoothed initial mesh, dg(M 4, M p) means the distance from M 4
to Mp. The measured processing time excludes irrelevant common operations
such as I/O. The performance gain is simply the ratio of processing time.

As shown in Table 2, the ARC achieves a 3-6x performance gain among all
eight datasets. The actual performance gain varies on each individual dataset.
For example, the castle-P30 enjoys the highest performance gain and the second
lowest accuracy loss because of the large area of plain walls and grounds in that
dataset. However, the campus dataset has the highest accuracy loss and worst
performance gain. We believe this is caused by the large area of vegetation in
the dataset, which is deformable and thus not suitable for refinement. Vertices
at such area usually have large but incorrect gradient. After all, the accuracy
loss is less than 10 % for all datasets, which is tolerable for some applications.

We also record the #vertexr at every refinement iteration for four EPFL
datasets, shown in Fig.8. The increase of the #wvertex is caused by the subdi-

Table 2. The statistics of the performance comparison between full refinement and
ARC refinement. Four EPFL datasets [16] and four large-scale datasets are evaluated.

Dataset name | Resolution | #image | Full refinement ARC refinement Accuracy | Performance
loss gain
#vertex | Time (sec) | #vertex | Time (sec)

Herz-Jesu-P25 | 3072 x 2048 | 25 2438K 318 663K 56 3.86 % 5.68x
entry-P10 3072 x 2048 | 10 1564K 234 442K 43 7.28% 5.44x
castle-P30 3072 x 2048 | 30 2901K 327 687K 54 2.87 % 6.06x
fountain-11 3072 x 2048 | 11 1455K 192 615K 49 3.74% 3.92x
Santa_Prisca | 4000 x 3000 | 129 5819K | 1534 2160K 407 6.40 % 3.76x
memorial_hall | 4000 x 3000 | 155 6928K | 2395 2479K | 438 2.17% 5.47x
Swanstone 4000 x 3000 | 217 9233K | 2408 3536K 554 4.82% 4.35%
campus 6000 x 3376 | 276 35233K | 7321 16513K | 2420 9.68 % 3.02x
3000
2 2500
£ 2000
M

1500

1000

500

0

0 5 10 15 20 0 5 10 0 5 10 15 20 10
Herz-Jesu-P25 entry-P10 castle-P30 fountain-P11

I Full refinement I Our ARC refinement

Fig. 8. Comparison of the #vertex throughout the iterations of refinement.
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Full refinement

ARC refinement

Herz-Jesu-P25 entry-P10 castle-P30 Sfountain-P11
(a) Vertex density comparison between full and ARC refinement

R i PETRRCT

d mesh, right: refined mesh)

campusr
(b) Qualitative results of large-scale datasets

Fig. 9. Qualitative evaluation of our ARC refinement. The upper four (EPFL bench-
mark [16]) compare the vertex density. The lower four are samples of the refined mesh
surface of several large-scale projects. Best viewed on screen.
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vision on the mesh. The #vertex of ARC refinement keeps about one third of
the #vertex of full refinement. The huge reduction in #vertex lowers the peak
memory as well.

4.3 Qualitative Evaluation

We show the qualitative comparison using EPFL dataset [16] in Fig.9(a). Our
ARC refinement produces adaptive vertex density over the triangular mesh, and
overall, much lower number of vertices and triangles than the full refinement.

The proposed method can handle large-scale projects by employing a divide-
and-conquer strategy. The huge mesh will be divided into a few pieces such that
each single piece with its visible images can fit in the memory. As shown in
Fig.9(b), four private datasets below are all captured by UAV. The Swanstone
dataset composes 217 images at 4 K resolution. With a rough mesh surface as
input, the ARC refinement is able to recover the fine details of the castle, such
as the windows, or the crisp structures of the tower.

5 Conclusion

We have proposed the ARC refinement in this paper. The ARC estimates the
most important regions to refinement and discard the other insignificant part
in exchange for performance gain. The weight ratio controlling the trade-off
between accuracy and performance is exposed and adjustable, which gives more
flexibility to application demand. Our experiments demonstrate that ARC with
default setting can achieve a dramatic speedup of 3-6x consistently with less
than 10 % accuracy loss comparing to baseline full refinement, which conveys
the fact that refinement in most regions is indeed almost futile. This confirms
the effectiveness and robustness of our ARC design.
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