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Abstract. The sound of crashing waves, the roar of fast-moving cars –
sound conveys important information about the objects in our surround-
ings. In this work, we show that ambient sounds can be used as a super-
visory signal for learning visual models. To demonstrate this, we train
a convolutional neural network to predict a statistical summary of the
sound associated with a video frame. We show that, through this pro-
cess, the network learns a representation that conveys information about
objects and scenes. We evaluate this representation on several recogni-
tion tasks, finding that its performance is comparable to that of other
state-of-the-art unsupervised learning methods. Finally, we show through
visualizations that the network learns units that are selective to objects
that are often associated with characteristic sounds.

Keywords: Sound, convolutional networks, unsupervised learning.

1 Introduction

Sound conveys important information about the world around us – the bustle
of a café tells us that there are many people nearby, while the low-pitched roar
of engine noise tells us to watch for fast-moving cars [10]. Although sound is
in some cases complementary to visual information, such as when we listen
to something out of view, vision and hearing are often informative about the
same structures in the world. Here we propose that as a consequence of these
correlations, concurrent visual and sound information provide a rich training
signal that we can use to learn useful representations of the visual world.

In particular, an algorithm trained to predict the sounds that occur within
a visual scene might be expected to learn objects and scene elements that are
associated with salient and distinctive noises, such as people, cars, and flowing
water. Such an algorithm might also learn to associate visual scenes with the
ambient sound textures [25] that occur within them. It might, for example,
associate the sound of wind with outdoor scenes, and the buzz of refrigerators
with indoor scenes.

Although human annotations are indisputably useful for learning, they are
expensive to collect. The correspondence between ambient sounds and video is,
by contrast, ubiquitous and free. While there has been much work on learning
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(a) Video frame (b) Cochleagram (c) Summary statistics

Fig. 1: Visual scenes are associated with characteristic sounds. Our goal is to
take an image (a) and predict time-averaged summary statistics (c) of a cochlea-
gram (b). The statistics we use are (clockwise): the response to a bank of band-
pass modulation filters (sorted left-to-right in increasing order of frequency);
the mean and standard deviation of each frequency band; and the correlation
between bands. We show two frames from the Flickr video dataset [34]. The
first contains the sound of human speech; the second contains the sound of wind
and crashing waves. The differences between these sounds are reflected in their
summary statistics: e.g., the water/wind sound, which is similar to white noise,
contains fewer correlations between cochlear channels.

from unlabeled image data [4,35,22], an audio signal may provide information
that that is largely orthogonal to that available in images alone – information
about semantics, events, and mechanics are all readily available from sound [10].

One challenge in utilizing audio-visual input is that the sounds that we hear
are only loosely associated with what we see. Sound-producing objects often lie
outside of our visual field, and objects that are capable of producing character-
istic sounds – barking dogs, ringing phones – do not always do so. A priori it is
thus not obvious what might be achieved by predicting sound from images.

In this work, we show that a model trained to predict held-out sound from
video frames learns a visual representation that conveys semantically meaningful
information. We formulate our sound-prediction task as a classification problem,
in which we train a convolutional neural network (CNN) to predict a statistical
summary of the sound that occurred at the time a video frame was recorded.
We then validate that the learned representation contains significant information
about objects and scenes.

We do this in two ways: first, we show that the image features that we learn
through our sound-prediction task can be used for object and scene recogni-
tion. On these tasks, our features obtain similar performance to state-of-the-art
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unsupervised and self-supervised learning methods. Second, we show that the
intermediate layers of our CNN are highly selective for objects. This augments
recent work [38] showing that object detectors “emerge” in a CNN’s internal
representation when it is trained to recognize scenes. As in the scene recognition
task, object detectors emerge inside of our sound-prediction network. However,
our model learns these detectors from an unlabeled audio-visual signal, without
any explicit human annotation.

In this paper, we: (1) present a model based on visual CNNs and sound
textures [25] that predicts a video frame’s held-out sound; (2) demonstrate that
the CNN learns units in its convolutional layers that are selective for objects,
extending the methodology of Zhou et al. [38]; (3) validate the effectiveness
of sound-based supervision by using the learned representation for object- and
scene-recognition tasks. These results suggest that sound data, which is available
in abundance from consumer videos, provides a useful training signal for visual
learning.

2 Related Work

We take inspiration from work in psychology, such as Gaver’s Everyday Listening
[10], that studies the ways that humans learn about objects and events using
sound. In this spirit, we would like to study the situations where sound tells
us about visual objects and scenes. Work in auditory scene analysis [6,7,23]
meanwhile has provided computational methods for recognizing structures in
audio streams. Following this work, we use a sound representation [25] that has
been applied to sound recognition [6] and synthesis tasks [25].

Recently, researchers have proposed many unsupervised learning methods
that learn visual representations by solving prediction tasks (sometimes known
as pretext tasks) for which the held-out prediction target is derived from a natural
signal in the world, rather than from human annotations. This style of learning
has been called “self supervision” [4] or “natural supervision” [30]. With these
methods, the supervisory signal may come from video, for example by hav-
ing the algorithm estimate camera motion [1,17] or track content across frames
[35,27,12]. There are also methods that learn from static images, for example
by predicting the relative location of image patches [4,16], or by learning invari-
ance to simple geometric and photometric transformations [5]. The assumption
behind these methods is that, in order to solve the pretext task, the model has
to implicitly learn about semantics and, through this process, develop image
features that are broadly useful.

While we share with this work the high-level goal of learning image represen-
tations, and we use a similar technical approach, our work differs in significant
ways. In contrast to methods whose supervisory signal comes entirely from the
imagery itself, ours comes from a modality (sound) that is complementary to
vision. This is advantageous because sound is known to be a rich source of in-
formation about objects and scenes [10,6], and it is largely invariant to visual
transformations, such as lighting, scene composition, and viewing angle. Pre-
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Fig. 2: Visualization of some of the audio clusters used in one of our models (5 of
30 clusters). For each cluster, we show (a) the images in the test set whose sound
textures were closest to the centroid (no more than one frame per video), and
(b) we visualize aspects of the sound texture used to define the cluster centroid –
specifically, the mean and standard deviation of the frequency channels. We also
include a representative cochleagram (that of the leftmost image). Although the
clusters were defined using audio, there are common objects and scene attributes
in many of the images. We train a CNN to predict a video frame’s auditory cluster
assignment (c).

dicting sound from images thus requires some degree of generalization to visual
transformations. Moreover, our supervision task is based on solving a straight-
forward classification problem, which allows us to use a network design that
closely resembles those used in object and scene recognition (rather than, for
example, the siamese-style networks used in video methods).

Our approach is closely related to recent audio-visual work [30] that predicts
soundtracks for videos that show a person striking objects with a drumstick. A
key feature of this work is that the sounds are “visually indicated” by actions
in video – a situation that has also been considered in other contexts, such as in
the task of visually localizing a sound source [13,19,9] or in evaluating the syn-
chronization between the two modalities [32]. In the natural videos that we use,
however, the sound sources are frequently out of frame. Also, in contrast to other
recent work in multi-modal representation learning [28,33,2], our technical ap-
proach is based on solving a self-supervised classification problem (rather than a
generative model or autoencoder), and our goal is to learn visual representations
that are generally useful for object recognition tasks.
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3 Learning to predict ambient audio

We would like to train a model that, when given a frame of video, can predict
its corresponding sound – a task that implicitly requires knowledge of objects
and scenes.

3.1 Statistical sound summaries

A natural question, then, is how our model should represent sound. Perhaps the
first approach that comes to mind would be to estimate a frequency spectrum
at the moment in which the picture was taken, similar to [30]. However, this
is potentially suboptimal because in natural scenes it is difficult to predict the
precise timing of a sound from visual information. Upon seeing a crowd of people,
for instance, we might expect to hear the sound of speech, but the precise timing
and content of that speech might not be directly indicated by the video frames.

To be closer to the time scale of visual objects, we estimate a statistical
summary of the sound, averaged over a few seconds. We do this using the sound
texture model of McDermott and Simoncelli [25], which assumes that sound is
stationary within a temporal window (we use 3.75 seconds). More specifically,
we closely follow [25] and filter the audio waveform with a bank of 32 band-
pass filters intended to mimic human cochlear frequency selectivity. We then
take the Hilbert envelope of each channel, raise each sample of the envelope
to the 0.3 power (to mimic cochlear amplitude compression), and resample the
compressed envelope to 400 Hz. Finally, we compute time-averaged statistics of
these subband envelopes: we compute the mean and standard deviation of each
frequency channel, the mean squared response of each of a bank of modulation
filters applied to each channel, and the Pearson correlation between pairs of
channels. For the modulation filters, we use a bank of 10 band-pass filters with
center frequencies ranging from 0.5 to 200 Hz, equally spaced on a logarithmic
scale.

To make the sound features more invariant to gain (e.g., from the micro-
phone), we divide the envelopes by the median energy (median vector norm)
over all timesteps, and include this energy as a feature. As in [25], we nor-
malize the standard deviation of each cochlear channel by its mean, and each
modulation power by its standard deviation. We then rescale each kind of tex-
ture feature (i.e. marginal moments, correlations, modulation power, energy)
inversely with the number of dimensions. The sound texture for each image is a
502-dimensional vector. In Figure 1, we give examples of these summary statis-
tics for two audio clips. We provide more details about our audio representation
in the supplementary material.

3.2 Predicting sound from images

We would like to predict sound textures from images – a task that we hypothesize
leads to learning useful visual representations. Although multiple frames are
available, we predict sound from a single frame, so that the learned image features
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will be more likely to transfer to single-image recognition tasks. Furthermore,
since the the actions that produce the sounds may not appear on-screen, motion
information may not always be applicable.

While one option would be to regress the sound texture vj directly from the
corresponding image Ij , we choose instead to define explicit sound categories
and formulate this visual recognition problem as a classification task. This also
makes it easier to analyze the network, because it allows us to compare the
internal representation of our model to object- and scene-classification models
with similar network architecture (Section 4.1). We consider two labeling models:
one based on a vector quantization, the other based on a binary coding scheme.

Clustering audio features In the Clustering model, the sound textures
{vj} in the training set are clustered using k-means. These clusters define image
categories: we label each sound texture with the index of the closest centroid,
and train our CNN to label images with their corresponding labels.

We found that audio clips that belong to a cluster often contain common
objects. In Figure 2, we show examples of such clusters, and in the supplementary
material we provide their corresponding audio. We can see that there is a cluster
that contains indoor scenes with children in them – these are relatively quiet
scenes punctuated with speech sounds. Another cluster contains the sounds of
many people speaking at once (often large crowds); another contains many water
scenes (usually containing loud wind sounds). Several clusters capture general
scene attributes, such as outdoor scenes with light wind sounds. During training,
we remove examples that are far from the centroid of their cluster (more than
the median distance to the vector, amongst all examples in the dataset).

Binary coding model For the other variation of our model (which we call
the Binary model), we use a binary coding scheme [14,31,36] equivalent to a
multi-label classification problem. We project each sound texture vj onto the
top principal components (we use 30 projections), and convert these projections
into a binary code by thresholding them. We predict this binary code using a
sigmoid layer, and during training we measure error using cross-entropy loss.

For comparison, we trained a model (which we call the Spectrum model) to
approximately predict the frequency spectrum at the time that the photo was
taken, in lieu of a full sound texture. Specifically, for our sound vectors vj in this
model, we used the mean value of each cochlear channel within a 33.3-millisecond
interval centered on the input frame (approximately one frame of a 30 Hz video).
For training, we used the projection scheme from the Binary model.

Training We trained our models to predict audio on a 360,000-video subset of
the Flickr video dataset [34]. Most of the videos in the dataset are personal video
recordings containing natural audio, though many were post-processed, e.g. with
added subtitles, title screens, and music. We divided our videos into training and
test sets, and we randomly sampled 10 frames per video (1.8 million training
images total). For our network architecture, we used the CaffeNet architecture
[18] (a variation of Krizhevsky et al. [21]) with batch normalization [15]. We
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Training by sound (91 Detectors)

Training by labeled scenes [39] (117 Detectors)

Training by visual tracking [35] (72 Detectors)

Fig. 3: Histogram of object-selective units in networks trained with different
styles of supervision. From top to bottom: training to predict ambient sound
(our Clustering model); training to predict scene category using the Places
dataset [39]; and training to do visual tracking [35]. Compared to the track-
ing model, which was also trained without semantic labels, our network learns
more high-level object detectors. It also has more detectors for objects that make
characteristic sounds, such as person, baby, and waterfall, in comparison to the
one trained on Places [39]. Categories marked with ∗ are those that we consider
to make characteristic sounds.

trained our model with Caffe [18], using a batch size of 256, for 320,000 iterations
of stochastic gradient descent.

4 Results

We evaluate the image representation that our model learned in multiple ways.
First, we demonstrate that the internal representation of our model contains
convolutional units (neurons) that are selective to particular objects, and we
analyze those objects’ distribution. We then empirically evaluate the quality of
the learned representation for several image recognition tasks, finding that it
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Neuron visualizations of the network trained by sound
field sky grass

snowy ground ceiling car

waterfall waterfall sea

baby baby baby

person person person

person person person

grandstand grandstand grandstand

Neuron visualizations of the network trained by visual tracking [35]
sea grass road

sea pitch sky

Neuron visualizations of the network trained by egomotion [1]
ground sky grass

ground sky plant

Neuron visualizations of the network trained by patch positions [4]
sky sky baby

Neuron visualizations of the network trained by labeled scenes [39]
field tent building

pitch path sky

Fig. 4: Top 5 responses for neurons of various networks, tested on the Flickr dataset.
Please see Section A2 for more visualizations.
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achieves performance comparable to other feature-learning methods that were
trained without human annotations.

4.1 What does the network learn to detect?

Previous work [38] has shown that a CNN trained to predict scene categories
will learn convolutional units that are selective for objects – a result that follows
naturally from the fact that scenes are often defined by the objects that compose
them. We ask whether a model trained to predict ambient sound, rather than
explicit human labels, would learn object-selective units as well. For these exper-
iments, we used our Clustering model, because its network structure is similar
to that of the scene-recognition model used in [38].

Quantifying object-selective units Similar to the method in [38], we
visualized the images that each neuron in the top convolutional layer (conv5)
responded most strongly to. To do this, we sampled a pool of 200,000 images
from our Flickr video test set. We then collected, for each convolutional unit,
the 60 images in this set that gave the unit the largest activation. Next, we
applied the so-called synthetic visualization technique of [38] to approximately
superimpose the unit’s receptive field onto the image. Specifically, we found all
of the spatial locations in the layer for which the unit’s activation strength was
at least half that of its maximum response. We then masked out the parts of
the image that were not covered by the receptive field of one of these high-
responding spatial units. We assumed a circle-shaped receptive field, obtaining
the radius from [38]. To examine the effect of the data used in the evaluation,
we also applied this visualization technique to other datasets (please see the
supplementary material).

Next, for each neuron we showed its masked images to three human anno-
tators on Amazon Mechanical Turk, and asked them: (1) whether an object is
present in many of these regions, and if so, what it is; (2) to mark the images
whose activations contain these objects. Unlike [38], we only considered units
that were selective to objects, ignoring units that were selective to textures. For
each unit, if at least 60% of its top 60 activations contained the object, we con-
sidered it to be selective for the object (or following [38], we say that it is a
detector for that object). We then manually labeled the unit with an object cat-
egory, using the category names provided by the SUN database [37]. We found
that 91 of the 256 units in our model were object-selective in this way, and we
show a selection of them in Figure 4.

We compared the number of these units to those of a CNN trained to rec-
ognize human-labeled scene categories on Places [38]. As expected, this model –
having been trained with explicit human annotations – contained more object-
selective units (117 units). We also asked whether object-selective neurons ap-
pear in the convolutional layers when a CNN is trained on other tasks that do
not use human labels. As a simple comparison, we applied the same methodology
to the egomotion-based model of Agrawal et al. [1] and to the tracking-based
method of Wang and Gupta [35]. We applied these networks to whole images
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Method Sound Places

# Detectors 91 117
# Detectors for objects with characteristic sounds 49 26
Videos with object sound 43.7% 16.9%
Characteristic sound rate 81.2% 75.9%

Table 1: Row 1: the number of detectors (i.e. units that are selective to a par-
ticular object); row 2: the number of detectors for objects with characteristic
sounds; row 3: fraction of videos in which an object’s sound is audible (com-
puted only for object classes with characteristic sounds); row 4: given that an
activation corresponds to an object with a characteristic sound, the probability
that its sound is audible. There are 256 units in total for each method.

(in all cases resizing the input image to 256 × 256 pixels and taking the center
227 × 227 crop), though we note that they were originally trained on cropped
image regions.

We found that the tracking-based method also learned object-selective units,
but that the objects that it detected were often textural “stuff,” such as grass,
ground, and water, and that there were fewer of these detection units in total
(72 of 256). The results were similar for the egomotion-based model, which had
27 such units. In Figure 3 and in the supplementary material, we provide the
distribution of the objects that the units were selective to. We also visualized
neurons from the method of Doersch et al. [4] (as before, applying the network
to whole images, rather than to patches). We found a significant number of
the units were selective for position, rather than to objects. For example, one
convolutional unit responded most highly to the upper-left corner of an image
– a unit that may be useful for the training task, which involves predicting
the relative position of image patches. In Figure 4, we show visualizations of a
selection of object-detecting neurons for all of these methods.

The differences between the objects detected by these methods and our own
may have to do with the requirements of the tasks being solved. The other unsu-
pervised methods, for example, all involve comparing multiple input images or
sub-images in a relatively fine-grained way. This may correspondingly change the
representation that the network learns in its last convolutional layer – requiring
its the units to encode, say, color and geometric transformations rather than
object identities. Moreover, these networks may represent semantic information
in other (more distributed) ways that would not necessarily be revealed through
this visualization method.

Analyzing the types of objects that were detected Next, we asked
what kinds of objects our network learned to detect. We hypothesized that the
object-selective neurons were more likely to respond to objects that produce
(or are closely associated with) characteristic sounds. To evaluate this, we (an
author) labeled the SUN object categories according to whether they were closely
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associated with a characteristic sound. We denote these categories with a ∗ in
Figure 3. Next, we counted the number of units that were selective to these
objects, finding that our model contained significantly more such units than a
scene-recognition network trained on the Places dataset, both in total number
and as a proportion (Table 1). A significant fraction of these units were selective
to people (adults, babies, and crowds).

Finally, we asked whether the sounds that these objects make were actually
present in the videos that these video frames were sampled from. To do this, we
listened to the sound of the top 30 video clips for each unit, and recorded whether
the sound was made by the object that the neuron was selective to (e.g., human
speech for the person category). We found that 43.7% of these videos contained
the objects’ sounds (Table 1).

4.2 Evaluating the image representation

We have seen through visualizations that a CNN trained to predict sound from
an image learns units that are highly selective for objects. Now we evaluate,
experimentally, how well the CNN’s internal representation conveys information
that is useful for recognizing objects and scenes.

Since our goal is to measure the amount of semantic information provided by
the learned representation, rather than to seek absolute performance, we used
a simple evaluation scheme. In most experiments, we computed image features
using our CNN and trained a linear SVM to predict object or scene category
using the activations in the top layers.

Object recognition First, we used our CNN features for object recognition
on the PASCAL VOC 2007 dataset [8]. We trained a one-vs.-rest linear SVM
to detect the presence of each of the 20 object categories in the dataset, us-
ing the activations of the upper layers of the network as the feature set (pool5,
fc6, and fc7). To help understand whether the convolutional units considered
in Section 4.1 directly convey semantics, we also created a global max-pooling
feature (similar to [29]), where we applied max pooling over the entire convolu-
tional layer. This produces a 256-dimensional vector that contains the maximum
response of each convolutional unit (we call it max5). Following common prac-
tice, we evaluated the network on a center 227 × 227 crop of each image (after
resizing the image to 256 × 256), and we evaluated the results using mean av-
erage precision (mAP). We chose the SVM regularization parameter for each
method by maximizing mAP on the validation set using grid search (we used
{0.5k | 4 ≤ k < 20}).

The other unsupervised (or self-supervised) models in our comparison [4,1,35]
use different network designs. In particular, [4] was trained on image patches,
so following their experiments we resized its convolutional layers for 227 × 227
images and removed the model’s fully connected layers1. Also, since the model

1 As a result, this model has a larger pool5 layer than the other methods: 7 × 7 vs.
6 × 6. Likewise, the fc6 layer of [35] is smaller (1,024 dims. vs. 4,096 dims.).
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Method
VOC Cls. (%mAP) SUN397 (%acc.)

max5 pool5 fc6 fc7 max5 pool5 fc6 fc7

Sound (cluster) 36.7 45.8 44.8 44.3 17.3 22.9 20.7 14.9
Sound (binary) 39.4 46.7 47.1 47.4 17.1 22.5 21.3 21.4
Sound (spect.) 35.8 44.0 44.4 44.4 14.6 19.5 18.6 17.7
Texton-CNN 28.9 37.5 35.3 32.5 10.7 15.2 11.4 7.6
K-means [20] 27.5 34.8 33.9 32.1 11.6 14.9 12.8 12.4
Tracking [35] 33.5 42.2 42.4 40.2 14.1 18.7 16.2 15.1
Patch pos. [4] 27.7 46.7 - - 10.0 22.4 - -
Egomotion [1] 22.7 31.1 - - 9.1 11.3 - -

ImageNet [21] 63.6 65.6 69.6 73.6 29.8 34.0 37.8 37.8
Places [39] 59.0 63.2 65.3 66.2 39.4 42.1 46.1 48.8

(a) Image classification with linear SVM

Method (%mAP)

Random init. [20] 41.3
Sound (cluster) 44.1
Sound (binary) 43.3
Motion [35,20] 47.4
Egomotion [1,20] 41.8
Patch pos. [4,20] 46.6
Calib. + Patch [4,20] 51.1

ImageNet [21] 57.1
Places [39] 52.8

(b) Finetuning detection

Method aer bk brd bt btl bus car cat chr cow din dog hrs mbk prs pot shp sfa trn tv

Sound (cluster) 68 47 38 54 15 45 66 45 42 23 37 28 73 58 85 25 26 32 67 42
Sound (binary) 69 45 38 56 16 47 65 45 41 25 37 28 74 61 85 26 39 32 69 38
Sound (spect.) 65 40 35 54 14 42 63 41 39 24 32 25 72 56 81 27 33 28 65 40
Texton-CNN 65 35 28 46 11 31 63 30 41 17 28 23 64 51 74 9 19 33 54 30
K-means 61 31 27 49 9 27 58 34 36 12 25 21 64 38 70 18 14 25 51 25
Motion [35] 67 35 41 54 11 35 62 35 39 21 30 26 70 53 78 22 32 37 61 34
Patches [4] 70 44 43 60 12 44 66 52 44 24 45 31 73 48 78 14 28 39 62 43
Egomotion [1] 60 24 21 35 10 19 57 24 27 11 22 18 61 40 69 13 12 24 48 28

ImageNet [21] 79 71 73 75 25 60 80 75 51 45 60 70 80 72 91 42 62 56 82 62
Places [39] 83 60 56 80 23 66 84 54 57 40 74 41 80 68 90 50 45 61 88 63

(c) Per class mAP for image classification on PASCAL VOC 2007

Table 2: (a) Mean average precision for PASCAL VOC 2007 classification, and
accuracy on SUN397. Here we trained a linear SVM using the top layers of
different networks. We note in Section 4.2 that the shape of these layers varies
between networks. (b) Mean average precision on PASCAL VOC 2007 using
Fast-RCNN [11]. We initialized the CNN weights using those of our learned
sound models. (c) Per-class AP scores for the VOC 2007 classification task with
pool5 features (corresponds to mAP in (a)).

of Agrawal et al. [1] did not have a pool5 layer, we added one to it. We also
considered CNNs that were trained with human annotations: object recognition
on ImageNet [3] and scene categories on Places [39]. Finally, we considered using
the k-means weight initialization method of [20] to set the weights of a CNN
model (we call this the K-means model).

We found that our best-performing of our model (the binary-coding method)
obtained comparable performance to other unsupervised learning methods, such
as [4]2 Both models based on sound textures (Clustering and Binary) outper-
formed the model that predicted only the frequency spectrum. This suggests

2 Since the initial version, we have updated the performance numbers for the method
of Doersch et al. [4] in Table 2a and Wang et al. [35] in Table 2b. Please see the
paper updates in Section 5 for details.
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that the additional time-averaged statistics from sound textures are helpful. For
these models, we used 30 clusters (or PCA projections): in Figure A1a, we con-
sider varying the number of clusters, finding that there is a small improvement
from increasing it, and a substantial decrease in performance when using just
two clusters. The sound-based models significantly outperformed other methods
when we globally pooled the conv5 features, suggesting that the convolutional
units contain a significant amount of semantic information (and are well suited
to being used at this spatial scale).

Scene recognition We also evaluated our model on a scene recognition task
using the SUN dataset [37], a large classification benchmark that involves rec-
ognizing 397 scene categories with 7,940 training and test images provided in
multiple splits. Following [1], we averaged our classification accuracy across 3
splits, with 20 examples per scene category. We chose the linear SVM’s regular-
ization parameter for each model using 3-fold cross-validation.

We again found that our features’ performance was comparable to other
models. In particular, we found that the difference between our models was
smaller than in the object-recognition case, with both the Clustering and Binary
models obtaining performance comparable to the patch-based method with pool5
features.

Pretraining for object detection Following recent work [35,4,20], we used
our model to initialize the weights of a CNN-based object detection system (Fast
R-CNN [11]), verifying that the results improved over random initialization. We
followed the training procedure of Krähenbühl et al. [20], using 150,000 iterations
of backpropagation with an initial learning rate of 0.002, and we compared our
model with other published results (we report the numbers provided by [20]).

Our best-performing model (the Clustering model) obtains similar perfor-
mance to that of Wang and Gupta’s tracking-based model [35], while the overall
best results were from variations of Doersch et al.’s patch-based model [4,20].
We note that the network changes substantially during fine-tuning, and thus the
performance is fairly dependent on the parameters used in the training proce-
dure. Moreover all models, when fine-tuned in this way, achieve results that are
close to those of a well-chosen random initialization (within 6% mAP). Recent
work [20,26] has addressed these optimization issues by rescaling the weights of
a pretrained network using a data-driven procedure. The unsupervised method
with the best performance combines the rescaling method of [20] with the patch-
based pretraining of [4].

Sound prediction We also asked how well our model learned to solve its
sound prediction task. We found that on our test set, the clustering-based model
(with 30 clusters) chose the correct sound label 15.8% of the time. Pure chance
in this case is 3.3%, while the baseline of choosing the most commonly occurring
label is 6.6%.
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Audio supervision It is natural to ask what role audio plays in the learning
process. Perhaps, for example, our training procedure would produce equally
good features if we replaced the hand-crafted sound features with hand-crafted
visual features, computed from the images themselves. To study this, we replaced
our sound texture features with (512-dimensional) visual texton histograms [24],
using the parameters from [37], and we used them to train a variation of our
Clustering model.

As expected, the images that belong to each cluster are visually coherent, and
share common objects. However, we found that the network performed signifi-
cantly worse than the audio-based method on the object- and scene-recognition
metrics (Table 2a). Moreover, we found that its convolutional units rarely were
selective for objects (generally they responded responded to “stuff” such as grass
and water). Likely this is because the network simply learned to approximate
the texton features, obtaining low labeling error without high-level generaliza-
tion. In contrast, the audio-based labels – despite also being based on another
form of hand-crafted feature – are largely invariant to visual transformations,
such as lighting and scale, and therefore predicting them requires some degree of
generalization (one benefit of training with multiple, complementary modalities).

5 Discussion

Sound has many properties that make it useful as a supervisory training sig-
nal: it is abundantly available without human annotations, and it is known to
convey information about objects and scenes. It is also complementary to visual
information, and may therefore convey information not easily obtainable from
unlabeled image analysis.

In this work, we proposed using ambient sound to learn visual representa-
tions. We introduced a model, based on convolutional neural networks, that
predicts a statistical sound summary from a video frame. We then showed, with
visualizations and experiments on recognition tasks, that the resulting image
representation contains information about objects and scenes.

Here we considered one audio representation, based on sound textures, but
it is natural to ask whether other audio representations would lead the model to
learn about additional types of objects. To help answer this question, we would
like to more systematically study the situations when sound does (and does not)
tell us about objects in the visual world. Ultimately, we would like to know what
object and scene structures are detectable through sound-based training, and we
see our work as a step in this direction.
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Paper updates:

v1 ECCV camera-ready version.

v2 In Figure 1, we now sort the modulation channels by increasing frequency
(thanks to Dan Ellis for pointing this out). We fixed an error in the comparison
with Doersch et al. [4] in Table 2a (we used it with the wrong ordering of the color
channels in the initial version). We updated the detection accuracy (Table 2b)
for [35], which we obtained from the updated version of [20]. We also fixed a mis-
spelling in Figure 3.
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A1 Sound label space

Why do detectors for certain objects – e.g., people, water, and infants – emerge in
our model? To help answer this question, we visualized the audio clusters that
are used to define our model’s label space (Section 3). The results, including
sound clips, are provided on our webpage. In Figure A1a, we also examine how
the quality of the learned image features varies as a function of the number of
clusters, as measured by performance on the object recognition task.

A2 Additional unit visualizations

In Figure A5, we provide visualizations of additional object-selective neurons in
our model. In Figure A4 we provide object-detector histograms for additional
unsupervised methods [1,35] (an extension of Figure 3). We also show how the
number of object-selective units changes as a function of the threshold used to
define whether a unit is selective (Figure A1b).

To examine the effect of the dataset used to create the neuron visualizations,
we applied the same neuron visualization technique to 200,000 images sampled
equally from the SUN and ImageNet datasets (as in [38]). As expected, we found
that the distribution of objects was similar to that of the Flickr dataset (Fig-
ure A2). Notably, there were fewer detectors in total (67 vs. 91), and there were
some categories (e.g., baby) that appeared relatively less often. This may be due
to the differences in the underlying distribution of objects in the datasets. For ex-
ample, SUN focuses on scenes and contains more objects labeled tree, lamp, and
window than objects labeled person [38]. We also computed a detector histogram
for the model of [35], finding that the total number of detectors was similar to the
sound-based model (61 detectors), but that, as before, the dominant categories
were textural “stuff” (e.g., grass, plants).

A3 Sound textures

We now describe, in more detail, how we computed sound textures from audio
clips. For this, we closely follow the work of McDermott and Simoncelli [25].

Subband envelopes To compute the cochleagram features {ci}, we filter
the input waveform s with a bank of bandpass filters {fi}.

ci(t) = |(s ∗ fi) + jH(s ∗ fi)|, (1)

where H is the Hilbert transform and ∗ denotes cross-correlation. We then re-
sample the signal to 400Hz and compress it by raising each sample to the 0.3
power (examples in Figure 1).

Correlations As described in Section 3, we compute the correlation between
bands using a subset of the entries in the cochlear-channel correlation matrix.
Specifically, we include the correlation between channels cj and ck if |j − k| ∈
{1, 2, 3, 5}. The result is a vector ρ of correlation values.
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(a) Varying the number of clusters (b) Varying the threshold for selectivity

Fig. A1: (a) Object recognition performance (recognition performance on PAS-
CAL VOC2007) increases with the number of clusters used to define the audio
label space. For our experiments, we used 30 clusters. (b) The number of object-
selective units for each method, as we increase the threshold used to determine
whether a unit is object-selective. This threshold corresponds to the fraction
of images that contain the object in question, amongst the images with the 60
largest activations. For our analysis in Section 4, we used a threshold of 60%.

Modulation filters We also include modulation filter responses. To get these,
we compute each band’s response to a filter bank {mi} of 10 bandpass filters
whose center frequencies are spaced logarithmically from 0.5 to 200Hz:

bij =
1

N
||ci ∗mj ||2, (2)

where N is the length of the signal.

Marginal statistics We estimate marginal moments of the cochleagram
features, computing the mean µi and standard deviation σi of each channel. We
also estimate the loudness, l, of the sequence by taking the median of the energy
at each timestep, i.e. l = median(||c(t)||).

Normalization To account for global differences in gain, we normalize the
cochleagram features by dividing by the loudness, l. Following [25], we normalize
the modulation filter responses by the variance of the cochlear channel, comput-

ing b̃ij =
√

bij
σ2
i

. Similarly, we normalize the standard deviation of each cochlear

channel, computing σ̃i =
√

σ2
i

µ2
i
. From these normalized features, we construct a

sound texture vector: [µ, σ̃, ρ, b̃, l]
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Training by sound (67 detectors)

Training by labeled scenes [39] (146 detectors)

Training by visual tracking [35] (61 detectors)

Fig. A2: The number of object-selective per category, when evaluating the model
on the SUN and ImageNet datasets (cf. Figure 3, in which the models were
evaluated on the Flickr video dataset).

person car ceiling

waterfall text pitch

Fig. A3: A selection of object-selective neurons, obtained by testing our model
on the SUN and ImageNet datasets. We show the top 5 activations for each unit.

Training by egomotion [1] (27 detectors)

Fig. A4: Here we quantify the number of object-selective units for an additional
method, using the Flickr video dataset (cf. Figure 3).



20 Owens et al.

person person person

person person person

person person person

person person person

person person person

text text text

text baby baby

baby baby baby

grass grass grass

grass waterfall waterfall

tree tree tree

ceiling ceiling ceiling

grandstand grandstand car

no object

no object

Fig. A5: Top 5 activations for units in our model (39 of 91 from common classes).
The last two rows show neurons that were not selective to an object class.


