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Abstract. In this paper we approach the novel problem of segment-
ing an image based on a natural language expression. This is different
from traditional semantic segmentation over a predefined set of semantic
classes, as e.g., the phrase “two men sitting on the right bench” requires
segmenting only the two people on the right bench and no one standing
or sitting on another bench. Previous approaches suitable for this task
were limited to a fixed set of categories and/or rectangular regions. To
produce pixelwise segmentation for the language expression, we propose
an end-to-end trainable recurrent and convolutional network model that
jointly learns to process visual and linguistic information. In our model,
a recurrent neural network is used to encode the referential expression
into a vector representation, and a fully convolutional network is used
to a extract a spatial feature map from the image and output a spatial
response map for the target object. We demonstrate on a benchmark
dataset that our model can produce quality segmentation output from
the natural language expression, and outperforms baseline methods by
a large margin.
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1 Introduction

Semantic image segmentation is a core problem in computer vision and signifi-
cant progress has been made using large visual datasets and rich representations
based on convolution neural networks [4,6,17,21,32,33]. Although these existing
segmentation methods can predict precise pixelwise masks for query categories
like “train” or “cat”, they are not capable of predicting segmentation for more
complicated queries such as the natural language expression “the two people on
the right side of the car wearing black shirts”.
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Fig. 1. In this work we approach the novel problem of segmentation from natural
language expressions, which is different from traditional semantic image segmentation
and object instance segmentation, as visualized in this figure. (Color figure online)

In this paper we address the following problem: given an image and a natural
language expression that describes a certain part of the image, we want to seg-
ment the corresponding region(s) that covers the visual entities described by the
expression. For example, as shown in Fig. 1(d), for the phrase e.g. “people in blue
coat” we want to predict a segmentation that covers the two people in the mid-
dle wearing blue coat, but not the other two people. This problem is related to
but different from the core computer vision problems of semantic segmentation
(e.g. PASCAL VOC segmentation challenge on 20 object classes [10]), which is
concerned with predicting the pixelwise label for a predefined set of object or
stuff categories (Fig. 1b), and instance segmentation (e.g. [12]), which addition-
ally distinguishes different instances of an object class (Fig. 1c). It also differs
from language-independent foreground segmentation (e.g. [24]), where the goal
is to generate a mask over the foreground (or the most salient) object. Instead
of assigning a semantic label to every pixel in the image as in semantic image
segmentation, the goal in this paper is to produce a segmentation mask for the
visual entities of interest based on the given expression. Rather than being fixed
on a set of object and stuff categories, natural language descriptions may involve
also attributes such as “black” and “smooth”, actions such as “running”, spatial
relationships such as “on the right” and interactions between different visual
entities such as “the person who is riding a horse”.

The task of segmenting an image from natural language expressions has a
wide range of applications, such as building language-based human-robot inter-
face to give instructions like “pick up the jar on the table next to the apples”.
Here, it is important to be able to use multi-word referential expressions to dis-
tinguish between different object instances but also important to get a precise
segmentation in contrast to just a bounding box, especially for non-grid-aligned
objects (see e.g. Fig.2). This could also be interesting for interactive photo edit-
ing where one could refer with natural language to certain parts or objects of
the image to be manipulated, e.g. “blur the person with a red shirt”, or referring
to parts of your meal to estimate their nutrition, “two large pieces of bacon”; to
decide better if one should eat it rather than the full meal as in [20].



110 R. Hu et al.

J spatial feature
E:> E:>m E:> fully
3

convolutional
classification

‘people on the =, LSTM [ eig?;):;gn segmentation

right side” output

Fig. 2. Overview of our method for segmentation from natural language expressions.

As described in more details in Sect. 2, prior methods suitable for this task
were limited to resolving only a bounding box in the image [15,18,23], and/or
were limited to a fixed set of categories determined a priori [6,17,32,33]. In
this paper, we propose an end-to-end trainable recurrent convolutional network
model that jointly learns to process visual and linguistic information, and pro-
duces segmentation output for the target image region described by the natural
language expression, as illustrated in Fig.2. We encode the expression into a
fixed-length vector representation through a recurrent Long short-term mem-
ory network (LSTM), and use a convolutional neural network (CNN) to extract
a spatial feature map from the image. The encoded expression and the feature
map are then processed by a multi-layer classifier network in a fully convolutional
manner to produce a coarse response map, which is upsampled with deconvolu-
tion [17,21] to obtain a pixel-level segmentation mask of the target image region.
Experimental results demonstrate that our model can generate quality segmen-
tation predictions from natural language expressions, and outperforms baseline
methods significantly. Our model is trained using standard back-propagation,
and is much more efficient at test time than previous approaches relying on
scoring each bounding box.

2 Related Work

Localizing Objects with Natural Language. Our work is related to recent
work on object localization with natural language, where the task is to localize
a target object in a scene from its natural language description (by drawing
a bounding box over it). The methods reported in [15,18] build upon image
captioning frameworks such as LRCN [8] or mRNN [19], and localize objects by
selecting the bounding box where the expression has the highest probability. Our
model differs from [15,18] in that we do not have to learn to generate expressions
from image regions. Rohrbach et al. [23] propose a model to localize a textual
phrase by attending to a region on which the phrase can be best reconstructed. In
[22], Canonical Correlation Analysis (CCA) is used to learn a joint embedding
space of visual features and words, and given a natural language query, the
corresponding target object is localized by finding the closest region to the text
sequence in the joint embedding space. Also, the concept of visual phrases [26]
is related to our work as it captures compositions of multiple words or objects.
However, [26] only deals with 17 manually chosen object compositions, whereas
our method captures much richer queries represented by natural language.
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To the best of our knowledge, all previous localization methods can only
return a bounding box of the target object, and no prior work has learned
to directly output a segmentation mask of an object given a natural language
description as query. As a comparison, in Sect.4.1 we also evaluate using fore-
ground segmentation over the bounding box prediction from [15,23].

Fully Convolutional Networks for Segmentation. Fully convolutional net-
works are convolutional neural networks consisting of only convolutional (and
pooling) layers, which are the state-of-the-art method for semantic segmentation
over a pre-defined set of semantic categories [6,17,32,33]. A nice property of fully
convolutional networks is that spatial information is preserved in the output,
which makes these networks suitable for segmentation tasks that require spatial
grid output. In our model, both feature extraction and segmentation output are
performed through fully convolutional networks. We also use a fully convolution
network for per-word segmentation as a baseline in Sect. 4.1.

Attention and Visual Question Answering. Recently, attention models
have been used in several areas including image recognition, image captioning
and visual question answering. In [30], image captions are generated through
focusing on a specific image region for each word. In recent visual question
answering models [29,31], the answer is determined through attending to one or
multiple image regions. Andreas et al. [2] propose a visual question answering
method that answers object reference questions like “Where is the black cat?”
by parsing the sentence and generating individual attention maps for “black”
and “cat” and then combining them. This mechanism has some similarity to our
per-word baselines.

These attention models are related to our work as they also learn to generate
spatial grid “attention maps” which often cover the objects of interest. However,
these attention models differ from our work as they only learn to generate coarse
spatial outputs and the purpose of the attention map is to facilitate other tasks
such as image captioning, rather than a precise segmentation of the object.

3 Our Model

Given an image and a natural language expression as query, the goal is to out-
put a segmentation mask for the visual entities described by the expression.
This problem requires both visual and linguistic understanding of the image
and the expression. To accomplish this goal, we propose a model with three
main components: a natural language expression encoder based on a recurrent
LSTM network, a fully convolutional network to extract local image descriptors
and generate a spatial feature map, and a fully convolutional classification and
upsampling network that takes as input the encoded expression and the spatial
feature map and outputs a pixelwise segmentation mask. Figure 3 shows the out-
line of our method; we introduce the details of these components in Sects. 3.1, 3.2
and 3.3. The network architecture for feature map extraction and classification
is similar to the FCN model [17], which has been shown effective for semantic
image segmentation.
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Fig. 3. Our model for segmentation from natural language expressions consists of three
main components: an expression encoder based upon a recurrent LSTM network, a fully
convolutional network to generate a spatial feature map, and a fully convolutional
classification and upsampling network to predict pixelwise segmentation.

Compared with related work [15,18], we do not explicitly produce a word
sequence corresponding to object descriptions given a visual representation, since
we are interested in predicting image segmentation from an expression rather
than predicting the expression. In this way, our model has less parameters com-
pared with [15,18] as it does not have to learn to predict the next word.

3.1 Spatial Feature Map Extraction

Given an image of a scene, we want to obtain a discriminative feature represen-
tation of it while preserving the spatial information in the representation so that
it is easier to predict a spatial segmentation mask. This is accomplished through
a fully convolutional network model similar to FCN-32s [17], where the image is
fed through a series of convolutional (and pooling) layers to obtain a spatial map
output as feature representation. Given an input image of size W x H, we obtain
a w X h spatial feature map, with each position on the feature map containing
D, channels (D;,, dimensional local descriptors).

For each spatial location on the feature map, we apply L2-normalization to
the D;,, dimensional local descriptor at that position in order to obtain a more
robust feature representation. In this way, we can extract a w X h x D, spatial
feature map as the representation for each image.

Also, to allow the model to reason about spatial relationships such as “right
woman” in Fig. 3, two extra channels are added to the feature maps: the x and
y coordinate of each spatial location. We use relative coordinates, where the
upper left corner and the lower right corner of the feature map are represented
as (—1,—1) and (+1,+1), respectively. In this way, we obtain a w x h X (D;,, +2)
representation containing local image descriptors and spatial coordinates.

In our implementation, we adopt the VGG-16 architecture [27] as our fully
convolutional network by treating fc6, fc7 and fc8 as convolutional layers, which
outputs D;,,, = 1000 dimensional local descriptors. The resulting feature map
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size is w = W/s and h = H/s, where s = 32 is the pixel stride on fc8 layer
output. The units on the spatial feature map have a very large receptive field of
384 pixels, so our method has the potential to aggregate contextual information
from nearby regions, which can help to reason about interaction between visual
entities, such as “the man next to the table”.

3.2 Encoding Expressions with LSTM Network

For the input natural language expression that describes an image region, we
would like to represent the text sequence as a vector since it is easier to process
fixed-length vectors than variable-length sequences. To achieve this goal, we take
the encoder approach in sequence to sequence learning methods [7,28]. In our
encoder for the natural language expression, we first embed each word into a
vector through a word embedding matrix, and then use a recurrent Long-Short
Term Memory (LSTM) [13] network with Dye,; dimensional hidden state to scan
through the embedded word sequence. For a text sequence S = (wy, ..., wp) with
T words (where w; is the vector embedding for the ¢-th word), at each time step
t, the LSTM network takes as input the embedded word vector w; from the word
embedding matrix. At the final time step ¢ = T after the LSTM network has
seen the whole text sequence, we use the hidden state hp of the LSTM network
as the encoded vector representation of the expression. Similar to Sect. 3.1, we
also L2-normalize the Dy.,: dimensions in Ar. We use an LSTM network with
a Diert = 1000 dimensional hidden state in our implementation.

3.3 Spatial Classification and Upsampling

After extracting the spatial feature map from the image in Sect.3.1 and the
encoded expression hp in Sect. 3.2, we want to determine whether or not each
spatial location on the feature map belongs the foreground (the visual entities
described by the natural language expression). In our model, this is done by
a fully convolutional classifier over the local image descriptor and the encoded
expression. We first tile and concatenate hp to the local descriptor at each spatial
location in the spatial grid to obtain a w x h x D* (where D* = Dy, + Dyert +2)
spatial map containing both visual and linguistic features. Then, we train a two-
layer classification network, with a D, s = 500 dimensional hidden layer, which
takes as input the D* dimensional representation and output a score to indicate
whether a spatial location belong to the target image region or not.

This classification network is applied in a fully convolutional way over the
underlying w x h feature map as two 1 x 1 convolutional layers (with ReLU
nonlinearity between them). The fully convolutional classification network out-
puts a w X h coarse low-resolution response map containing classification scores,
which can be seen as a low-resolution segmentation of the referential expression,
as shown in Fig. 3.

In order obtain a segmentation mask with higher resolution, we further per-
form upsampling through deconvolution (swapping the forward and backward
pass of convolution operation) [17,21]. Here we use a 2s x 2s deconvolution filter
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with stride s (where s = 32 for the VGG-16 network architecture we use), which
is similar to the FCN-32s model [17]. The deconvolution operation produces a
W x H high resolution response map that has the same size as the input image,
and the values on the high resolution response map represent the confidence of
whether a pixel belongs to the target object. We use the pixelwise classification
results (i.e. whether a pixel score is above 0) as the final segmentation prediction.

At training time, each training instance in our training set is a tuple (I, S, M),
where [ is an image, S is a natural language expression describing a region
within that image, and M is a binary segmentation mask of that region. The
loss function during training is defined as the average over pixelwise loss

1 w H
Loss = ﬂzlz:lL(vlj,M”) (1)
i=1 j=

where W and H are image width and height, v;; is the response value (score)
on the high resolution response map and M;; is the binary ground-truth label
at pixel (i,7). L is the per-pixel weighed logistic regression loss as follows

log(1 —vg;)) if My =1
Livi;, My) =7 og (1 + exp( ,?J)) M5 = @)
aplog(l +exp(vi;))  if M;; =0

where ay and oy are loss weights for foreground and background pixels. In
practice, we find that training converges faster using higher loss weights for
foreground pixels, and we use ay = 3 and o = 1 in L(v;j;, M;;).

The parameters in the feature map extraction network are initialized from
a VGG-16 network [27] pretrained on the 1000-class ILSVRC classification task
[25], the deconvolution filter for upsampling is initialized from bilinear interpola-
tion. All other parameters in our model, including the word embedding matrix,
the LSTM parameters and the classifier parameters, are randomly initialized.
The whole network is trained with standard back-propagation using SGD with
momentum. Our model is implemented using TensorFlow [1], and our code and
data are available at http://ronghanghu.com/text_objseg.

4 Experiments

Compared with the widely used datasets in image segmentation such as PASCAL
VOC [10], there are only a few publicly available datasets with natural language
annotations over segmented image regions. In our experiments, we train and
test our method on the Referlt dataset [16] with natural language descriptions
of visual entities and their segmentation masks. The Referlt dataset [16] is built
upon the TAPR TC-12 dataset [11] and has 20,000 images. There are 130,525
expressions annotated on 96,654 segmented image regions (some regions are
annotated with multiple expressions). In this dataset, the ground-truth segmen-
tation comes from the SATAPR-12 dataset [9]. The expressions in the Referlt
dataset are discriminative for the regions, as they were collected in a two-player
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game whose goal was to make the target region easily distinguishable through
the expression from the rest of the image. At the time of writing, the Referlt
dataset [16] is the biggest publicly available dataset that contains natural lan-
guage expressions annotated on segmented image regions.

On this dataset, we use the same trainval and test split as in [15,23]. There
are 10,000 images for training and validation, and 10,000 images for testing. The
annotated regions in the Referlt dataset contains both “object” regions such as
car, person and bottle and “stuff” regions such as sky, river and mountain.

Since there has not been prior work that directly learns to predict segmen-
tation based on natural language expressions as far as we know, to evaluate our
method, we construct several strong baseline methods as described in Sect. 4.1,
and compare our approach with these methods. All the baselines and our method
are trained on the Referlt dataset for comparison.

4.1 Baseline Methods

Combination of Per-word Segmentation. In this baseline method, instead
of first encoding the whole expression with a recurrent LSTM network, each
word in the expression is segmented individually, and the per-word segmenta-
tion results are then combined to obtain the final prediction. This method can
be seen as using a “bag-of-word” representation of the expression. We take the
N most frequently appearing words in Referlt dataset (after manually removing
some stop words like “the” and “towards”), and train a FCN model [17] to seg-
ment each word. Similar to the PASCAL VOC segmentation challenge [10], in
this method, each word is treated as an independent semantic category. However,
unlike in PASCAL VOC segmentation, here a pixel can belong to multiple cat-
egories (words) simultaneously and thus have multiple labels. During training,
we generate a per-word pixelwise label map for each training sample (an image
and an expression) in the training set. For a given expression, the corresponding
foreground pixels are labeled with a N-dimensional binary vector [, where [; =1
if and only if word ¢ is present in the expression, and background pixels are
labeled with [ equal to all zeros. In our experiments, we use N = 500 and ini-
tialize the network from a FCN-32s network pretrained on PASCAL VOC 2011
segmentation task [17], and train the whole network with a multi-label logistic
regression loss over the words.

At test time, given an image and a natural language expression as input, the
network outputs pixelwise score maps for the N words, and the per-word scores
are further combined to obtain the segmentation for the input expression. In our
implementation, we experiment with three different approaches to combine the
per-word segmentation: for those words (among the N-word list) that appear in
the expression, we (a) take the average of their scores or (b) take the intersection
of their prediction or (c) take the union of their prediction. In some rare cases
(2.83% of the test samples), none of the words in the expression are among
the N most frequent words, and we do not output any segmentation for this
expression, i.e. all pixels are predicted as background.



116 R. Hu et al.

Foreground Segmentation from Bounding Boxes. In this baseline method,
we first use a localization method based on natural language input [15,23] to
obtain a bounding box localization of the given expression, and then extract the
foreground segmentation from the bounding box using GrabCut [24]. Given an
image and a natural language expression, we use two recently proposed meth-
ods SCRC [15] and GroundeR [23] to obtain a bounding box prediction from
the image and the expression. SCRC uses a model adapted from image cap-
tioning and localizes a referential expression by finding the candidate bounding
box where the expression receives the highest probability. GroundeR relies on an
attention model over candidate bounding boxes to ground (localize) a referential
expression, either in an unsupervised manner by finding the region that can best
reconstruct the expression, or in a supervised manner to directly train the model
to attend to the best bounding box. In this work we use a re-implementation of
the fully-supervised GroundeR. Following [15,23], we use 100 top-scoring Edge-
Box [34] proposals as a set of candidate bounding boxes for each image. At
test time, given an input expression, we compute the scores of the 100 Edge-
Box proposals using SCRC [15] or GroundeR [23], and evaluate two approaches:
either using the entire rectangular region of the highest scoring bounding box, or
the foreground segmentation from it using GrabCut [24]. We use the supervised
version of [23] in our experiments.

Classification over Segmentation Proposals. Inspired by text-based bound-
ing box localization method [23], in this baseline we replace the bounding box
proposals in [23] with segmentation proposals (e.g. CPMC [5] and MCG [3]) to
output segmentation for the input expression. We use a similar pipeline in this
baseline as in the supervised version of [23]. First, visual features are extracted
from each proposal and concatenated with the encoded sentence. Then, a clas-
sification network is trained on concatenated features to classify a segmentation
proposal into either foreground or background. We use 100 top-scoring segmenta-
tion proposals from MCG [3], and extract visual features from each proposal by
resizing the segmentation proposal regions to 224 x 224 (i.e. filling pixels outside
the proposal region with channel mean and resizing the enclosing bounding box
of the proposal) and extracting visual feature from the resized proposal regions
with a VGG-16 network pretrained on ILSVRC classification task. The whole
network is then trained end-to-end. The main difference between this baseline
and our method is that our method performs pixelwise classification through a
fully convolutional network, while this baseline requires another proposal method
to obtain candidate regions.

Whole Image. As an additional trivial baseline, we also evaluate using the
whole image as a segmentation for every expression.

4.2 Evaluation on ReferIt Dataset

We train our model and the baseline methods in Sect. 4.1 on the 10,000 trainval
images in the ReferIt dataset [16] (leaving out a small proportion for validation),
following the same split as in [15]. In our implementation, we resize and pad all
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Table 1. The performance (in %) of our model and baselines on the Referlt dataset.

Method prec@0.5 | prec@0.6 | prec@0.7 | prec@0.8 | prec@0.9 | overall IoU
whole image 5.07 2.85 1.58 0.81 0.41 15.12
per-word average 10.97 5.94 2.35 0.45 0.00 27.23
per-word intersection 9.58 5.35 2.20 0.43 0.00 26.69
per-word union 10.46 5.65 2.28 0.44 0.00 19.37
SCRC [15] bbox 9.73 4.43 1.51 0.27 0.03 21.72
SCRC [15] grabcut 11.91 7.71 4.33 1.78 0.36 17.84
GroundeR [23] bbox 11.08 6.20 2.74 0.78 0.20 20.50
GroundeR [23] grabcut | 14.09 9.62 5.78 2.65 0.62 20.09
MCG classification 12.72 9.88 7.38 4.73 1.88 18.08
Ours (low resolution) | 29.54 21.61 13.69 5.94 0.75 45.57
Ours (high resolution) |34.02 26.71 19.32 11.63 3.92 48.03

images and ground-truth segmentation to a fixed size W x H (where we set
W = H = 512), keeping their aspect ratio and padding the outside regions with
zero, and map the segmentation output back to the original image size to obtain
the final segmentation.

In our experiments, we use a two-stage training strategy: we first train a
low resolution version of our model, and then fine-tune from it to obtain the
final high resolution model (i.e. our full model in Fig.3). In our low resolution
version, we do not add the deconvolution filter in Sect. 3.3, so the model only
outputs a w X h = 16 x 16 coarse response map in Fig. 3. We also downsample
the ground-truth label to w x h and directly train on the coarse response map
to match the downsampled label. After training the low resolution model, we
construct our final high resolution model by adding a 2s x 2s deconvolution filter
with stride s = 32, as described in Sect. 3.3, and initialize the filter weights from
bilinear interpolation (all other parameters are initialized from low resolution
model). The high resolution model is then fine-tuned on the training set using
W x H ground-truth segmentation mask labels. We empirically find this two
stage training converges faster than directly training our full model to predict
W x H high resolution segmentation.

We evaluate the performance of our model and the baselines method in
Sect.4.1 on the 10,000 images in the test set. The following two metrics are
used for evaluation: the overall intersection-over-union (overall IoU) metric and
the precision metric. The overall IoU is the total intersection area divided by the
total union area, where both intersection area and union area are accumulated
over all test samples (each test sample is an image and a referential expression).
Although the overall IoU metric is the standard metric used in PASCAL VOC
segmentation [15], our evaluation is slighly different as we would like to measure
how accurate the model can segment the foreground region described by the
input expression against the background, and the overall IoU metric favors large
regions like sky and ground. So we also evaluate with the precision metric at 5
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query expression= “person”

query expression= “the water at the bottom of the picture”

input image our model per-word average  GroundeR [23]

Fig. 4. Segmentation examples using our model and baseline methods. For GroundeR
[23], the bounding box prediction is in orange and GrabCut segmentation is in red.
(Color figure online)

different IoU thresholds from easy to hard: 0.5, 0.6, 0.7, 0.8, 0.9. The precision
metric is the percentage of test samples where the IoU between prediction and
ground-truth passes the threshold. For example, precision@0.5 is the percentage
of expressions where the predicted segmentation overlaps with the ground-truth
region by at least 50 % IoU.

Results. The main results for our evaluation are summarized in Table1. By
simply returning the whole image, one already gets 15% overall IoU. This is
partially due to the fact that the Referlt dataset contains some large regions
such as “sky” and “city” and the overall IoU metric put more weights on large
regions. However, as expected, the whole image baseline has the lowest precision.

It can be seen from Table 1 that one can get a reasonable overall IoU through
per-word segmentation and combining the results from each word. Among the
three different ways to combine the per-word results in Sect. 4.1, it works best
to average the scores from each word. Using the whole bounding box predic-
tion from SCRC [15] (“SCRC bbox”) or GroundeR [23] (“GroundeR bbox”)
achieves comparable precision to averaging per-word segmentation, while they
are worse in terms of overall IoU, and using classification over segmentation pro-
posals from MCG (“MCG classification”) leads to slightly higher precision than
these two methods. Also, it can be seen that using GrabCut [24] to segment the
foreground from bounding boxes (“SCRC grabcut” and “GroundeR grabcut”)

Table 2. Average time consumption to segmentation an input (a given image and a
natural language expression) using different methods.

Method | per-word | SCRC [15] grabcut | GroundeR MCG classifica- | Ours (high reso-
[23] grabcut | tion lution)

time (sec) | 0.169 4.319 3.753 9.375 0.325
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Fig. 5. Segmentation examples on object regions in the Referlt dataset.
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query expression= “sky above the bridge”
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Fig. 6. Segmentation examples on stuff regions in the Referlt dataset.

results in higher precision for both SCRC and GroundeR than using the entire
bounding box region. We believe that the precision metric is more reflective for
the performance of this task, since in real applications, one would often care
more about how often a referential expression is correctly segmented.

Our model outperforms all the baseline methods by a large margin under
both precision metric and overall IoU metric. In Table 1, the second last row
(“low resolution”) corresponds to directly using bilinear upsampling over the
coarse response map from our low resolution model, and the last row (“high
resolution”) shows the performance of our full model. It can be seen that our
final model achieves significantly higher precision and overall IoU, compared
with the baseline methods. Figure4 shows some segmentation examples using
our model and baseline methods.

The Referlt dataset contains both object regions and stuff regions. Objects
are those entities that have well-defined structures and closed boundaries, such
as person, dog and airplane, while stuffs are those entities that do not have a
fixed structure, such as sky, river, road and snow. Despite this difference, both
object regions and stuff regions can be segmented through our model using the
same approach. Figure5 shows some segmentation examples on object regions
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input image response map our prediction ground-truth
query expression= “church”

NEE

query expression= “right bird”

el |

query expression= “plants below sign”

Fig. 7. Some failure cases where IoU < 50 % between prediction and ground-truth.

from our model, and Fig. 6 shows examples on stuff regions. It can be seen that
our model can predict reasonable segmentation for both object expressions like
“bird on the left” and stuff expressions like “sky above the bridge”.

Figure 7 shows some failure cases on the Referlt dataset, where the IoU
between prediction and ground-truth segmentation is less than 50 %. In some
failure cases (e.g. Fig. 7, middle), our model produces reasonable response maps
that cover the target regions of the natural language referential expressions, but
fails to precisely segment out the boundary of objects or stuffs.

Speed. We also compare the speed of our method and baseline methods. Table 2
shows the average time consumption for different models to predict a segmen-
tation at test time, on a single machine with NVIDIA Tesla K40 GPU. It can
be seen that although our method is slower than the per-word segmentation
baseline, it is significantly faster than proposal-based methods such as “SCRC
grabcut” or “MCG classification”.

5 Conclusion

In this paper, we address the challenging problem of segmenting natural lan-
guage expressions, to generate a pixelwise segmentation output for the image
region described by the referential expression. To solve this problem, we propose
an end-to-end trainable recurrent convolutional neural network model to encode
the expression into a vector representation, extract a spatial feature map rep-
resentation from the image, and output pixelwise segmentation based on fully
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convolutional classifier and upsampling. Our model can efficiently predict seg-
mentation output for referential expressions that describe single or multiple
objects or stuffs. Experimental results on a benchmark dataset demonstrate
that our model outperforms baseline methods by a large margin.

As the datasets for learning this task directly is limited, we explore in our
on-going work [14] how existing large scale vision-only and text-only datasets
can be utilized to train our model.
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